
VILNIAUS UNIVERSITETAS
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1 Introduction

The primary audience for this notes are students of the course World of Particles (Įvadas
į elementariųjų dalelių fiziką). These notes are written mainly for beginning students that
have difficulty imagining, how a mathematical formulation can be connected to a physical
content. Therefore I will pay more attention to explain some concepts exhaustively while
missing other things that seem too obvious to me — or that I think are explained well
enough in the freely available text of David Hogg [1]. Corrections and feedback are welcome
as this text is written to help students.

2 Space and Time

Physics describes the world around us, but seen through the scientific method: the Physics
viewpoint abstracts from the individual perceptions to capture what is common and re-
peatable in the everyday experience of human beings. For this purpose physics uses the
universal language of mathematics.

One of the basic features of our world is that time passes continuously and that our per-
ceptions can be most accurately and economically described by a three dimensional space.
The discussion of the continuity of the three dimensional space was studied in geometry,
starting with Euclid and Archimedes. René Descartes connected geometry with algebra
by introducing the Cartesian coordinates to describe relations in space. The introduction
of the differential calculus into physics by Newton relies heavily on the use of Cartesian
coordinates. The continuity of time, measured by clocks, suggests the use of continuous
mathematical functions to describe changes in our world. Even the very abrupt changes,
like explosions, can be described by continuous functions of time.

2.1 Representing Space and Time

When we try to mathematically describe a motion, like the examples given in the Problems
1-1 and 1-2 of [1], we ”instinctively” use Cartesian coordinates for space and time: we give
distances in meters and time in hours (or seconds) and the meter does not depend on time
and the hour not on the distance. This is the virtue of Cartesian coordinates: they are
independent from each other.

Considering the three dimensions of space we can introduce also three independent
directions, which make up a Cartesian coordinate system. The usual names for these axes
are x, y, and z. Then we can describe the position of an object in our coordinate system
by giving its values along the coordinate axes. Assigning the x-axis to my direction of
sight, the x coordinate tells how far in front of me the object is, the y coordinate tells how
far to the left of my line of sight the object is, and the z coordinate tells how high the
object is with respect to me1. A negative value of the coordinate indicates that the object
is behind/right/under me. Since I give the values with respect to my position, I implicitly
introduced the origin of the coordinate system O and identified it with myself.

1This choice of directions is called a right-handed coordinate system. A left-handed coordinate system
has the direction of the y-axis reversed.



SR4WoP February 1, 2013 5

t
(-3,1)

t
(2,3)

t

(-1.5,-2.5)

u
(0,0)

3

2

1

-1

-2

-3

-3 -2 -1 1 2 3

(a)

+
+

+
+

+ + + +

+

+

+

+

x

y

z

b(x, y, z)

x̂ ŷ
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Figure 1: examples for a two dimensional (a) and three dimensional (b) Cartesian coor-
dinate system. In (a) are the origin (0, 0) in purple and the points (−3, 1) in red, (2, 3)
in green, and (−1.5,−2.5) in blue. In (b) is the single point (x,y,z) = (1, 2, 3) with its
coordinate parts in magenta.

We can introduce the vector pointing from me to an object A by writing down its
coordinates in triple of numbers: ~a := (ax, ay, az). Of course, the vector from me to the
object A makes sense, even if I do not introduce a coordinate system. This viewpoint
allows the idea of a vector space. [2] takes vectors in their coordinate independence even
more seriously and proposes an approach that could unify the mathematical description
in different areas of physics.

Fig.1(a) gives an example of a Cartesian coordinate system in two dimensions, which
amounts to ignore the z coordinate. Fig.1(b) gives an example of a Cartesian coordinate
system in three dimensions.

2.2 Vectors and Vector Space

The direct definition of a vector is mathematically quite difficult. Mathematicians solve
this problem by making two steps:

Definition: A vector is an element of a vector space.

Definition: A vector space over a field (corpus) F is a set V with two operations ”+”
and ”∗” such that (V,+) forms an Abelian group and (F,+, ∗) forms a field (corpus).

Now what does that mean? Group Theory describes what a set, a group, and a field
(corpus) is. For the mathematically more dedicated physics student I suggest the lecture
notes of Minahan [3]. For here the simple introduction should suffice.

First we have to clarify what a set is. A set is an assembly of things, of what ever
you can think of. You just have to declare, that they belong to the set. Of course, one
can also give a descriptive definition for a specific set. The easiest example might be from
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mathematics: the set of the numbers {0, 1, 2} can also be described as the remainder of
the division of whole numbers by three.

