3. Special Relativity (SR) — Examples
Example 1: going into a restframe by a Lorentz transformation (LT)

e Wwe see a particle (or atrain, or...) moving with the speed v in x direction

— for simplicity we suppress y and z directions = only two component vectors

— the velocity between our frame O and the particles restframe O is v =vZ

— the LT O — O’ is given by 8 = :/\:( 75 _75)
o

— the LT O’ 5O is given by §/ =¥ = 7. /\/z( g ’Yﬁ)
Y8

ol

— the four momentum of the particle in O’ (its restframe !) is p'* = ( %L )

x 1tS mass m is the energy of the four momentum in its restframe

— the four momentum in O is pt = A*p" or

E v B m my b= my
p,LL = . == = . - == = = . R
D VB8 0 myp3 p = myp

e solving these equations for the velocity v = Ec gives v = %c
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3. Special Relativity (SR) — Examples
Example 2: energy release in a fixed target experiment

® "6 GeV protons” (p5) from the Bevatron hit stationary protons (p/,) in the detector

— for simplicity we suppress y and z directions = only two component vectors

e in the Lab frame we know all initial quantities:

— the four momentum of the stationary protons: p} = ( 7%1’ )

— the kinetic energy of the accelerated protons Ep — mp = 6.5 GeV
— through the energy-momentum-mass relation:

2

« the momentum of the accelerated protons pp = \/E% —my

— the total four momentum in the Lab frame is:

P“=pffl+p§§=(

PB

e in the CM frame of the reaction we see the available energy:

E
— the momentum of the reaction products is zero QF = %M>
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3. Special Relativity (SR) — Examples
Example 2: energy release in a fixed target experiment ... continued

e How can we connect Lab frame and CM frame ?
— by a Lorentz transformation (like example 1)
— by noting that there is an invariant

x+ something that is the same in both frames

e the simplest invariant is the "'square’” of the total four momentum

P2 = PMP, = (my+ Bp)? — (7p)? = m? + 2mpBp + B — (7p)>
mp2 +2mpEp + mp2 = 2mp(mp + Ep)

and -
Q% = Q"Qu= (Ecy)?—(0)2=EZ,

e this give the available energy as £ = \/2mp(mp + ER)
CM p\Mp B

— with m, = 938MeV and Ep = 7438 MeV we get Ecy ~ 3964 MeV > 4m,,
— the Bevatron energy made the reaction possible: p4+p —p+p+p+0p
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3. Special Relativity (SR) —  Algebra of the Poincaré group (°Ptional

Groups — what is a group? (repetition)

e a set G together with a "multiplication o
— fora,be G = c=ao0ob €G
— (aob)oc=ao(boc)
—VYaeG:deeGFwithaoe=ecoa=a
—VaeG:3dateGwithaocal=aloa=e

with the properties:

e ifaob="boa Va,b € G : abelian group, otherwise non-abelian
— abelian: {R,+} or {RT, x}

— non-abelian: regular square matrices with the matrix multiplication

e continuous groups: the elements depend on a continuous parameter

— example: rotations around an axis R[0] with 0 € [0,27)

e Lie group: a continuous group with an analytic multiplication

— glz] o gly] = glf(Z, )] with f(Z,¥) analytic in & and ¥
— the unit element is e = ¢[0]
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3. Special Relativity (SR) —  Algebra of the Poincaré group (©rtional
Lie groups and Lie algebras

e The n x n (complex) matrices form representations of Lie groups

e group multiplication is analytic = expansion around unit element
— unit element e = 1,,«n,
— representation T'(g[a]) = expli; X;] = X, = —z’%“[;‘m&:o
— generators {X.} span the representation of the Lie group

e the generators {X,} fulfill the Lie algebra [X;, X;] = Cj,fXg
— with the antisymmetric structure constants Cj,f — —Ckf

— rank of the group: number of commuting generators
— a Casimir operator commutes with all generators = e

e the indices 1,3, k,¢ need not indicate single numbers!
— for the generators we will have X; = X, .1 = — X[,
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3. Special Relativity (SR) —  Algebra of the Poincaré group (°Ptional
Representations of the Lie group

e using the Jacobi identity
0 = [A[BCll+[B,[C,All + [C [A, B]]
— ABC - ACB— BCA+CBA + BCA—- BAC —CAB+ ACB + CAB— CBA— ABC + BAC

we get for the structure constants
0 = ¢, A, D]+ C.AB,D]+ C,AC, D]
= Cp'Cof + CoilCof + Cil'Crf = —(CodCyf — Cu'Cyd) + Coi'Cf

