3. Special Relativity (SR) — Examples

Example 1: going into a restframe by a Lorentz transformation (LT)

- we see a particle (or a train, or . . .) moving with the speed v in \hat{x} direction
 - for simplicity we suppress \hat{y} and \hat{z} directions \Rightarrow only two component vectors
 - the velocity between our frame O and the particles restframe O' is $\vec{v} = v \hat{x}$
 - the LT $O \to O'$ is given by $\vec{\beta} = \frac{\vec{v}}{c}$: $\Lambda = \begin{pmatrix} \gamma & -\gamma\beta \\ -\gamma\beta & \gamma \end{pmatrix}$
 - the LT $O' \to O$ is given by $\vec{\beta}' = \frac{\vec{v}'}{c} = -\frac{\vec{v}}{c}$: $\Lambda' = \begin{pmatrix} \gamma & \gamma\beta \\ \gamma\beta & \gamma \end{pmatrix}$
 - the four momentum of the particle in O' (its restframe !) is $p'^{\mu} = \begin{pmatrix} m \\ \vec{0} \end{pmatrix}$
 - $\ast\,$ its mass m is the energy of the four momentum in its restframe
 - the four momentum in *O* is $p^{\mu} = \Lambda'^{\mu}{}_{\nu}p'^{\nu}$ or $p^{\mu} = \begin{pmatrix} E \\ \vec{p} \end{pmatrix} = \begin{pmatrix} \gamma & \gamma \vec{\beta} \\ \gamma \vec{\beta} & \gamma \end{pmatrix} \cdot \begin{pmatrix} m \\ \vec{0} \end{pmatrix} = \begin{pmatrix} m\gamma \\ m\gamma \vec{\beta} \end{pmatrix} \Rightarrow \begin{cases} E = m\gamma \\ \vec{p} = m\gamma \vec{\beta} \end{cases}$
- solving these equations for the velocity $\vec{v} = \vec{\beta}c$ gives $\vec{v} = \frac{\vec{p}}{E}c$

3. Special Relativity (SR) — Examples

Example 2: energy release in a fixed target experiment

- "6 GeV protons" (p^{μ}_{B}) from the Bevatron hit stationary protons (p^{μ}_{A}) in the detector
 - for simplicity we suppress \hat{y} and \hat{z} directions \Rightarrow only two component vectors
- in the Lab frame we know all initial quantities:
 - the four momentum of the stationary protons: $p_A^{\mu} = \begin{pmatrix} m_p \\ \vec{0} \end{pmatrix}$
 - the kinetic energy of the accelerated protons $E_B m_p = 6.5 \,\mathrm{GeV}$
 - through the energy-momentum-mass relation:
 - * the momentum of the accelerated protons $p_B = \sqrt{E_B^2 m_p^2}$
 - the total four momentum in the Lab frame is:

$$P^{\mu} = p^{\mu}_A + p^{\mu}_B = \begin{pmatrix} E_B + m_p \\ \vec{p}_B \end{pmatrix}$$

- in the CM frame of the reaction we see the available energy:
 - the momentum of the reaction products is zero

 $Q^{\mu} = \begin{pmatrix} E_{CM} \\ \vec{0} \end{pmatrix}$

3. Special Relativity (SR) — Examples

Example 2: energy release in a fixed target experiment ... continued

- How can we connect Lab frame and CM frame ?
 - by a Lorentz transformation (like example 1)
 - by noting that there is an invariant
 - * something that is the same in both frames
- the simplest invariant is the ''square'' of the total four momentum

$$P^{2} = P^{\mu}P_{\mu} = (m_{p} + E_{B})^{2} - (\vec{p}_{B})^{2} = m_{p}^{2} + 2m_{p}E_{B} + E_{B}^{2} - (\vec{p}_{B})^{2}$$

= $m_{p}^{2} + 2m_{p}E_{B} + m_{p}^{2} = 2m_{p}(m_{p} + E_{B})$

and

$$Q^2 = Q^{\mu}Q_{\mu} = (E_{CM})^2 - (\vec{0})^2 = E_{CM}^2$$

- this give the available energy as $E_{CM} = \sqrt{2m_p(m_p + E_B)}$
 - with $m_p = 938 \text{ MeV}$ and $E_B = 7438 \text{ MeV}$ we get $E_{CM} \approx 3964 \text{ MeV} > 4m_p$
 - the Bevatron energy made the reaction possible: $p + p \rightarrow p + p + p + \bar{p}$

