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Looking for some order in this ”chaos” . . .
1. properties of particles:

• order by mass (approximately, rather to be seen historically):
leptons (Greek: ”light”) electrons, muons, neutrinos, . . .

mesons (”medium-weight”) pions, kaons, . . .

baryons (”heavy”) protons, neutrons, lambda, . . .

• order by charge:
neutral neutrons, neutrinos, photons, . . .

±1 elementary charge proton, electron, muon, . . .

±2 elementary charge ∆++, Σ++
c , . . .

• order by spin:
fermions (spin 1

2, 11
2, . . . ) electrons, protons, neutrinos, . . .

bosons (spin 0, 1, . . . ) photons, pions, . . .

• order by ”strangeness” , parity, . . .
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Observing particle decays and interactions:
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Looking for some order in this ”chaos” . . .
2. conservation laws for particles:

• conservation of energy:
n→ p+ . . . but not π0→ π±+ . . .

• conservation of charge:
n→ p+ e−+ . . . but not n→ p+ e+ + . . .

• conservation of lepton number:
n→ p+ e−+ ν̄e but not n→ p+ e−+ νe

• conservation of baryon number:
n→ p+ . . . but not n→ π+ + π−+ . . .

• conservation of strangeness (only in ”fast” processes):

fast K∗→ K + π but only ”slow” K → π + π
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Observing particle decays and interactions:
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Symmetries & where do we find them?

everywhere in nature:I

• snowflakes exhibit
a 6-fold symmetry

• crystals build lattices

symmetries of the microcosmI
are also visible in the macrocosm
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How do symmetries look like in theory?

F symmetries are described by symmetry transformations:

Example 1: Butterfly
symmetry transformation S0:

mirror all points at a line

formally: W = ”original picture” ⇒ W ′ = ”mirrored picture”

apply symmetry in operator notation: S0W = W ′

a symmetry is given if and only if S0W = W !

L
L
L
L
L
L
L
L
L
L
L
LL
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How do symmetries look like in theory?

F symmetries are described by symmetry transformations:

Example 2: crystal lattice
symmetry transformations Si:

move all points
by the same vectors (~x1 or ~x2)

formally: W = ”original picture” ⇒ W ′ = ”moved picture”

apply symmetry in operator notation: SiW = W ′

a symmetry is given if and only if SiW = W !

N ~x1

I
~x2
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How do symmetries look like in theory?

F symmetry transformations form group structures

Example: translations
symmetry transformations S1 and S2:

move all points
by the same vector (~x1 or ~x2)

movement of all points by the vector

~x3 = ~x1 + ~x2

is also a symmetry transformation !

S3 = S1 ◦ S2

N ~x1

I
~x2

~x3
I
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Groups, mathematically:

a group (G, ◦) is a set G = {a, b, c, . . . } with a

binary operation ◦ that fulfills (the axioms)

• closure: c = a ◦ b ∈ G ⇔ a, b ∈ G

• associativity: (a ◦ b) ◦ c = a ◦ (b ◦ c)

• identity: ∃ e with a ◦ e = e ◦ a = a ∀a ∈ G

• inverse: ∀a ∈ G ∃ b = a−1 (the inverse)

with a ◦ b = b ◦ a = e

an Abelian group fulfills an additional relation

• commutativity: a ◦ b = b ◦ a ∀a, b ∈ G
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Groups, an example:
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Which symmetries do we encounter in particle physics?

F discrete symmetry transformations:

parity transformation P

• to mirror at a plane (a mirror) is easy to understand, but de-
pends on the (arbitrary) position and orientation of the plane.

• a more general definition: mirror at the origin

(space inversion, parity transformation):

PW (t, x, y, z) := W (t,−x,−y,−z)

• the parity transformation corresponds
to a rotation followed by a mirroring
at a plane
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Which symmetries do we encounter in particle physics?

F discrete symmetry transformations:

time reversal T (reversal of the ”arrow of time”)

• corresponds to a movie played backwards
• in case of a movie (= everday physics),
this is spotted at once
(i.e. there is no symmetry)

• however, the laws of mechanics are time-
symmetric (example: billiard)

• definition:

TW (t, x, y, z) := W (−t, x, y, z)
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Which symmetries do we encounter in particle physics?

F discrete symmetry transformations:

charge conjugation C (exchanging matter and anti-matter)

• for every known particle, there is also a anti-partner
• anti particles are identical to their partners with respect to some
properties (e.g. mass), and opposite w.r.t. others (e.g. charge)
• charge conjugation exchanges all particles with their
(anti)partners (and vice versa)

• definition:

CW (t, x, y, z) :=W̄(t, x, y, z) = W †(t, x, y, z)
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Which symmetries do we encounter in particle physics?

