2. Special Relativity (SR) — Lorentz transformations
Lorentz transformations

e relate the coordinate systems of two inertial observers
e |leave the "4-distance” invariant

e assuming linearity, they can be written as
't = A", 2¥ 4 aH

— These are called inhomogeneous Lorentz transformations (A, a)

Homogeneous Lorentz transformations have a# = 0
e They leave scalar products invariant: (p’.q') = (p.q)

e [ hey describe 3 Rotations and 3 Boosts
— compare with the Galilean transformations
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2. Special Relativity (SR) — Lorentz transformations
Rotations are the same as in the Galilean transformations

For Boosts between O and O’ let us align the coordinate systems:
e The origins of O and O’ should be at the same placeatt=t =0

e The constant relative velocity v between O and O’ should point in the
7-direction for both, O and O’

e y ( Z) should point in the same direction: v =y (2 = z2)

e Only ¢t = zY and = = z! are affected by such a boost:

AM, = 6% for either p or v being 2 or 3
e So with p = Ap and ¢ = Aq we have (p'.¢) — (p.q) =0

e Since vy =y and z/ = z we can ignore § and z in the equation

0= (p'.¢) — (p.q) = (P°¢° — p'1¢'t) — (p9° — plql)
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2. Special Relativity (SR) — Lorentz transformations
Determining Boosts
0 = (AQP° +AIPH(AY® +A9qh) — (Aop° + AT (Ahe® + Algh)
— (% —plql)
= (AQAS = ApAG — 1)pP% + (AQAT — ApAT)POg?

+(AAD = ANiADP e + (AGAT = ASAS + Dpte!

IS solved by
AQ = A} = +coshy A9 = A} = Fsinhy |,

where n is the "rapidity” of the boost. The usual choice is the upper sign.

How can we relate n to the relative velocity v between O and O'?

e Let us take two events and describe them in O and O’:
— A: the origins of O and O’ overlap; sett=t =0
— B: at the origin of O’ after the time ¢/, where t = At
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2. Special Relativity (SR) — Lorentz transformations

determining Boosts ... continued

e The coordinates of A are a* = a'* = (0,0,0,0)

e [ he coordinates of B
— in O are b* = (At,vAt,0,0) because O’ was moving with the

constant relative velocity v for the time At
— in O are ¥ = (¢/,0,0,0) because B is at the origin of O’

o Butb* = AH_ b
= (coshn At —sinhnvAt, —sinhn At + coshnvAt, 0, 0)
T herefore
t' =  coshnAt—sinhnuvAt
O = —sinhnAt+ coshnvAt
or
sinhn
v = = tanhn ~n for n small
coshn
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2. Special Relativity (SR) — Lorentz transformations
Lorentz transformations on vectors
e A vector V# can be understood as the distance of two events

= Its transformation is the same as for events

e \We used already the coordinate representation of events
= VIt = A VY

e If we want to write A as a matrix
— we have to choose how we represent the vector V#.

— the usual representation is a column-vector: ( 1745 \

0 1,1 1,2 1,3\T vi
Ve = (V5 V5,V V7) =

V2

— then we can write the Lorentz transformation as K V3 )
1% Ny A°, A°, A9, Vo coshn —sinhp 0 O Vo
v | Aty AYOAL, AL, Vi . | —sinhnp coshn O O Vi
vz | Tl A2, A2) A2, A2 ve | — 0 0 1 0 V2
1% N3y N3, A3, A3, V3 0 0 0 1 V3
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2. Special Relativity (SR) — Lorentz transformations
connecting to "'conventional’” Lorentz transformations

e Lorentz transformations are usually written down using equations:

' = ~(t - Uc—éc) ct! = y(ct -% )
/ ! v
— — -t — — = .ct
, V(@ —v-t) or better: , V(2 c € )
y — Y y — Y
Z/ = Z Z/ = Z
— where ~v = 1
~ 152

e defining 8 = _ we can easily connect to the matrix-form of A
— suppressing the unchanged coordinates y and z:

ct’ = ~( ct—B-x) N ct/ _ v =B [
= y(=B-t+x) x! —B x

e comparing to the matrix-form with the pseudo rapidity n
— we see: coshn =~ and sinhn =~3, or 8 =tanhn
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2. Special Relativity (SR) — Lorentz transformations
More on vectors, the metric, and Lorentz transformations

e We defined the scalar product of contravariant* vectors:

% contravariant can be understood as: the vector has an upper index
(p-q) = p*¢" g = p°° — plqt — p%¢? — p°¢> |

where g, = guy IS the metric with goo =1, g;; = —1, and g, =0
e We can define covariant vectors with the index down: V,, = g V¥
e The index can be raised again by VH* = ¢gHt"V),
e T hat means for the Lorentz transformations:

—1
V,L: — g,u)\V,A — g/,L)\/\AI{, Vi = guAAAm gmjvl/ — (/\'uy ) W
or

(/\'LLI/ )_1 — g,u)\/\AK, gm/ — /\,uy
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2. Special Relativity (SR) — Lorentz transformations
More on the Matrix Representation for A

e We can do the same trick (matrix representation) for covariant vectors
— just A(v) will look differently:

/\(v),ul/ — gﬂ)\/\(v)ARg/ﬁy no__mn (

coshn sinhn
sinhnp coshn

— here we represent the covariant vectors also as column vectors!