A group has already more structure, the group ”multiplication”. This does not need
to be a multiplication we know from numbers. In the above example, when taking the
numbers {0, 1, 2} we can use the normal addition of numbers as the group multiplication.
We just have to remember, that after each addition we have to divide by three and only
take the remainder of this division. We thereby also include the descriptive definition for
our set. This set G (i.e. {0, 1, 2}) together with the addition and taking the remainder
(i.e. ◦) forms a group as it fulfills these axioms:

closure: for a, b ∈ G ⇒ c = a ◦ b ∈ G
the group multiplication connects two elements of the set and the result is still an
element of the set.

distributivity: (a ◦ b) ◦ c = a ◦ (b ◦ c)
when multiplying three elements it does not matter if we first multiply the first pair
and then the result with the third element or if we first multiply the second pair and
only afterward multiply the first element with the result. But we are not allowed to
change the order of the elements.

unit element: ∀a ∈ G : ∃e ∈ G with a ◦ e = e ◦ a = a
this unit element is easier to understand, when we consider that elements of a set
can also be abstract things like transformations. The multiplication with a group
element a means that I transform the other element b, which I multiply with a: a ◦ b
is a left ”action” on b (I multiply from the left side) and b ◦ a is a right action, as I
multiply b with a from the right side. The unit element e now means, that I do not
transform at all: I transform with the identity element. And each group has to have
an identity element.

inverse element: ∀a ∈ G : ∃a−1 ∈ G with a ◦ a−1 = a−1 ◦ a = e
when understanding the inverse element as a transformation this axiom just means,
that we can always transform back to the original state. For the realization with
numbers we see immediately, that this axiom really restricts, what we can name a
group. The real numbers, for instance, with the normal multiplication are not a
group, as there is no possibility to find an inverse element for the number zero.

In the case of our example {0, 1, 2}, the inverse element is also not too obvious. The
unit element is simply 0, as we do not change a number, if we add 0. We can also see,
that when we add 1 + 2 we get 3, which is equivalent to 0, as there is no remainder
when we divide by three. So 1 is the inverse element to 2 and vice versa. That 0 is
the inverse element of itself seems counter intuitive, but when we consider that 0 is
the unit element, it becomes easier to accept, that multiplying the unit element with
itself has to give the unit element, and hence it has to be its own inverse.

There is another concept connected with groups. When we multiply two elements we
can do it in either order: a◦b or b◦a. If the result is the same for all elements of the group,
i.e. a ◦ b = b ◦ a ∀a, b ∈ G :, the group is called Abelian. If that is not the case, if only a
single pair of elements (a, b) exists, so that a ◦ b 6= b ◦ a, then the group is non-Abelian.
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Figure 2: an example for two dimensional vectors (a) and their addition (b). The red

vector ~a has the x component −3 and the y component 1. The green vector ~b has the x
component 2 and the y component 3. When we add ~a+~b = ~c we get the x component of
the blue vector ~c as the sum of the x components of the vectors ~a and ~b, which is −1.

Now with the understanding of an Abelian group we can follow the definition of a field
(corpus)2. A corpus F is like a double Abelian group. It has two group operations, called
plus ”+” and times ”*”. And regarding the plus the corpus (F,+) is an Abelian group. Its
unit element is called ”0”. Regarding the times we have to remove this unit element from
the set and then the rest, mathematically (F\{0}, ∗), is again an Abelian group. In that
sense the corpus is a double Abelian group. Additionally, the two operations of the corpus
have to be distributive: a ∗ (b+ c) = a ∗ b+ a ∗ c.

We are looking to understand vectors and vector spaces: so enough about groups, but
we will need to use the concepts. The vector space has the plus operation that lets one
add vectors, the elements of the Abelian group, that the vector space is. This plus is the
same as the plus of the corpus. This will allow us to recognize the components of vectors
as numbers, the elements of the corpus. The vector space has to be distributive in the
multiplication of numbers with the vectors. With vectors ~x and ~y and numbers a and b
we can write the distributive relations as

a ∗ (~x+ ~y) = a ∗ ~x+ a ∗ ~y (1)

(a+ b) ∗ ~x = a ∗ ~x+ b ∗ ~x (2)

a ∗ (b ∗ ~x) = (a ∗ b) ∗ ~x . (3)

2.2.1 Examples

The first example of a vector and a vector space will be what everybody expects: the
real, two dimensional vectors in a plane. Formally we can call this vector space R2 over
R: the vectors, as shown in Fig. 2, can be written just with their components which are
real numbers. Adding two vectors gives again a vector and we can get its components by
adding the components of the vectors we want to add.

2From now on I will drop the mathematical name field and use just the mathematical term corpus
instead, as the name field will be used to describe functions of space and time, like the electromagnetic
field.
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The second example of a vector space are the real numbers. Since the real numbers
satisfy all the requirements for a vector space, they can be treated as a vector space. That
means, that a real number can be understood as a vector, too.