- for $a, b \in G \Rightarrow c = a \circ b \in G$ $-(a \circ b) \circ c = a \circ (b \circ c)$

- $\forall a \in G : \exists e \in G \text{ with } a \circ e = e \circ a = a$
- $\forall a \in G : \exists a^{-1} \in G \text{ with } a \circ a^{-1} = a^{-1} \circ a = e$
- if $a \circ b = b \circ a \ \forall a, b \in G$: abelian group, otherwise non-abelian

• a set G together with a "multiplication \circ " with the properties:

- abelian: $\{\mathcal{R},+\}$ or $\{\mathcal{R}^+,\times\}$

non-abelian: regular square matrices with the matrix multiplication

- continuous groups: the elements depend on a continuous parameter
 - example: rotations around an axis $R[\theta]$ with $\theta \in [0, 2\pi)$
- Lie group: a continuous group with an analytic multiplication

 $- g[\vec{x}] \circ g[\vec{y}] = g[f(\vec{x}, \vec{y})]$ with $f(\vec{x}, \vec{y})$ analytic in \vec{x} and \vec{y}

- the unit element is $e = g[\vec{0}]$

3. Special Relativity (SR) — Algebra of the Poincaré group ^(optional)

Groups — what is a group? (repetition)

3. Special Relativity (SR) — Algebra of the Poincaré group ^(optional)
 Lie groups and Lie algebras

- The $n \times n$ (complex) matrices form representations of Lie groups
- group multiplication is analytic \Rightarrow expansion around unit element
 - unit element $e = \mathbf{1}_{n \times n}$
 - representation $T(g[\alpha]) = \exp[i\alpha_i X_i] \quad \Rightarrow \quad X_k = -i\frac{\partial T(g[\alpha])}{\partial \alpha_k}|_{\vec{\alpha}=0}$
 - generators $\{X_k\}$ span the representation of the Lie group
- the generators $\{X_k\}$ fulfill the Lie algebra $[X_j, X_k] = C_{ik}^{\ell} X_{\ell}$
 - with the antisymmetric structure constants $C_{ik}^{\ \ell} = -C_{ki}^{\ \ell}$
 - rank of the group: number of commuting generators
 - a Casimir operator commutes with all generators $\Rightarrow \propto e$
- the indices i, j, k, ℓ need not indicate single numbers!

- for the generators we will have $X_i = X_{[mn]} = -X_{[nm]}$

3. Special Relativity (SR) — Algebra of the Poincaré group ^(optional)

Representations of the Lie group

- using the Jacobi identity
 - 0 = [A, [B, C]] + [B, [C, A]] + [C, [A, B]]

= ABC - ACB - BCA + CBA + BCA - BAC - CAB + ACB + CAB - CBA - ABC + BAC

we get for the structure constants

$$0 = C_{bc}^{\ d}[A,D] + C_{ca}^{\ d}[B,D] + C_{ab}^{\ d}[C,D]$$

= $C_{bc}^{\ d}C_{ad}^{\ e} + C_{ca}^{\ d}C_{bd}^{\ e} + C_{ab}^{\ d}C_{cd}^{\ e} = -(C_{ca}^{\ d}C_{db}^{\ e} - C_{cb}^{\ d}C_{da}^{\ e}) + C_{ab}^{\ d}C_{cd}^{\ e}$

• writing the structure constants as matrices $(M_k)_j^{\ell} = C_{jk}^{\ell}$ we have

$$D = -[(M_a)_c{}^d(M_b)_d{}^e - (M_b)_c{}^d(M_a)_d{}^e] + C_{ab}{}^d(M_d)_c{}^e$$

or

$$[M_a, M_b] = C_{ab}^{\ \ d} M_d$$

⇒ structure constants form the adjoint representation of the Lie group

3. Special Relativity (SR) — Algebra of the Poincaré group ^(optional) Lie Algebra of the rotation group

• a rotation around the \hat{z} -axis by the angle θ is done by the matrix

$$R[\theta] = \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix} = e^{i\theta L_z}$$

