- 2. Special Relativity (SR) Lorentz transformations
 - relate the coordinate systems of two inertial observers
 - leave the "4-distance" invariant
 - assuming linearity, they can be written as

$$x'^{\mu} = \Lambda^{\mu}{}_{\nu} x^{\nu} + a^{\mu}$$

- These are called inhomogeneous Lorentz transformations (Λ, a)

Homogeneous Lorentz transformations have $a^{\mu} = 0$

- They leave scalar products invariant: (p'.q') = (p.q)
- They describe 3 Rotations and 3 Boosts
 - compare with the Galilean transformations

Rotations are the same as in the Galilean transformations

For Boosts between O and O' let us align the coordinate systems:

- The origins of O and O' should be at the same place at t = t' = 0
- The constant relative velocity v between O and O' should point in the \hat{x} -direction for both, O and O'
- \hat{y} (\hat{z}) should point in the same direction: y'=y (z'=z)
- Only $ct = x^0$ and $x = x^1$ are affected by such a boost: $\Lambda^{\mu}{}_{\nu} = \delta^{\mu}{}_{\nu}$ for either μ or ν being 2 or 3
- So with $p' = \Lambda p$ and $q' = \Lambda q$ we have (p'.q') (p.q) = 0
- Since y' = y and z' = z we can ignore \hat{y} and \hat{z} in the equation

$$0 = (p'.q') - (p.q) = (p'^0q'^0 - p'^1q'^1) - (p^0q^0 - p^1q^1)$$

Determining Boosts

$$0 = (\Lambda_0^0 p^0 + \Lambda_1^0 p^1)(\Lambda_0^0 q^0 + \Lambda_1^0 q^1) - (\Lambda_0^1 p^0 + \Lambda_1^1 p^1)(\Lambda_0^1 q^0 + \Lambda_1^1 q^1) - (p^0 q^0 - p^1 q^1) = (\Lambda_0^0 \Lambda_0^0 - \Lambda_0^1 \Lambda_0^1 - 1)p^0 q^0 + (\Lambda_0^0 \Lambda_1^0 - \Lambda_0^1 \Lambda_1^1)p^0 q^1 + (\Lambda_1^0 \Lambda_0^0 - \Lambda_1^1 \Lambda_0^1)p^1 q^0 + (\Lambda_1^0 \Lambda_1^0 - \Lambda_1^1 \Lambda_1^1 + 1)p^1 q^1$$

is solved by

$$\Lambda_0^0 = \Lambda_1^1 = \pm \cosh \eta \qquad \Lambda_1^0 = \Lambda_0^1 = \mp \sinh \eta \ ,$$

where η is the "rapidity" of the boost. The usual choice is the upper sign.

How can we relate η to the relative velocity v between O and O'?

- Let us take two events and describe them in O and O':
 - A: the origins of O and O' overlap; set t = t' = 0
 - B: at the origin of O' after the time t', where $t = \Delta t$

determining Boosts ... continued

- The coordinates of A are $a^{\mu} = a'^{\mu} = (0, 0, 0, 0)$
- The coordinates of *B*
 - in O are $b^{\mu} = (\Delta t, v \Delta t, 0, 0)$ because O' was moving with the constant relative velocity v for the time Δt
 - in O' are $b'^{\mu} = (t', 0, 0, 0)$ because B is at the origin of O'

• But
$$b'^{\mu} = \Lambda^{\mu}{}_{\nu}b^{\nu}$$

= $(\cosh\eta\,\Delta t - \sinh\eta\,v\Delta t, -\sinh\eta\,\Delta t + \cosh\eta\,v\Delta t, 0, 0)$

Therefore

$$t' = \cosh \eta \, \Delta t - \sinh \eta \, v \Delta t$$

$$0 = -\sinh \eta \, \Delta t + \cosh \eta \, v \Delta t$$

or

$$v = \frac{\sinh \eta}{\cosh \eta} = \tanh \eta \sim \eta$$
 for η small

Lorentz transformations on vectors

- A vector V^{μ} can be understood as the distance of two events \Rightarrow Its transformation is the same as for events
- We used already the coordinate representation of events

$$\Rightarrow \qquad V'^{\mu} = \Lambda^{\mu}{}_{\nu} V^{\nu}$$

- If we want to write Λ as a matrix
 - we have to choose how we represent the vector $V^{\mu}.$
 - the usual representation is a column-vector:

