Symmetries

Looking for some order in this "chaos" ...

- 1. properties of particles:
 - order by mass (approximately, rather to be seen historically):

leptons	(Greek: ''light'')	electrons, muons, neutrinos,
mesons	(''medium-weight'')	pions, kaons,
baryons	(''heavy'')	protons, neutrons, lambda,

• order by charge:

neutral

- ± 1 elementary charge
- ± 2 elementary charge
- order by **spin**:

 fermions
 (spin $\frac{1}{2}$, $1\frac{1}{2}$, ...)

 bosons
 (spin 0, 1, ...)

electrons, protons, neutrinos, ... photons, pions, ...

neutrons, neutrinos, photons, ...

proton, electron, muon, ...

 $\Delta^{++}, \Sigma_c^{++}, \ldots$

• order by "strangeness", parity, ...

Symmetries

Thomas Gajdosik

Looking for some order in this "chaos" ...

2. conservation laws for particles:

- conservation of energy:
 - $n \to p + \dots$ but not $\pi^0 \to \pi^{\pm} + \dots$
- conservation of charge:
 - $n \to p + e^- + \dots$ but not $n \to p + e^+ + \dots$
- conservation of lepton number:
 - $n \rightarrow p + e^- + \overline{\nu}_e$ but not $n \rightarrow p + e^- + \nu_e$
- conservation of **baryon number**:
 - $n \to p + \dots$ but not $n \to \pi^+ + \pi^- + \dots$
- conservation of **strangeness** (only in "fast" processes): fast $K^* \to K + \pi$ but only "slow" $K \to \pi + \pi$

Symmetries

Thomas Gajdosik

Symmetries & where do we find them? → everywhere in nature:

 snowflakes exhibit a 6-fold symmetry

• crystals build lattices

symmetries of the microcosm are also visible in the macrocosm

How do symmetries look like in theory?

★ symmetries are described by symmetry transformations:

Example 1: Butterfly symmetry transformation S₀: mirror all points at a line

formally: W = "original picture" $\Rightarrow W' =$ "mirrored picture" apply symmetry in operator notation: $S_0W = W'$

a symmetry is given if and only if $S_0W = W$!

How do symmetries look like in theory?

★ symmetries are described by symmetry transformations:

Example 2: crystal lattice symmetry transformations S_i : move all points by the same vectors $(\vec{x}_1 \text{ or } \vec{x}_2)$

formally: W = "original picture" $\Rightarrow W' =$ "moved picture" apply symmetry in operator notation: $S_iW = W'$

a symmetry is given if and only if $S_i W = W$!

How do symmetries look like in theory? ★ symmetry transformations form group structures

Example: translations symmetry transformations S_1 and S_2 : move all points by the same vector (\vec{x}_1 or \vec{x}_2)

movement of all points by the vector

 $\vec{x}_3 = \vec{x}_1 + \vec{x}_2$

is also a symmetry transformation !

$$S_3 = S_1 \circ S_2$$

Groups, mathematically:

a group (G, \circ) is a set $G = \{a, b, c, ...\}$ with a

binary operation • that fulfills (the axioms)

- closure: $c = a \circ b \in G \quad \Leftrightarrow \quad a, b \in G$
- associativity: $(a \circ b) \circ c = a \circ (b \circ c)$
- identity: $\exists e \text{ with } a \circ e = e \circ a = a \quad \forall a \in G$
- inverse: $\forall a \in G \quad \exists b = a^{-1}$ (the inverse)

with $a \circ b = b \circ a = e$

an Abelian group fulfills an additional relation

• commutativity: $a \circ b = b \circ a \quad \forall a, b \in G$

Groups, an example:

using these six triangles, we can construct a group:

- the triangles themselves will not be elements
 as we have no clue, how to connect them
- their relations will be elements of a group!
 - we know, how we can transform one triangle into the other
 - then the set is $\{I, R_1, R_2, R_3, R_+, R_-\}$
- then these transformations can be connected:
 - do first one, then the other:
 - $R_1 \circ R_2 =$ doing first R_2 , then R_1

- discrete symmetry transformations:
 parity transformation P
 - to mirror at a plane (a mirror) is easy to understand, but depends on the (arbitrary) position and orientation of the plane.
 - a more general definition: mirror at the origin

(space inversion, parity transformation):

 $\mathbf{P}W(t,x,y,z) := W(t,-x,-y,-z)$

 the parity transformation corresponds to a rotation followed by a mirroring at a plane

discrete symmetry transformations: time reversal T (reversal of the "arrow of time")