- in index notation: $R[\theta]_k^j = \cos\theta(\delta_1^j\delta_k^1 + \delta_2^j\delta_k^2) - \sin\theta(\delta_1^j\delta_k^2 - \delta_2^j\delta_k^1) + \delta_3^j\delta_k^3$

• so the generator of the rotations, iL_z , is

$$iL_z = \frac{\partial R[\theta]}{\partial \theta} \bigg|_{\theta=0} = \begin{pmatrix} -\sin\theta & -\cos\theta & 0\\ \cos\theta & -\sin\theta & 0\\ 0 & 0 & 0 \end{pmatrix} \bigg|_{\theta=0} = \begin{pmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix}$$

- and similar

$$iL_x = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} \qquad iL_y = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

• these rotations (incl. L_x and L_y) act on 3d column vectors $\vec{v} = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix}$

- 3. Special Relativity (SR) Algebra of the Poincaré group ^(optional)
 Lie Algebra of the rotation group
 - with simple matrix multiplication we can see:

$$[iL_x, iL_y] = -iL_z \qquad [iL_y, iL_z] = -iL_x \qquad [iL_z, iL_x] = -iL_y$$

- or in index notation with x = 1, y = 2, and z = 3: $[L_j, L_k] = i\epsilon_{jk\ell}L_\ell$

but there is a smaller dimensional realisation of the rotation group!
 using the Pauli matrices

$$\sigma_x = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \qquad \sigma_y = \left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right) \qquad \sigma_z = \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right)$$

– one can define the Spin matrices $S_k=\frac{1}{2}\sigma_k$, which give

$$[S_j, S_k] = i\epsilon_{jk\ell}S_\ell$$

• these Spin matrices act on 2d complex column vectors $\vec{s} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ with $|\alpha|^2 + |\beta|^2 = 1 \implies \text{Spinors}$

 \Rightarrow fundamental representation of the rotation group SU(2)

3. Special Relativity (SR) — Algebra of the Poincaré group ^(optional)
 Rotations of Spinors

• with simple matrix multiplication we can see for the Pauli matrices:

$$\sigma_x^2 = \sigma_y^2 = \sigma_z^2 = \left(\begin{smallmatrix} 1 & 0 \\ 0 & 1 \end{smallmatrix} \right) = \mathbf{1}_{2 \times 2}$$

• So the finite rotation of a spinor around the $\hat{y}\text{-}\mathsf{axis}$ is

$$\begin{split} R[\theta] &= e^{i\theta S_y} = \sum_{n=0}^{\infty} \frac{1}{n!} (i\theta \frac{1}{2}\sigma_y)^n = \sum_{n=2m} \frac{1}{n!} (i\frac{\theta}{2})^n \sigma_y^n + \sum_{n=2m+1} \frac{1}{n!} (i\frac{\theta}{2})^n \sigma_y^n \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{\theta}{2})^{2n}}{(2n)!} (\sigma_y^2)^n + i \sum_{n=0}^{\infty} \frac{(-1)^n (\frac{\theta}{2})^{2n+1}}{(2n+1)!} (\sigma_y^2)^n \sigma_y \\ &= \cos \frac{\theta}{2} * 1_{2\times 2} + i \sin \frac{\theta}{2} \sigma_y = \begin{pmatrix} \cos \frac{\theta}{2} & -\sin \frac{\theta}{2} \\ \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{pmatrix} \\ &- \text{ acting on the spinor } \vec{s} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \end{split}$$

 \Rightarrow spinors rotate only with half of the rotation angle θ

Special Relativity (SR) — Algebra of the Poincaré group ^(optional)
 Lorentz transformations (like Galilean transformations)
 consist of Boosts and Rotations

 \bullet a boost in \widehat{x} was done by

 $\Lambda(\eta)^{\mu}{}_{\nu} = \cosh \eta (\delta^{\mu}_{0} \delta^{0}_{\nu} + \delta^{\mu}_{1} \delta^{1}_{\nu}) - \sinh \eta (\delta^{\mu}_{0} \delta^{1}_{\nu} + \delta^{\mu}_{1} \delta^{0}_{\nu}) + \delta^{\mu}_{2} \delta^{2}_{\nu} + \delta^{\mu}_{3} \delta^{3}_{\nu}$

