

Models of Dark Matter and constraints from the Large Hadron Collider

Werner Porod

Universität Würzburg

- Where do we stand and why do we want to extend the Standard Model
- Example: supersymmetry

Overview

- Dark Matter at the LHC
 - Monojet and monophoton searches
 - SUSY searches and implications for model building
- Conclusions

CERN AC - Z11 - V11/5/98

W boson mass

ATLAS, arXiv:1307.1427

Julius-Maximilians-UNIVERSITÄT

WURZBURG

for details see e.g. talks by G. Landsberg and F. Cerutti @ EPS-HEP, Stockholm, 2013

CMS, CMS-PAS-HIG-13-005

Where do we stand: Higgs results in a nut-shell, II

ATLAS, arXiv:1307.1427

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

CMS, CMS-PAS-HIG-13-005

for details see e.g. talk F. Cerutti @ EPS-HEP, Stockholm, 2013

One of the big questions: dark matter

Zwicky: galaxies rotate to fast in comparision to the observed mass

The universe at the age of $\simeq 4 \cdot 10^5$ years

 $\label{eq:CMB} \mbox{CMB} \simeq 13.7 \cdot 10^9 \mbox{ years later} \\ \mbox{(WMAP and Planck satellites)} \label{eq:CMB}$

L. Roszkowski, astro-ph/0404052

What is the origin of the observed baryon asymmetry?

How to combine gravity with the SM?

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

- \Rightarrow local Supersymmetry (SUSY) implies gravity
- SM particles can be put in multiplets of larger gauge groups
 - in SU(5): $1 = \nu_R^c$, $5 = (d_{\alpha,R}^c, \nu_{l,L}, l_L)$, $10 = (u_{\alpha,L}, u_{\alpha,R}^c, d_{\alpha,L}, l_R)$

• in SO(10): 16 =
$$(u_{\alpha,L}, u_{\alpha,R}^c, d_{\alpha,L}, d_{\alpha,R}^c, l_L, l_R, \nu_{l,L}, \nu_R^c)$$

However there are two problems in the SM but not in SUSY:

- **•** proton decay (also in SUSY SU(5) a problem)
- gauge coupling unification

SM & $m_h = 125.5$ GeV: potentially meta-stable (G. Degrassi *et al.*, arXiv:1205.6497)

- "Why does electroweak symmetry break?" or "Why is $\mu^2 < 0$ in the SM?"
- Hierarchy problem

Supersymmetry, MSSM

$$\begin{split} R\text{-Parity:} & (-1)^{(3(B-L)+2s)} \\ & (\tilde{\gamma}, \tilde{z}^0, \tilde{h}^0_d, \tilde{h}^0_u) \rightarrow \tilde{\chi}^0_i, \, (\tilde{w}^\pm, \tilde{h}^\pm) \rightarrow \tilde{\chi}^\pm_j \\ \text{DM particle:} \, \tilde{\chi}^0_1 \end{split}$$

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

- left neutrinos: $\Omega_{
 u} h^2 < 0.0067$ @ 95% CL
- sterile neutrinos (with respect to $SU(3)_C \times SU(2)_L \times U(1)_Y$)
- axions
- SUSY

. . .

- neutralino $ilde{\chi}_1^0$
- gravitinos
- $\tilde{\nu}_R$ (in models with sterile neutrinos)
- axinos
- models with extra dimensions: KK-states
 - first vector boson KK state V_Y^1
 - first graviton KK state G^1

requirements

- electrically neutral ('dark')
- either stable: usually via discrete symmetry: R-parity, KK-parity, Z_n , ... or life-time larger than age of universe
- massive and weakly interacting as $\Omega_{DM}h^2\simeq 0.1$

Note: there might be more than one component, we have at least neutrinos

generic signal at high energy colliders

large missing transvers momentum / transverse energy

Dark matter, annihilation processes

Julius-Maximilians-

WÜRZBURG

Julius-Maximilians

- includes monojet, monophoton, mono-b, mono-Z, mono-W, mono-H
- Solution Associated production with a heavier exotic $E: \chi + E$, then $E \to \chi + SM$
- Pair of heavier exotics E + E, then both $E \rightarrow \chi + SM$
- SM decays to $\chi: Z \to \chi \chi, h \to \chi \chi, t \to c \chi \chi$
- Solution Exotic resonance decays: $E \rightarrow \chi \chi$
- \blacksquare Heavier metastable exotic, decay of $E \rightarrow \chi$ not seen in the detector