$$V^{\mu} = (V^0, V^1, V^2, V^3)^{\top} =$$

- then we can write the Lorentz transformation as

$$\begin{pmatrix} V'^{0} \\ V'^{1} \\ V'^{2} \\ V'^{3} \end{pmatrix} = \begin{pmatrix} \Lambda^{0}_{0} & \Lambda^{0}_{1} & \Lambda^{0}_{2} & \Lambda^{0}_{3} \\ \Lambda^{1}_{0} & \Lambda^{1}_{1} & \Lambda^{1}_{2} & \Lambda^{1}_{3} \\ \Lambda^{2}_{0} & \Lambda^{2}_{1} & \Lambda^{2}_{2} & \Lambda^{2}_{3} \\ \Lambda^{3}_{0} & \Lambda^{3}_{1} & \Lambda^{3}_{2} & \Lambda^{3}_{3} \end{pmatrix} \begin{pmatrix} V^{0} \\ V^{1} \\ V^{2} \\ V^{3} \end{pmatrix} \doteq \begin{pmatrix} \cosh \eta & -\sinh \eta & 0 & 0 \\ -\sinh \eta & \cosh \eta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} V^{0} \\ V^{1} \\ V^{2} \\ V^{3} \end{pmatrix}$$

 $\begin{bmatrix} V^1 \\ V^2 \end{bmatrix}$

- 2. Special Relativity (SR) Lorentz transformations connecting to "conventional" Lorentz transformations
 - Lorentz transformations are usually written down using equations:

$$\begin{aligned} t' &= \gamma(t - \frac{v \cdot x}{c^2}) & ct' &= \gamma(ct - \frac{v}{c} \cdot x) \\ x' &= \gamma(x - v \cdot t) & \text{or better:} & x' &= \gamma(x - \frac{v}{c} \cdot ct) \\ y' &= y & y' &= y \\ z' &= z & z' &= z \end{aligned}$$
where $\gamma = \frac{1}{\sqrt{1 - \beta^2}}$

• defining $\beta = \frac{v}{c}$ we can easily connect to the matrix-form of Λ

- suppressing the unchanged coordinates y and z:

$$\begin{array}{rcl} ct' &=& \gamma(\ ct - \beta \cdot x) \\ x' &=& \gamma(-\beta \cdot t + x) \end{array} \quad \Rightarrow \quad \left(\begin{array}{c} ct' \\ x' \end{array} \right) = \left(\begin{array}{c} \gamma & -\gamma\beta \\ -\gamma\beta & \gamma \end{array} \right) \cdot \left(\begin{array}{c} ct \\ x \end{array} \right)$$

- comparing to the matrix-form with the pseudo rapidity η
 - we see: $\cosh \eta = \gamma$ and $\sinh \eta = \gamma \beta$, or $\beta = \tanh \eta$

2. Special Relativity (SR) — Lorentz transformations More on vectors, the metric, and Lorentz transformations

- We defined the scalar product of contravariant* vectors:
 - $\ast~$ contravariant can be understood as: the vector has an upper index

$$(p.q) = p^{\mu}q^{\nu}g_{\mu\nu} = p^{0}q^{0} - p^{1}q^{1} - p^{2}q^{2} - p^{3}q^{3} ,$$

where $g_{\mu\nu} = g_{\nu\mu}$ is the metric with $g_{00} = 1$, $g_{ii} = -1$, and $g_{\mu\neq\nu} = 0$

- We can define covariant vectors with the index down: $V_{\mu} = g_{\mu\nu}V^{\nu}$
- The index can be raised again by $V^{\mu}=g^{\mu
 u}V_{
 u}$
- This obviously gives $g^{\mu\nu}g_{\nu\rho} = g^{\nu\mu}g_{\nu\rho} = g^{\mu\nu}g_{\rho\nu} = \delta^{\mu}_{\rho}$
- That means for the Lorentz transformations:

$$V'_{\mu} = g_{\mu\lambda} V^{\prime\lambda} = g_{\mu\lambda} \Lambda^{\lambda}{}_{\kappa} V^{\kappa} = g_{\mu\lambda} \Lambda^{\lambda}{}_{\kappa} g^{\kappa\nu} V_{\nu} = (\Lambda^{\mu}{}_{\nu})^{-1} V_{\nu}$$

or

$$(\Lambda^{\mu}{}_{\nu})^{-1} = g_{\mu\lambda}\Lambda^{\lambda}{}_{\kappa} g^{\kappa\nu} = \Lambda_{\mu}{}^{\nu}$$

More on the Matrix Representation for $\boldsymbol{\Lambda}$

We can do the same trick (matrix representation) for covariant vectors
 – just Λ(v) will look differently:

$$\Lambda(v)_{\mu}{}^{\nu} = g_{\mu\lambda}\Lambda(v)^{\lambda}{}_{\kappa} g^{\kappa\nu} " = " \left(\begin{array}{c} \cosh\eta & \sinh\eta\\ \sinh\eta & \cosh\eta \end{array} \right)$$

