1. Special Relativity (SR) — Introduction

Lectures
e Introduction, Invariants
e Lorentz transformations

e Algebra of the Lorentz group

Links

e Lecture notes by David Hogg: http://cosmo.nyu.edu/hogg/sr/sr.pdf
— or: http://web.vu.lt/ff/t.gajdosik/wop/sr.pdf

e Tatsu Takeuchi: http://www.phys.vt.edu/ takeuchi/relativity/notes/

e 'Special Relativity for Particle Physics':
http://web.vu.1t/ff/t.gajdosik/wop/srdwop.pdf
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1. Special Relativity (SR) — Introduction

History

e 1632: Galileo Galilei describes the principle of relativity:
— "Dialogue concerning the Two Chief World Systems”

e 1861: Maxwell's equations

e 1887: Michelson-Morley experiment

e 1889 / 1892: Lorentz — Fitzgerald transformation

e 1905: Albert Einstein publishes the Theory of Special Relativity:

— "On the Electrodynamics of Moving Bodies”

e 1908: Hermann Minkovsky introduces 4D space-time
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1. Special Relativity (SR) — Introduction

Galilean Invariance:

Every physical theory should mathematically
look the same to every inertial observer

e for Galileo it was the mechanics and kinematics:

— water dropping down — throwing a ball or a stone
— insects flying — jumping around

ood 7 ood 7
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1. Special Relativity (SR) — Introduction
Galilean Invariance / Galilean transformations: t - t/, ¥ — &
Two inertial observers, O and O/,

e measure the same absolute time (i.e.: 1 second = 1 second’)
— Time translations : t/ =t+ 7, & =&

in index notation: ¢ =t 4+ T, q;; = x;

e have at t = 0 a relative distance A7
— Spatial translations : ! =t, ¥ =7+ A7
in index notation: ¢’ =1t¢, zc; =z, + Ar,
e have coordinate systems that are rotated by a relative rotation R
— Rotations : ¢ =t, ¥ = R - ¥, where R is an orthogonal matrix
in index notation: ¥ =t, o}, = Rz, = > ;_; Ry,
e have a constant relative velocity v ( which can be zero, too )
— Boosts : t' =t, ¥ = x4 vt

in index notation: ¢t/ = ¢, :c; =z, + v,t
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1. Special Relativity (SR) — Introduction

Galilean Group

e How Galilean transformations act on a quantum mechanical state

e What is a group?
— a set with a binary operation:
— an example is the set of numbers {0, 1,2} with the addition
modulo 3 (i.e. taking only the remainder of the division by 3)

e Properties of a group
— different transformations in the group do not give something
that is outside the group
— two transformations in different order give either zero
or another transformation

e Each transformation depends on continuous parameters
— The Galilean Group is a Lie Group
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1. Special Relativity (SR) — Introduction

What’'s wrong with Galilean Invariance?

Maxwell's equations describe the propagation of light depending on
the electric permittivity and the magnetic permeability of the vacuum

If the vacuum is the same for every inertial observer, he has to measure
the same speed of light regardless, who emitted it

— This is Einsteins second assumption!

But then the addition of velocities described by the Galilean transfor-
mations are wrong

LLorentz transformations describe correctly the measurements done
regarding the speed of light

Lorentz transformations include a transformation of the time, that
the inertial observers measure

Absolute time is a concept, that is not able to describe nature
— That's wrong with the Galilean Invariance!
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1. Special Relativity (SR) — Introduction
Axioms of Special Relativity

e Every physical theory should look the same mathematically to every
inertial observer

e T he speed of light in vacuum is independent from the movement of
its emmitting body

Consequences
e T he speed of light in vacuum is maximal speed for any information
e [ he world has to be described by a 4D space-time: Minovsky space

e The simplest object is a scalar (field): ¢(x)
no structure except position and momentum

e The next simplest object is a spinor (field): ¥%*(x)
a vector (field) can be described as a double-spinor
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1. Special Relativity (SR) — Invariants
Vectors, Tensors, and notation

in the plane — i.e. in the 2D (Euclidean) space

e We can pick a coordinate system and describe points with coordinates
— Cartesian coordinates (z,vy)
— Polar coordinates (r,0)

e a vector can be understood as a difference of points
e position vector: difference between the position and the origin

e we can write the vector v
— as a row (vg, vy)

— or as a column (”x)
Vy

— or in index notation v; or v*, where we identify v; = v1 and Vy = VD
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1. Special Relativity (SR) — Invariants
Vectors, Tensors, and notation

multiplying vectors
e with a number, not a problem: cxad = (c* az,c * ay)
e with another vector: what do we want to get?
— a number =  scalar product: @-b = ag * by + ay * by
— another vector: there is no unique prescription ...
— atensor =  tensor product: @®b
+ In index notation: a; ® by, = ajb, = (a ®b)
what is a tensor?
e an object that looks like the tensor product of vectors ...
e easiest imaginable in indexnotation:
— a tensor is an object with indices ¢, or t7kE or ¢4,