e writing the structure constants as matrices (Mk)jﬁ = Cj,_f we have

0 = —[(Ma), U(Mp)g°® — (My). {(Ma) 4] + C il (My)..©

or
[MCM Mb] — Cabde

= structure constants form the adjoint representation of the Lie group
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3. Special Relativity (SR) —  Algebra of the Poincaré group (°Ptional
Lie Algebra of the rotation group

e a rotation around the z-axis by the angle 6 is done by the matrix

cosfd —sin® O 0L
R[@] — sinf cosf O — Wiz
0] 0 1

— in index notation: R[0)7), = cos0(815% + 6362) — sin 0(8]62 — §461) + 8553

e SO the generator of the rotations, L., iS

8R[9] —sinf® —cosh O 0O -1 O
1L, = ———— = cosf —sing O =1 0o 0O
90 |p—p 0 0 0 /lp=0 0 0 O
— and similar

O O
0O -1 ZLy o
1 O

e these rotations (incl. L, and Ly) act on 3d column vectors v = < J; )

Uz

= O O
oNoNe

|
OOH
N—~—_
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3. Special Relativity (SR) —  Algebra of the Poincaré group (ortional)
Lie Algebra of the rotation group
e With simple matrix multiplication we can see:
[iLy,iLy] = —iL. [iLy,iL,] = —iL, [iL,iLz] = —iLy
— or in index notation with « =1, y =2, and z =3: [Lj, L] = i€ oLy

e but there is a smaller dimensional realisation of the rotation group!
— using the Pauli matrices

—_— (0 1 (0 —i (1 o0
Jx_(l o) Uy—(z' o) ‘72_(0—1)
— one can define the Spin matrices S, = %ak , which give
(S}, Skl = i€jreSe
e these Spin matrices act on 2d complex column vectors s = ( g )
with |a]?2 4+ |82 =1 = Spinors

= fundamental representation of the rotation group SU(2)
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3. Special Relativity (SR) —  Algebra of the Poincaré group (©rtional
Rotations of Spinors

e With simple matrix multiplication we can see for the Pauli matrices:

2__ 2_ 2 _ (1 0\ __
O-:B_O'y_o-z—<o 1)—12><2

e SO the finite rotation of a spinor around the y-axis is

w0 = onm £ L= % s E S
o0 (_1)n(Q)2n . )n( )2n—|—1 .
= X Gy > Gt 1yt 71"

n n

0 9
cos¢ —sin
sin ¢ cosg

0 _
COS 3 *12X2—|—ZS|n20'y—<
2

— acting on the spinor s = < g )

— spinors rotate only with half of the rotation angle 6
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3. Special Relativity (SR) —  Algebra of the Poincaré group (©rtional

Lorentz transformations ( like Galilean transformations )
consist of Boosts and Rotations

e a boost in £ was done by

A(m*, = coshn(§69 + 6461) — sinh (86 + 64 69) + 64562 + 6463

e a rotation between y and z can be done by

AN, = 6159 + 6461 4 cos0(6%82 + 54453) — sin 05463 — §452)

e we obtain the generators for boosts with — 8/\(77) V=0 =

—isinh (%69 + §'61) + i cosh (8461, + 5‘{59)|n=0 = i(515 + 6+ 69)

e we obtain the generators for rotations with _Zﬁ/\(Q) Y g—

+isin 0(8507, + 8'363) + i cos 0(8507 — 9397 |p=0 = (6557, — 9303
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3. Special Relativity (SR) —  Algebra of the Poincaré group (©rtional

Boosts and Rotations ... continued

The other boosts go in g or z direction: (558, + §459),

or with the indices 0i down: (Mg;)", = i(6'g(—giv) + 6% 90,)
The other rotations go in #§ or Zz direction: 2(5’39612 — 5’”,;5V),
or with the indices jk down: (M;)"y = i(8';(=gry) — 8. (=g;u))
both generators have now the same form:

(Maﬁ)ﬂ = —i(d% o996y — 5590w)
with w® = —whe we get
ANw)*, = expli(Mapuw™ ) ,] = exp[(64gp, — 85901 )™’
How to understand / use this formula? ... How to get a matrix?