* in order to use the normal matrix multiplication: (V) = (A(v),") - (V,)

e The matrix representation of /\(U)uy has the same form as A(—v)*,

e Both g, and g"” can be written as diag(1l,—1,—1,—1), but they are
not matrices in the same way as A(v),” or A(—v)”, are matrices:

AY, x contravariant vector — contravariant vector
/\M’/ X Ccovariant vector — Ccovariant vector
guv X contravariant vector — covariant vector
g’  x covariant vector — contravariant vector
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2. Special Relativity (SR) — Lorentz transformations
Lorentz transformations of fields

e Two observers, O and O/, can agree on a space-time point z
by calling it an event X
— X might have different coordinates z* and z’* in O and O/,
but it is nevertheless the same point.
— O and O’ can compare the value of different fields at X

e The simplest field is the scalar field ¢(x):
¢'(X) = ¢(X)

e The vector fields v#(x) or v,(z) transform like a vectors:

V(X)) = AP0V (X) UL(X) =N, v (X)
e Tensor fields tWA(C’?) transform like the product of vectors:

/ %)
p%\(X>_AM N/B P,y/\ Aketvée(X)
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2. Special Relativity (SR) —  Operators, Rotationgroup  (°Ptional)

Translation and Rotation Operators

e [ he momentum operator P = —z‘a% = —id generates translations:
. . .9 .
— in index notation: P, = g = —zfok
-k k
N f(z) = " hf(z) =Y —(a"p)"f (=)
n=0 n:

F@) + a" 0 () + S0P 0,0 f (@) + ..

— the Taylorseries of f(x + a) is
fta) = f@)+a () + Hdd 00 () + - = T f ()

— the operator €@ moves the function f by the amount @

e The angular momentum operator L = X x P generates rotations
— in index notation: L; = ey x¥P) = —iejp %0,
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2. Special Relativity (SR) —  Operators, Rotationgroup  (°Ptional)
Translation and Rotation Operators

e [ he components of E do not commute:
— if you rotate around the x-axis and then around the y-axis, you get a different

result than rotating first around y and then z.
— mathematically:
[Ly, L] i2[(20; — 202) (28y — y02) — (20y — y82) (20, — 20y)]
iz[(a:('?y + 2200y — xy@? — zz&,;ﬁy + 2y0:02)
_(zxayaz — ZQayaaz — yw@f + yOr + yz@zax)]
= ?[28y — yOz] = —iL;

— or in index notation: [L;, L] =ie;,0L, =  Rotationgroup
e but the square L2 =L - L = L;L;, does commute:
[L?,L;] = LglLk, L] + [Ly, Lj] Ly = LyiegjoeLy + i€y oLoLy
— Lhzeh]mLm —I— ’iEmthhLm — ’L(Eh]m —I— Emjh)LhLm =0

— use L2 and L, to describe quantum mechanical states (particles)
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2. Special Relativity (SR) —  Operators, Rotationgroup  (optional)
Eigenstates of the Rotationgroup

e We write an eigenstate of the operators L2 and L. as |\, m)
L2\, m) = A\, m) and L.\, m) = m|\, m)

— |f) is called a ket and used to denote a quantum mechanical state.

e We define the ladder operators L4+ = Ly & iLy with
[L?, L4] (L2, Ly] +i[L?, Ly] =0 and

= L4|\,m) is also an eigenstate of L2 and L. :

L?(Lilh,m)) = ([L? L+] 4+ L+L?)|A\,m) =0+ LyL?|\, m)
= LiA|A,m) = A(L+|\,m))
and
Lz (L+|A,m))

([Lz, L£] + LiLz)|A\,m) = (£L+ + LiLz)|\,m)
(XLt 4+ Lim)|A,m) = (m £ 1)(Li[A, m))

Thomas Gajdosik — World of Particles Special Relativity 12



2. Special Relativity (SR) —  Operators, Rotationgroup  (optional)
Eigenstates of the Rotationgroup

e [.1 does not change the eigenvalue X\ of the state |\, m)
e [.4 changes the eigenvalue m of the state |\, m)

= the states |A\,m 4+ n) with n € Z are related
= for each A\ there would be co many states unless there is
* 4 = Mmax with L_|_|>\, a> = 0 and

« b= mmin With L_|\,b) =0

e uUSing

LeLy = (LyFiLy)(Le£ily) = L34 iLyLyFiLyLy+ L
(L2+ L5+ L2) — L7 £i[Ls, Ly] = L% — LZ +i(iLz)
L2 — L.(L,+1)

we can relate a and b
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2. Special Relativity (SR) —  Operators, Rotationgroup  (optional)
Eigenstates of the Rotationgroup

e relating a and b:
—0=L_Li|\a)=(O\-(a®+a))|\a) = I=a’+a
—0=LyL_[\b)y=(A=(b% =Db)I\b) = AX=b2-b

ala+1)=bb—-—1) or a=-b
e Applying (L_) n times on the state |\, a) gives |\,a — n)
e for some n we have to reach |\,b) = a—n=1b»

e With a=-bwedgeta—n= —a Of mmax = a =

NIS

e T he rotationgroup allows for half integer eigenstates

= Spinors

e used to describe fermions: electron, proton, neutron, neutrino, ...
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