- here we represent the covariant vectors also as column vectors! * in order to use the normal matrix multiplication: $(V'_{\mu}) = (\Lambda(v)_{\mu}{}^{\nu}) \cdot (V_{\nu})$

- The matrix representation of $\Lambda(v)_{\mu}{}^{\nu}$ has the same form as $\Lambda(-v)^{\mu}{}_{\nu}$
- Both $g_{\mu\nu}$ and $g^{\mu\nu}$ can be written as diag(1, -1, -1, -1), but they are not matrices in the same way as $\Lambda(v)_{\mu}{}^{\nu}$ or $\Lambda(-v)^{\mu}{}_{\nu}$ are matrices:
 - $\Lambda^{\mu}{}_{\nu}$ × contravariant vector \rightarrow contravariant vector
 - Λ_{μ}^{ν} × covariant vector \rightarrow covariant vector
 - $g_{\mu\nu}$ × contravariant vector \rightarrow covariant vector
 - $g^{\mu
 u}$ imes covariant vector o contravariant vector

Lorentz transformations of fields

- Two observers, O and O', can agree on a space-time point x by calling it an event X
 - X might have different coordinates x^{μ} and x'^{μ} in O and O', but it is nevertheless the same point.
 - ${\cal O}$ and ${\cal O}'$ can compare the value of different fields at X
- The simplest field is the scalar field $\phi(x)$:

$$\phi'(X) = \phi(X)$$

• The vector fields $v^{\mu}(x)$ or $v_{\mu}(x)$ transform like a vectors:

$$v^{\prime \mu}(X) = \Lambda^{\mu}{}_{\nu} v^{\nu}(X) \qquad v^{\prime}_{\mu}(X) = \Lambda_{\mu}{}^{\nu} v_{\nu}(X)$$

• Tensor fields $t^{\mu\nu}_{\rho\kappa\lambda}(x)$ transform like the product of vectors:

$$t^{\prime\mu\nu}_{\rho\kappa\lambda}(X) = \Lambda^{\mu}{}_{\alpha}\Lambda^{\nu}{}_{\beta}\Lambda_{\rho}{}^{\gamma}\Lambda_{\kappa}{}^{\delta}\Lambda_{\lambda}{}^{\epsilon}t^{\alpha\beta}_{\gamma\delta\epsilon}(X)$$

- 2. Special Relativity (SR) Operators, Rotationgroup ^(optional) Translation and Rotation Operators • The momentum operator $\vec{P} = -i\frac{\partial}{\partial \vec{x}} = -i\vec{\partial}$ generates translations:
 - in index notation: $P_k = -i\frac{\partial}{\partial x^k} = -i\partial_k$ $e^{ia^k P_k} f(x) = e^{a^k \partial_k} f(x) = \sum_{k=0}^{\infty} \frac{1}{n!} (a^k \partial_k)^n f(x)$

$$= f(x) + a^k \partial_k f(x) + \frac{1}{2} a^j a^k \partial_j \partial_k f(x) + \dots$$

- the Taylorseries of f(x + a) is $f(x + a) = f(x) + a^k \partial_k f(x) + \frac{1}{2} a^j a^k \partial_j \partial_k f(x) + \dots = e^{i\vec{a}\vec{P}} f(x)$ $\Rightarrow \text{ the operator } e^{i\vec{a}\vec{P}} \text{ moves the function } f \text{ by the amount } \vec{a}$
- The angular momentum operator $\vec{L} = \vec{X} \times \vec{P}$ generates rotations
 - in index notation: $L_j = \epsilon_{jk\ell} x^k P_\ell = -i\epsilon_{jk\ell} x^k \partial_\ell$
 - or $L_x = i(z\partial_y y\partial_z)$, $L_y = i(x\partial_z z\partial_x)$, $L_z = i(y\partial_x x\partial_y)$

2. Special Relativity (SR) — Operators, Rotationgroup

Translation and Rotation Operators

- The components of \vec{L} do not commute:
 - if you rotate around the \hat{x} -axis and then around the \hat{y} -axis, you get a different result than rotating first around \hat{y} and then \hat{x} .
 - mathematically:

$$[L_y, L_x] = i^2 [(x\partial_z - z\partial_x)(z\partial_y - y\partial_z) - (z\partial_y - y\partial_z)(x\partial_z - z\partial_x)]$$

$$= i^2 [(x\partial_y + xz\partial_z\partial_y - xy\partial_z^2 - z^2\partial_x\partial_y + zy\partial_x\partial_z)$$

$$-(zx\partial_y\partial_z - z^2\partial_y\partial_x - yx\partial_z^2 + y\partial_x + yz\partial_z\partial_x)]$$

$$= i^2 [x\partial_y - y\partial_x] = -iL_z$$

- or in index notation: $[L_j, L_k] = i\epsilon_{jk\ell}L_\ell \Rightarrow Rotationgroup$