The third example are matrices of a fixed dimension. We can add the matrices by
adding the elements of the matrices in the same way as we add the components of vectors.
The structure of the vector space does not use matrix multiplication. This would be an
additional feature, like matrices forming a group under multiplication.

The fourth example are real analytic functions in the interval from zero to one: we can
add them and multiply them with numbers and they still stay real analytic functions. The
huge difference between this example and the previous ones is the dimensionality of the
vector space. In the first example we can think of the two vectors ~a and ~b as generating
the whole plane: I can reach any point in the plane by adding real multiples of the two
vectors. In the second example I only have a single direction: each real number can be
reached by multiplying the number 1 with the desired value. The third example has as
many dimensions as the matrices have entries: the number of rows times the number of
columns. But for the fourth example it is no longer easy to find a simple way of generating
all possible real analytic functions. There are infinitely many possibilities.

3 Changes between coordinate systems

We used the notion of a coordinate system like a grid, where we can read off the coordinates
of points. This grid is our tool. We are able to change the grid without changing the points
and their differences. The description of this change is a coordinate transformation. The
most general coordinate transformation gives the new coordinates (t′, x′, y′, z′) as functions
of the old coordinates (t, x, y, z):

t′(t, x, y, z) x′(t, x, y, z) y′(t, x, y, z) z′(t, x, y, z) . (4)

In order that this coordinate transformation makes sense, the functions have to be invert-
ible. One has to be able to express the old coordinates in terms of the new ones:

t(t′, x′, y′, z′) x(t′, x′, y′, z′) y(t′, x′, y′, z′) z(t′, x′, y′, z′) . (5)

The study of these most general coordinate transformations leads to the theory of General
Relativity. But we do not want to go that far. We just want to understand, what these
coordinate transformations imply for vectors.

The first step will be the comparison between two Cartesian coordinate systems. For
that we have to ask, what defines a Cartesian coordinate systems. The most obvious
definition is to require that the coordinate lines are straight lines that are orthogonal to
each other. Then the grid made of these lines is what we see in Fig. 1 and Fig. 2. We
have also to pick an origin of the coordinate system. This is the point where we start with
our coordinates. So the origin itself has always the coordinates (0, 0) in two dimensions,
(0, 0, 0) in three dimensions, and (0, 0, 0, 0) if we also include time into our coordinates.

When we try to do this procedure for the surface of our Earth, we find out, that it
does not work. We notice, that the surface of our Earth is not flat, but curved, which
prevents the global use of a Cartesian coordinate system. But in small portions, like the
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Figure 3: the difference of the vectors ~c − ~a = ~b in the original Cartesian coordinate
system (a) and the new Cartesian coordinate system O′ (b). In O, the origin of the new
coordinate system O′ has the coordinates (-2,1), as seen in (a). In (b) we see the origin of

the old coordinate system O with coordinates (2,-1). Though the vector ~b appears in both
coordinate systems at different locations, it has the same coordinates (2,3).

classroom it works without any problem. We call a space where Cartesian coordinates
work Euclidean space, although this is not the mathematical definition of Euclidean space.

3.1 Translations

The easiest coordinate transformation is, when we have two Cartesian coordinates with a
different origin, but the directions and the names of the coordinates are the same. Then
the coordinates are related to each other by adding a constant value to the coordinates
in one system. For simplicity the example will be in two dimensions. As we can see in
Fig 3, the shift of the origin is the simplest coordinate transformation. We can write the
transformation as

x′ = x+ 2 and y′ = y − 1 . (6)

This means we get for the vectors ~a = (−3, 1) and ~c = (−1, 4) the transformation

a′x = ax + 2 = −1 a′y = ay − 1 = 0 and c′x = cx + 2 = 1 c′y = cy − 1 = 3 , (7)

or in row vector format

~a′ = ~a+ (2,−1) = (−1, 0) and ~c′ = ~c+ (2,−1) = (1, 3) , (8)

or in column vector format3

~a′ = ~a +





2

−1



 =





−1

0



 and ~c′ = ~c+





2

−1



 =





1

3



 . (9)

3Both, row vectors and column vectors form vector spaces. But they are usually used to indicate
different vector spaces: you cannot add a row vector to a column vector! In this example I can use the
same components to describe both, row and column vectors, only because I use a Cartesian coordinate
system.
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Figure 4: the difference of the vectors ~c − ~a = ~b in the original Cartesian coordinate
system (a) and the rotated Cartesian coordinate system O′ (b). The axes of the other
coordinate system are shown in purple. The coordinates of the vectors in O are ~a = (−3, 1),

~c = (−1, 4), and ~b = (2, 3), and in O′ they are ~a′ = (−2.14, 2.33), ~c = (1.06, 3.98), and
~b = (3.2, 1.65).