• a rotation between \hat{y} and \hat{z} can be done by

$$\Lambda(\theta)^{\mu}{}_{\nu} = \delta^{\mu}_{0}\delta^{0}_{\nu} + \delta^{\mu}_{1}\delta^{1}_{\nu} + \cos\theta(\delta^{\mu}_{2}\delta^{2}_{\nu} + \delta^{\mu}_{3}\delta^{3}_{\nu}) - \sin\theta(\delta^{\mu}_{2}\delta^{3}_{\nu} - \delta^{\mu}_{3}\delta^{2}_{\nu})$$

- we obtain the generators for boosts with $-i\frac{\partial \Lambda(\eta)^{\mu}}{\partial \eta}|_{\eta=0} =$
- $-i\sinh\eta(\delta^{\mu}_{0}\delta^{0}_{\nu}+\delta^{\mu}_{1}\delta^{1}_{\nu})+i\cosh\eta(\delta^{\mu}_{0}\delta^{1}_{\nu}+\delta^{\mu}_{1}\delta^{0}_{\nu})|_{\eta=0}=i(\delta^{\mu}_{0}\delta^{1}_{\nu}+\delta^{\mu}_{1}\delta^{0}_{\nu})$
- we obtain the generators for rotations with $-i\frac{\partial \Lambda(\theta)^{\mu}}{\partial \theta}|_{\theta=0} =$ $+i\sin\theta(\delta_{2}^{\mu}\delta_{\nu}^{2} + \delta_{3}^{\mu}\delta_{\nu}^{3}) + i\cos\theta(\delta_{2}^{\mu}\delta_{\nu}^{3} - \delta_{3}^{\mu}\delta_{\nu}^{2})|_{\theta=0} = i(\delta_{2}^{\mu}\delta_{\nu}^{3} - \delta_{3}^{\mu}\delta_{\nu}^{2})$

3. Special Relativity (SR) — Algebra of the Poincaré group ^(optional) Boosts and Rotations ... continued

- The other boosts go in \hat{y} or \hat{z} direction: $i(\delta^{\mu}_{0}\delta^{i}_{\nu} + \delta^{\mu}_{i}\delta^{0}_{\nu})$, or with the indices 0i down: $(M_{0i})^{\mu}_{\nu} = i(\delta^{\mu}_{0}(-g_{i\nu}) + \delta^{\mu}_{i}g_{0\nu})$
- The other rotations go in $\hat{x}\hat{y}$ or $\hat{x}\hat{z}$ direction: $i(\delta^{\mu}_{j}\delta^{k}_{\nu} \delta^{\mu}_{k}\delta^{j}_{\nu})$, or with the indices jk down: $(M_{jk})^{\mu}{}_{\nu} = i(\delta^{\mu}_{j}(-g_{k\nu}) - \delta^{\mu}_{k}(-g_{j\nu}))$
- both generators have now the same form:

$$(M_{\alpha\beta})^{\mu}{}_{\nu} = -i(\delta^{\mu}_{\alpha}g_{\beta\nu} - \delta^{\mu}_{\beta}g_{\alpha\nu})$$

• with $\omega^{\alpha\beta}=-\omega^{\beta\alpha}$ we get

$$\Lambda(\omega)^{\mu}{}_{\nu} = \exp[i(M_{\alpha\beta}\omega^{\alpha\beta})^{\mu}{}_{\nu}] = \exp[(\delta^{\mu}_{\alpha}g_{\beta\nu} - \delta^{\mu}_{\beta}g_{\alpha\nu})\omega^{\alpha\beta}]$$

- How to understand / use this formula? How to get a matrix?
 1. pick the indices of ω^{αβ}: ω⁰ⁱ (ω^{jk}) for a boost (rotation) in î- (ĵk-) direction
 2. write the matrix δ^μ_αg_{βν} δ^μ_βg_{αν} with row-(column-) number μ (ν)
 * it will only have two non-zero entries
 - 3. squaring the matrix gives a diagonal matrix with only two equal entries
 - 4. the powerseries expansion gives you the expected boost / rotation