SUSY give a lots of examples of all of these, so this is a good place to start with, even if DM has nothing to do with SUSY Moreover: usually exotics of other BSM extensions have large cross sections at LHC due to higher spin

- Besides heavier unstable relatives of the DM particle, one is also interested in the particle(s) which mediate the non-gravitational interactions of the DM-particle with SM particles
- SM: the only s-channel mediators are Z and h
- exotic mediators may be very heavy > DM-SM interactions described by contact interactions
- if mediators are lighter, produce and identify them at LHC, not necessarily in association with with DM-particles, e.g. the heavy Higgs-boson in SUSY

- A very broad and powerful program of MET-related searches at ATLAS and CMS. These are the 'SUSY' searches.
- Strong results from monojet and monophoton searches. These are 'Exotic searches'
- Weak constrains on invisible decays of the Higgs boson

Monojets

 $Z \rightarrow \nu \nu$ background

Background measurements

Estimating the $Z \rightarrow \nu \nu$ background

- Muons are minimum ionizing particles
 - They leave almost no energy in the calorimeter
 - Instead, they are measured by the muon spectrometer
- Neutrinos leave no energy in the calorimeter or spectrometer
- Consider a calorimeter-based E_T^{miss} : muons and neutrinos are similar
- Identify $Z
 ightarrow \mu \mu$ and $W
 ightarrow \mu
 u$ events in data with the spectrometer
 - Use MC ratios to "transfer" to $Z \rightarrow \nu \nu$ estimate in data

control region (ATLAS-CONF-2012-147)

signal region SR1 (ATLAS-CONF-2012-147)

Monojets, SUSY interpretation

Julius-Maximilians-

WÜRZBURG

(ATLAS-CONF-2012-147; similar results by CMS, see arXiv:1408.3583)

Monojets, extra dimensions

 $\sigma(pp \to G^1 + j)$

 $M^2_{Planck} \sim M_D^{2+n} R^n$

(ATLAS-CONF-2012-147; similar results by CMS see arXiv:1408.3583)

(ATLAS-CONF-2014-151)

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Monophotons

SUSY

(ATLAS-CONF-2014-151)

Julius-Maximilians-

UNIVERSITÄT WÜRZBURG

Nathaniel Craig, arXiv 1309.0528

ATLAS arXive:1403.5294

Julius-Maximilians-UNIVERSITÄT

WÜRZBURG

$pp \to \tilde{\chi}_1^+ \tilde{\chi}_2^0 + X$

Observed and expected 95% CL exclusion regions

followed by W and Z-mediated decays combine w assumption: specific nature of $\tilde{\chi}_1^+$, $\tilde{\chi}_i^0$ and mass hierarchies

combine with three-lepton of arXiv:1402.7029 hierarchies

CMS Preliminary, L = 19.3 fb⁻¹, \sqrt{s} = 8 TeV

- fully inclusive except of for requirement of ≥ 1 b-tag
- the exclusion of $m_{\tilde{g}} = 1.35$ TeV corrsponds to only 8 signal events after a 30% efficient selection
- this corresponds cross section × BR of
 1.3 fb
- for comparision: Higgs boson cross section $\times BR(h \rightarrow \gamma \gamma)$ is about 10 fb

(CMS-SUS-14-011-pas)

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

exclusive search with small backgrounds but also excludes cross section \times BR as small as 1.3 fb

also other BSM searches, so far nothing ...

SUSY parameter sapce

LHC searches at 7 and 8 TeV have so far excluded a sizable part of the pMSSM and a small fraction of the NMSSM too soon to tell from LHC exclusions if SUSY (or also other BSM extensions) is related to

electroweak scale and dark matter

Concluding remarks

Puzzling situation

- collider data agree very well with SM expectations
- cosmological and astrophysical observations as well as theory arguments point to new physics in the TeV range
- I do not expect significant SUSY signals at LHC@13/14TeV before $L \simeq 10$ fb⁻¹ but potentially an *s*-channel resonance such as a Z'

despite servere bounds: huge model parameter space in various BSM models still open