- corresponds to a movie played backwards
- in case of a movie (= everday physics), this is spotted at once (i.e. there is no symmetry)
- however, the laws of mechanics are timesymmetric (example: billiard)
- definition:

$$\mathbf{T}W(t, x, y, z) := W(-t, x, y, z)$$

discrete symmetry transformations: charge conjugation C (exchanging matter and anti-matter)

- for every known particle, there is also a anti-partner
- anti particles are identical to their partners with respect to some properties (e.g. mass), and opposite w.r.t. others (e.g. charge)
- charge conjugation exchanges all particles with their (anti)partners (and vice versa)
- definition:

$$\mathbf{C}W(t,x,y,z) := \overline{W}(t,x,y,z) = W^{\dagger}(t,x,y,z)$$

★ continuous symmetry transformations:

- they can be performed in arbitrary small steps

time shift: physics(today) → physics(tomorrow)
 more accurately: shift by a time-step Δt

$$e^{\Delta t \frac{\partial}{\partial t} W(t, x, y, z)} = W(t + \Delta t, x, y, z)$$

space shift: physics(here) → physics(there)
 more accurately: shift in space by a vector Δr = (Δx, Δy, Δz)

$$e^{\Delta \vec{r} \cdot \nabla} W(t, x, y, z) = W(t, x + \Delta x, y + \Delta y, z + \Delta z)$$

★ continuous symmetry transformations:

- they can be performed in arbitrary small steps

DW(t, x, y, z) = W(t, x', y', z')

★ continuous symmetry transformations:

- they can be performed in arbitrary small steps

• U(1) transformation:

- does not affect the outer coordinates (t, x, y, z), but inner properties of particles
- U(1) is a transformation, which rotates the phase of a particle field (denoted as Ψ) by an angle α :

$$U(1)\Psi(t,x,y,z) = e^{i\alpha}\Psi(t,x,y,z)$$

insertion: **particles** are represented by fields in quantum field theory. At each point in space and time, the field Ψ can have a certain complex phase.

★ Noether's theorem:

to each symmetry of a field theory corresponds a certain conserved quantity -> conservation law

that means: if a field theory remains unchanged under a certain symmetry transformation S, then there is a mathematical procedure to calculate a property of the field which does not change with time, whatever complicated processes are involved.

★ applications of Noether's theorem:

"also tomorrow the sun will rise" --> conservation of energy

- the laws of physics do not change with time
- more accurate: the corresponding field theory is invariant under time shifts:

$$e^{\Delta t \frac{\partial}{\partial t}} W(t, x, y, z) = W(t + \Delta t, x, y, z) \doteq W(t, x, y, z)$$

From Noether's theorem follows the conservation of a well-known property: energy!

★ applications of Noether's theorem:

"also tomorrow the sun will rise" --> conservation of energy

- the laws of physics do not change with time
- more accurate: the corresponding field theory is invariant under time shifts:

$$e^{-t} \partial t W(t, x, y, z) = W(t + \Delta t, x, y, z) \doteq W(t, x, y, z)$$

From Noether's theorem follows the conservation of a well-known property: energy!

just to be clear:

★ we are talking about properties of the underlying theory, not a certain physics scenario:

Example: chess:

- there is virtually an infinite number of ways a game of chess can develop
- a game tomorrow can be completely different from a game today

but:

• the rules of chess remain the same, they are invariant under time shifts!

★ applications of Noether's theorem:

- the laws of physics do not depend on where you are
- more accurate: the corresponding field theory is invariant under space shifts:

$$e^{\Delta \vec{r} \cdot \nabla} W(t, \vec{r}) = W(t, \vec{r} + \Delta \vec{r}) \doteq W(t, \vec{r})$$

From Noether's theorem follows the conservation of a well-known property: momentum!

★ applications of Noether's theorem:

"going round and round" **conservation of angular momentum**

- the laws of physics do not depend on which way you look
- more accurate: the corresponding field theory is invariant under rotations:

 $DW(t, \vec{r}) = W(t, \vec{r}') \doteq W(t, \vec{r})$

From Noether's theorem follows the conservation of a well-known property: angular momentum!

★ applications of Noether's theorem:

 as it turns out, the field theory of electro-dynamics is invariant under a global* U(1) transformation:

$$U(1)\Psi(t,x,y,z) = e^{ilpha}\Psi(t,x,y,z)$$

 $\Rightarrow W'(t,x,y,z) \doteq W(t,x,y,z)$

* global means: affecting all space-points (t,x,y,z) in the same way

From Noether's theorem follows the conservation of charge!

Overview

symmetries and conservation laws

symmetry	conservation law
time shift	energy
space shift	momentum
rotation	angular momentum
$oldsymbol{U}(1)$ phase	charge