1. pick the indices of w®?: W% (wi*) for a boost (rotation) in - (jk-) direction
2. write the matrix §ags, — 5%9041/ with row-(column-) number u (v)
« 1t will only have two non-zero entries

3. squaring the matrix gives a diagonal matrix with only two equal entries
4. the powerseries expansion gives you the expected boost / rotation
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3. Special Relativity (SR) —  Algebra of the Poincaré group (©rtional
Generators for the Lorentz transformations

e these generators fulfill the Lie algebra of the Lorentz group:
[Maﬁa M'ycS]'uV — i(gOé’YMB(S - gﬁfyMoch — gaéMB'y + gﬂéMOé’Y)'uz/

e unifying time and spatial translations P, = (H, F;)
e we get the rest of the Poincaré algebra:
[P/M Pl/] =0 and [Mozﬁa P,U] — Z(gO{,LLPﬁ — gﬁlupa)

e the generators of the Poincaré group are: P, and Mg

— all rotations, boosts, and translations are elements of the Poincaré group

Invariants of the Poincaré group

e are objects that commute with all elements of the Poincaré group

— it is enough to check if they commute with the generators ...
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3. Special Relativity (SR) —  Algebra of the Poincaré group (©rtional

Invariants of the Poincaré group

e obviously [ab, c] = a[b, c] + [a, c]b = abc — acb + acb — cab = abc — cab

e so [P,,P? =[P, PJ)PY+ PY[P,,P,)] =0

o and [M,g, P?] = g"'[Myg, PulPy + g"" Pu[M,g, P,]
gﬂyi(gaupﬁ — QBMPQ)PI/ + QMVP,ui(QaVPB — gﬁuPa)

= —2i[Pa,Pg] =0 .

2

— P2 = m?2 invariant is a consequence of the Poincaré algebra!

e Another invariant is W72
— with the Pauli-Lubanski vector WH = ZeVPAM,,, Py,
[P, WH] = 3P ([Pr, Myp] Py + Myp[Px, P2])
= LetPNi(goxPy — gunPp)Py =0 = [P, W?] =0

— 0 = [M,g,W?] is true, but checking is too difficult ...

— Particles can be characterised by the eigenvalues of P2 and W2
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3. Special Relativity (SR) —  Algebra of the Poincaré group (©rtional
Eigenvalues of P2 and W2

e the spin vector W# is orthogonal to P, :
(P.W) = Plie,, \M"PP* =0

e For a particle at rest: P, = (m,0)
— P? = m? = the eigenvalue of P? is m?
— Wy = 2meuwoM*? = m(0, J)
— 50 W2 =m2(0%2— J2) = —m2J2 > —m2s(s + 1)
= the eigenvalue of W?2 is m?s(s+ 1)

e For a massless particle P, = (n,n,0,0)
— we have P2 = (PW)=W?=0
— the eigenvalues of P2 and W?Z2 are 0
— we can construct the operator 0 = A\2P2 —2X(P.W) + W2 = (AP — W)?
+x where )\ depends on the representation (i.e. the spin) of the particle

— we get: W# = AP# with the helicity A = 0,+3,£1,...

— Particles are characterised by mass and spin !
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3. Special Relativity (SR) —  Algebra of the Poincaré group (ortional)
Investigating the Lorentz group
e distinguishing again boosts and rotations
K; = Mo; = — MY and Ji = Sej iM%
the Lorentz algebra gives
[, Tkl = iejpede o K, Kil = —tejpedy ,  [Jj, Kl = iejpe Ky
e defining
Li= N; = 1(J; +iK;) and R; = N = 1(J; —iK;)
one gets
[Lj, Rl =0, [Lj, L] = dejpely ,  [Rj, R] = iejpeRy
= the Lorentz algebra is similar to SU(2); ® SU(2)p !

e it has two invariants: L;L; =n(n+ 1) and R,R; = m(m + 1)
— the angular momentum is J, = L, + R; = spin g =n—4+m
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3. Special Relativity (SR) —  Algebra of the Poincaré group (©rtional

classifying particles

e according to the eigenstates (n,m) of SU(2); ® SU(2)R
— (0,0) is a scalar
— (3,0) is the xa left-handed Weyl-spinor
— (O,%) is the 7% right-handed Weyl-spinor
— (%,O) -+ (O,%) is W = (?,;g) the Dirac-spinor
- (%70) ® (0,%) = (%,%) is (xot7) = x%! . 7%, a spin-1 four-vector
= in that sense is the spinor the square root of the vector

e under Parity: J; LN J;, K; LN —K;, = L, LN R;, (n,m) LN (m,n)
— the scalar stays the same
— (3,0) <5 (o, 1), therefore x, RN
- 090, «= 0,had0=_3E0e/0,?1
— SO a Dirac-spinor stays a Dirac-spinor

— the four-vector stays the same
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