F continuous symmetry transformations:

– they can be performed in arbitrary small steps

• time shift: physics(today) I physics(tomorrow)
– more accurately: shift by a time-step ∆t

e∆t ∂∂tW (t, x, y, z) = W (t+ ∆t, x, y, z)

• space shift: physics(here) I physics(there)
– more accurately: shift in space by a vector ∆~r = (∆x,∆y,∆z)

e∆~r·~∇W (t, x, y, z) = W (t, x+ ∆x, y + ∆y, z + ∆z)
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Which symmetries do we encounter in particle physics?

F continuous symmetry transformations:

– they can be performed in arbitrary small steps

• orientation: physics(north) I physics(west)
– more accurately: rotation around an arbitrary axis in space

DW (t, x, y, z) = W (t, x′, y′, z′)
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Which symmetries do we encounter in particle physics?

F continuous symmetry transformations:

– they can be performed in arbitrary small steps

• U(1) transformation:
– does not affect the outer coordinates

(t, x, y, z), but inner properties of particles
– U(1) is a transformation, which rotates the
phase of a particle field (denoted as Ψ) by
an angle α:

U(1)Ψ(t, x, y, z) = eiαΨ(t, x, y, z)

insertion: particles are represented

by fields in quantum field theory. At

each point in space and time, the field

Ψ can have a certain complex phase.

.

.

.

Re

Im

1

αeiα

Ψ = |Ψ| · eiα
w
u

s
s

dėmesio,
sudėtinga!
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The fundamental importance of symmetries

F Noether’s theorem:

to each symmetry of a field theory
corresponds a certain conserved
quantity I conservation law

Emmy Noether
1882–1935

that means: if a field theory remains unchanged under a certain
symmetry transformation S, then there is a mathematical procedure
to calculate a property of the field which does not change with time,
whatever complicated processes are involved.
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The fundamental importance of symmetries

F applications of Noether’s theorem:
”also tomorrow the sun will rise”

I conservation of energy

• the laws of physics do not change with time
• more accurate: the corresponding field theory
is invariant under time shifts:

e∆t ∂∂tW (t, x, y, z) = W (t+ ∆t, x, y, z)
.
= W (t, x, y, z)

From Noether’s theorem follows
the conservation of a well-known
property: energy!
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The fundamental importance of symmetries

F applications of Noether’s theorem:
”also tomorrow the sun will rise”

I conservation of energy

• the laws of physics do not change with time
• more accurate: the corresponding field theory
is invariant under time shifts:

e∆t ∂∂tW (t, x, y, z) = W (t+ ∆t, x, y, z)
.
= W (t, x, y, z)

From Noether’s theorem follows
the conservation of a well-known
property: energy!

E = mc2
. . . and that’s it!
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just to be clear:

F we are talking about properties of the underlying theory,

not a certain physics scenario:

Example: chess:
• there is virtually an infinite number
of ways a game of chess can develop
• a game tomorrow can be completely
different from a game today

but:

• the rules of chess remain the same,
they are invariant under time shifts!
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The fundamental importance of symmetries

F applications of Noether’s theorem:
”it’s the same everywhere”

I conservation of momentum

• the laws of physics do not depend on where you are
• more accurate: the corresponding field theory
is invariant under space shifts:

e∆~r·~∇W (t, ~r) = W (t, ~r + ∆~r)
.
= W (t, ~r)

From Noether’s theorem follows
the conservation of a well-known
property: momentum!
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The fundamental importance of symmetries

F applications of Noether’s theorem:
”going round and round”

I conservation of angular momentum

• the laws of physics do not depend
on which way you look
• more accurate: the corresponding
field theory is invariant under rotations:

DW (t, ~r) = W (t, ~r′)
.
= W (t, ~r)

From Noether’s theorem follows
the conservation of a well-known
property: angular momentum!
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The fundamental importance of symmetries

F applications of Noether’s theorem:
even more abstract symmetries get a meaning:

F conservation of charge

• as it turns out, the field theory of electro-dynamics is invariant
under a global* U(1) transformation:

U(1)Ψ(t, x, y, z) = eiαΨ(t, x, y, z)

⇒W ′(t, x, y, z)
.
= W (t, x, y, z)

* global means: affecting all space-points
(t,x,y,z) in the same way

From Noether’s theorem follows
the conservation of charge!
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Overview

symmetries and conservation laws

symmetry conservation law

time shift energy

space shift momentum

rotation angular momentum

U(1) phase charge