- 3. Special Relativity (SR) Algebra of the Poincaré group ^(optional)
 Generators for the Lorentz transformations
 - these generators fulfill the Lie algebra of the Lorentz group:

$$[M_{\alpha\beta}, M_{\gamma\delta}]^{\mu}{}_{\nu} = i(g_{\alpha\gamma}M_{\beta\delta} - g_{\beta\gamma}M_{\alpha\delta} - g_{\alpha\delta}M_{\beta\gamma} + g_{\beta\delta}M_{\alpha\gamma})^{\mu}{}_{\nu}$$

- unifying time and spatial translations $P_{\mu} = (H, P_i)$
- we get the rest of the Poincaré algebra:

 $[P_{\mu}, P_{\nu}] = 0$ and $[M_{\alpha\beta}, P_{\mu}] = i(g_{\alpha\mu}P_{\beta} - g_{\beta\mu}P_{\alpha})$

- the generators of the Poincaré group are: P_{μ} and $M_{\alpha\beta}$
 - all rotations, boosts, and translations are elements of the Poincaré group

Invariants of the Poincaré group

- are objects that commute with all elements of the Poincaré group
 - it is enough to check if they commute with the generators ...

3. Special Relativity (SR) — Algebra of the Poincaré group ^(optional) Invariants of the Poincaré group

• obviously [ab, c] = a[b, c] + [a, c]b = abc - acb + acb - cab = abc - cab

• so
$$[P_{\mu}, P^2] = [P_{\mu}, P_{\nu}]P^{\nu} + P^{\nu}[P_{\mu}, P_{\nu}] = 0$$

• and
$$[M_{\alpha\beta}, P^2] = g^{\mu\nu}[M_{\alpha\beta}, P_{\mu}]P_{\nu} + g^{\mu\nu}P_{\mu}[M_{\alpha\beta}, P_{\nu}]$$

 $= g^{\mu\nu}i(g_{\alpha\mu}P_{\beta} - g_{\beta\mu}P_{\alpha})P_{\nu} + g^{\mu\nu}P_{\mu}i(g_{\alpha\nu}P_{\beta} - g_{\beta\nu}P_{\alpha})$
 $= -2i[P_{\alpha}, P_{\beta}] = 0$.

 $\Rightarrow P^2 = m^2$ invariant is a consequence of the Poincaré algebra!

- Another invariant is W^2
 - with the Pauli-Lubanski vector $W^{\mu} = \frac{1}{2} \epsilon^{\mu\nu\rho\lambda} M_{\nu\rho} P_{\lambda}$ $[P_{\kappa}, W^{\mu}] = \frac{1}{2} \epsilon^{\mu\nu\rho\lambda} ([P_{\kappa}, M_{\nu\rho}] P_{\lambda} + M_{\nu\rho} [P_{\kappa}, P_{\lambda}])$ $= \frac{1}{2} \epsilon^{\mu\nu\rho\lambda} i (g_{\rho\kappa} P_{\nu} - g_{\nu\kappa} P_{\rho}) P_{\lambda} = 0 \implies [P_{\kappa}, W^2] = 0$

- 0 = $[M_{\alpha\beta}, W^2]$ is true, but checking is too difficult . . .

 \Rightarrow Particles can be characterised by the eigenvalues of P^2 and W^2

3. Special Relativity (SR) — Algebra of the Poincaré group ^(optional) Eigenvalues of P^2 and W^2

• the spin vector W^{μ} is orthogonal to P_{μ} :

$$(P.W) = P^{\mu} \frac{1}{2} \epsilon_{\mu\nu\rho\lambda} M^{\nu\rho} P^{\lambda} = 0$$