® special tensors
— a vector is a tensor of rank one: it has one index
— a matrix is a tensor of rank two: it has two indices
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1. Special Relativity (SR) — Invariants
Vectors, Tensors, and notation
multiplying tensors

e one index of each can be treated like a scalar product
= matrix multiplication

— With a = aj and b = bmn: a-b = 3 aji * by,

* here a and b can be understood as matrices

e in order to simplify the writing, we can omit the > symbol
= Einsteins summation convention

— one sums over repeated indices: ajj * by, 1= > aj * by

index position can be used to distinguish objects

e example:
— columnvector ¢ = v = (:j’”>
Yy
NT
— rowvector (v) ' = v; = (vg, vy)

Yy then a matrix has to have upper and lower index!
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1. Special Relativity (SR) — Invariants
Vectors, Tensors, and notation

in more dimensional space we just have more coordinates

e In 3D space (our 3D world):
— ¥ = (vg, vy,vz) = v; (in cartesian coordinates)

e In 4D Minkovsky space people do not write an arrow:
— momentum p = (E = p', p%,p¥, p*) = (p%, p*, p?,p>) = p#
x and the index is usually a greek letter: u, v, p, etc.
— position r = (ct,z,y,2) = (29, 21, 22, 23) = r#
« time ct = z© is measured like spacial distances in meters

x [ he constant speed of light ¢ is used as the conversion factor
between seconds and meters

For the rest of the lecture we set ¢c= 1. (i.e.: 3-108m = 15s)
e SO we measure time in seconds and distances in light-seconds (=300.000km)
e Or distances in meters and time in "3 nanoseconds’ (the time light needs to travel 1m)
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1. Special Relativity (SR) — Invariants

What are invariant objects?
e Objects that are the same for every inertial observer

e Examples in 3D: rotations or translations
— the distances ¢ between points: (2 = (Az)?2 + (Ay)2 + (Az)?
— the angle a between directions: cosa = (@ - b)/(|a| * |b)

e In 4D Minkovsky space: (As)?2 = (At)2 — (Az)2 — (Ay)2 — (A2)?
— The time t is measured like spacial distances in meters

— The constant speed of light ¢ is used as the conversion factor
between seconds and meters

e Any scalar product of four-vectors in Minkovsky space:

(p.q) = p*q”gur = p°¢° — plgt — p?¢® — p3¢>
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1. Special Relativity (SR) — Invariants

What is the use of scalar products?

e Scalars are the same in every inertial frame
— If one knows its value in one frame, one knows it in every frame

— Use the most comfortable frame to calculate the value of a scalar!

e Events A and B happen at a certain time in a certain place:
— In every frame they can be described by four-vectors
at = (a9, al,a?,a3) and b* = (b9, b1, 62, 13)
— T heir relative position d* = a®* — b" is frame dependent
— But their "4-distance” d? = (d - d) is invariant

— d? classifies the causal connection of A and B
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1. Special Relativity (SR) — Invariants

Classification of d?

e If d2 > 0 they are time-like separated:
— one event happens before the other in every frame
— there is a frame, where A and B happen at the same position
— in this frame d* = (At,0,0,0) with At = Vd?

o If d2 = 0 they are light-like related. If A # B:
— there is no frame, where A and B happen at the same time
— there is no frame, where A and B happen at the same position
— there is a frame, where d* = (n,n,0,0) with n arbitrary

o If d2 < O they are space-like separated:
— there is a frame, where A and B happen at the same time
— in this frame d* = (0, As,0,0), with As = \/jﬁ
if the z-axis is oriented in the direction AB
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1. Special Relativity (SR) — Invariants

Special scalar products

e Particles are described by their energy-momentum four-vector:

p* = (p°,pt, p%,p°) = (E,pz, py, p2) = (E, D)

— The mass of the particle is defined in its rest-frame: p =0
— There, the energy-momentum four-vector is p# = (m, 0)

— Since p?2 = (p-p) is a scalar, it is the same in every frame
— In the rest-frame p2 = m2 — 02 = m?

— Therefore in every frame
m? = E? — ]5’2 |

e This can be applied to collisions, too: (p1 + p»)? is constant
— In the rest-frame of (p1 + p2) we have p1 +p> =0 = (p1 + p2)? = (E1 + E»)?
« K1 and FE» are the energy values of p; and p> in the rest-frame!
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