• but the square $L^2 = \vec{L} \cdot \vec{L} = L_k L_k$ does commute:

$$[L^{2}, L_{j}] = L_{k}[L_{k}, L_{j}] + [L_{k}, L_{j}]L_{k} = L_{k}i\epsilon_{kj\ell}L_{\ell} + i\epsilon_{kj\ell}L_{\ell}L_{k}$$
$$= L_{h}i\epsilon_{hjm}L_{m} + i\epsilon_{mjh}L_{h}L_{m} = i(\epsilon_{hjm} + \epsilon_{mjh})L_{h}L_{m} = 0$$

 \Rightarrow use L^2 and L_z to describe quantum mechanical states (particles)

(optional)

- 2. Special Relativity (SR) Operators, Rotationgroup ^(optional) Eigenstates of the Rotationgroup
 - We write an eigenstate of the operators L^2 and L_z as $|\lambda, m\rangle$ $L^2|\lambda, m\rangle = \lambda |\lambda, m\rangle$ and $L_z|\lambda, m\rangle = m|\lambda, m\rangle$

- $|f\rangle$ is called a ket and used to denote a quantum mechanical state.

• We define the ladder operators $L_{\pm} = L_x \pm iL_y$ with $[L^2, L_{\pm}] = [L^2, L_x] \pm i[L^2, L_y] = 0$ and $[L_z, L_{\pm}] = [L_z, L_x] \pm i[L_z, L_y] = iL_y \pm i(-iL_x) = \pm (L_x \pm iL_y) = \pm L_{\pm}$ $\Rightarrow L_{\pm} |\lambda, m\rangle$ is also an eigenstate of L^2 and L_z :

$$L^{2}(L_{\pm}|\lambda,m\rangle) = ([L^{2},L_{\pm}] + L_{\pm}L^{2})|\lambda,m\rangle = 0 + L_{\pm}L^{2}|\lambda,m\rangle$$
$$= L_{\pm}\lambda|\lambda,m\rangle = \lambda(L_{\pm}|\lambda,m\rangle)$$

and

$$L_{z}(L_{\pm}|\lambda,m\rangle) = ([L_{z},L_{\pm}] + L_{\pm}L_{z})|\lambda,m\rangle = (\pm L_{\pm} + L_{\pm}L_{z})|\lambda,m\rangle$$
$$= (\pm L_{\pm} + L_{\pm}m)|\lambda,m\rangle = (m \pm 1)(L_{\pm}|\lambda,m\rangle)$$

- 2. Special Relativity (SR) Operators, Rotationgroup ^(optional) Eigenstates of the Rotationgroup
 - L_{\pm} does not change the eigenvalue λ of the state $|\lambda,m
 angle$
 - L_{\pm} changes the eigenvalue m of the state $|\lambda,m
 angle$
- \Rightarrow the states $|\lambda, m + n\rangle$ with $n \in \mathbb{Z}$ are related
 - ⇒ for each λ there would be ∞ many states unless there is * $a = m_{\max}$ with $L_+ |\lambda, a\rangle = 0$ and

*
$$b = m_{\min}$$
 with $L_{-}|\lambda,b\rangle = 0$

• using

$$L_{\mp}L_{\pm} = (L_x \mp iL_y)(L_x \pm iL_y) = L_x^2 \pm iL_xL_y \mp iL_yL_x + L_y^2$$

= $(L_x^2 + L_y^2 + L_z^2) - L_z^2 \pm i[L_x, L_y] = L^2 - L_z^2 \pm i(iL_z)$
= $L^2 - L_z(L_z \pm 1)$

we can relate a and b

- 2. Special Relativity (SR) Operators, Rotationgroup ^(optional) Eigenstates of the Rotationgroup
 - relating *a* and *b*:

$$-0 = L_{-}L_{+}|\lambda, a\rangle = (\lambda - (a^{2} + a))|\lambda, a\rangle \implies \lambda = a^{2} + a$$
$$-0 = L_{+}L_{-}|\lambda, b\rangle = (\lambda - (b^{2} - b))|\lambda, b\rangle \implies \lambda = b^{2} - b$$
$$a(a+1) = b(b-1) \quad \text{or} \quad a = -b$$

- Applying (*L*₋) *n* times on the state $|\lambda, a\rangle$ gives $|\lambda, a n\rangle$
- for some *n* we have to reach $|\lambda, b\rangle \Rightarrow a n = b$
- with a = -b we get a n = -a or $m_{\text{max}} = a = \frac{n}{2}$
- The rotationgroup allows for half integer eigenstates

⇒ Spinors

• used to describe fermions: electron, proton, neutron, neutrino, ...