- For a particle at rest: $P_{\mu} = (m, 0)$
 - $P^2 = m^2 \Rightarrow$ the eigenvalue of P^2 is m^2

$$- W_{\mu} = \frac{1}{2} m \epsilon_{\mu\nu\rho0} M^{\nu\rho} = m(0, \vec{J})$$

- so
$$W^2 = m^2(0^2 - \vec{J}^2) = -m^2\vec{J}^2 \to -m^2s(s+1)$$

- \Rightarrow the eigenvalue of W^2 is $m^2s(s+1)$
- For a massless particle $P_{\mu} = (\eta, \eta, 0, 0)$
 - we have $P^2 = (P.W) = W^2 = 0$
 - \Rightarrow the eigenvalues of P^2 and W^2 are 0
 - we can construct the operator $0 = \lambda^2 P^2 2\lambda(P.W) + W^2 = (\lambda P W)^2$ * where λ depends on the representation (i.e. the spin) of the particle
 - we get: $W^{\mu} = \lambda P^{\mu}$ with the helicity $\lambda = 0, \pm \frac{1}{2}, \pm 1, \ldots$
- \Rightarrow Particles are characterised by mass and spin !

3. Special Relativity (SR) — Algebra of the Poincaré group ^(optional) Investigating the Lorentz group

distinguishing again boosts and rotations

$$K_i = M_{0i} = -M^{0i}$$
 and $J_i = \frac{1}{2} \epsilon_{ijk} M^{jk}$,

the Lorentz algebra gives

$$[J_j, J_k] = i\epsilon_{jk\ell}J_\ell \quad , \quad [K_j, K_k] = -i\epsilon_{jk\ell}J_\ell \quad , \quad [J_j, K_k] = i\epsilon_{jk\ell}K_\ell$$

• defining

$$L_i = N_i = \frac{1}{2}(J_i + iK_i)$$
 and $R_i = N_i^{\dagger} = \frac{1}{2}(J_i - iK_i)$

one gets

$$[L_j, R_k] = 0 \quad , \quad [L_j, L_k] = i\epsilon_{jk\ell}L_\ell \quad , \quad [R_j, R_k] = i\epsilon_{jk\ell}R_\ell$$

 \Rightarrow the Lorentz algebra is similar to $SU(2)_L \otimes SU(2)_R$!

- it has two invariants: $L_i L_i = n(n+1)$ and $R_i R_i = m(m+1)$
 - the angular momentum is $J_i = L_i + R_i \implies \text{spin } j = n + m$

- 3. Special Relativity (SR) Algebra of the Poincaré group ^(optional) classifying particles
 - according to the eigenstates (n,m) of $SU(2)_L \otimes SU(2)_R$
 - (0,0) is a scalar
 - $-(\frac{1}{2},0)$ is the χ_{α} left-handed Weyl-spinor
 - $(0, \frac{1}{2})$ is the $\bar{\eta}^{\dot{\alpha}}$ right-handed Weyl-spinor

$$-(\frac{1}{2},0)\oplus(0,\frac{1}{2})$$
 is $\Psi=\begin{pmatrix}\chi_{\alpha}\\\bar{\eta}\dot{\alpha}\end{pmatrix}$, the Dirac-spinor

 $- (\frac{1}{2}, 0) \otimes (0, \frac{1}{2}) = (\frac{1}{2}, \frac{1}{2}) \text{ is } (\chi \sigma^{\mu} \overline{\eta}) = \chi^{\alpha} \sigma^{\mu}_{\alpha \dot{\alpha}} \overline{\eta}^{\dot{\alpha}}, \text{ a spin-1 four-vector}$

- \Rightarrow in that sense is the spinor the square root of the vector
 - under Parity: $J_i \xrightarrow{\mathsf{P}} J_i, K_i \xrightarrow{\mathsf{P}} -K_i, \Rightarrow L_i \xleftarrow{\mathsf{P}} R_i, (n,m) \xleftarrow{\mathsf{P}} (m,n)$
 - the scalar stays the same
 - $(\frac{1}{2},0) \stackrel{\mathsf{P}}{\longleftrightarrow} (0,\frac{1}{2})$, therefore $\chi_{\alpha} \stackrel{\mathsf{P}}{\longleftrightarrow} \overline{\eta}^{\dot{\alpha}}$
 - $(\frac{1}{2},0) \oplus (0,\frac{1}{2}) \stackrel{\mathsf{P}}{\longleftrightarrow} (0,\frac{1}{2}) \oplus (\frac{1}{2},0) = (\frac{1}{2},0) \oplus (0,\frac{1}{2})$
 - \Rightarrow so a Dirac-spinor stays a Dirac-spinor
 - the four-vector stays the same