Since the vector~b in this example is defined as the difference between ~c and ~a its dependence
on the origin drops out. This is the behavior that we expect from physical quantities: they
should not depend on our choice of a coordinate system.

A shift of the origin can be called translation. That physics should be invariant under
translations can be traced back to Galileo’s principle of relativity. About that later . . .

3.2 Rotations

The rotation between two Cartesian coordinate systems changes the coordinates of the
points and the components of the vectors in the same way as can be seen in Fig. 4. We
take the same points A, C, and B represented by the vectors ~a, ~c, and ~b from the origin
to the respective point. These vectors are called position vectors or radius vectors, as the
radius does not change with the rotation around the origin:

|~a| =
√

(−3)2 + 12 =
√
10 ∼ 3.16 and |~a′| =

√

(−2.14)2 + (2.33)2 ∼ 3.16 (10a)

|~c| =
√

(−1)2 + 42 =
√
17 ∼ 4.12 and |~c′| =

√

(1.06)2 + (3.98)2 ∼ 4.12 (10b)

|~b| =
√
22 + 32 =

√
13 ∼ 3.61 and |~b′| =

√

(3.2)2 + (1.65)2 ∼ 3.61 . (10c)

The coordinate transformation is no longer as simple as eq. (6), since with the rotation the
change depends on the coordinates themselves. We know, that the distance to the origin
stays the same in a rotation. Using this fact we can try a linear ansatz for the change of
y- and x- coordinate:

x′ = a11x+ a12y and y′ = a21x+ a22y . (11)
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These two equations should hold for all three transformed vectors:

~a : −2.14 = a11 × (−3) + a12 × 1 and 2.33 = a21 × (−3) + a22 × 1 (12a)

~c : 1.06 = a11 × (−1) + a12 × 4 and 3.98 = a21 × (−1) + a22 × 4 (12b)

~b : 3.2 = a11 × 2 + a12 × 3 and 1.65 = a21 × 2 + a22 × 3 . (12c)

We will solve these equations by elimination. Adding two times eq. (12b) to eq. (12c) we
get

2~c+~b : 2.12 + 3.2 = 11a12 and 7.96 + 1.65 = 11a22 , (13)

so

a12 =
5.32
11

∼ 0.48 and a22 =
9.61
11

∼ 0.87 , (14)

and putting the result in eq. (12b)

a11 = 4× 0.48− 1.06 ∼ 0.87 and a21 = 4× 0.87− 3.98 ∼ −0.48 . (15)

Checking the result for eq. (12a)

−2.14 = −3× 0.87 + 0.48 ∼ −2.13 and 2.33 = −3× (−0.48) + 0.87 ∼ 2.31 , (16)

gives the confirmation with the expected accuracy.
We can also write the rotation in matrix form4





x′

y′



 =





a11 a12

a21 a22



 ·





x

y



 , (17)

which explains the indices of a in the ansatz eq. (11). The short vector form of eq. (17) is

~x′ = R · ~x , (18)

with

~x′ =





x′

y′



 , R =





a11 a12

a21 a22



 , and ~x =





x

y



 , (19)

which can also be written in index form

x′
j =

2
∑

k=1

Rjkxk := Rjkxk = ajkxk , (20)

where the last definition is Einsteins summation convention: it tells you to sum over all
indices that appear exactly two times in one term. The convention just allows to leave out
the symbol

∑

, which shortens the writing.

4Anyone not familiar with matrix multiplication can find an explanation in Wikipedia, searching for
”Matrix multiplication”.
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4 General index notation

The introduction of the index notation shortens the writing of equations not only by
omitting the summation symbol and reducing sums to apparent single terms, but by writing
many equations in a single line. Writing eq. (11) as the last part of eq. (20) simplifies also
the understanding of the different parts of the equation. Each object that has an index
stands for all the parts that are summarized with the index: xk of eq. (20) stands for x and

y. That tells also, that x and y are of the same type and that x and y should transform
in a similar way. The same holds for x′

j . For ajk = Rjk it tells us, that all the terms ajk
belong to the single quantity R, which we could write as a matrix, as seen in eq. (19). In
principle, nothing prevents us from using more indices in a quantity. We cannot write this
quantity as a matrix anymore, as a matrix has rows and columns, but not a generalization
to more dimensions.

This feature of an indexed quantity allows another definition of the vector and the gen-
eralization to tensors. When we view the general coordinate transformations5, eq. (4), we
can restrict ourselves to a small region around the place we are interested in. Mathemati-
cally speaking, we select a point ~x0 and a neighborhood U of this point, where we discuss
the coordinate transformations. Choosing the point ~x0 amounts to choosing a local origin
for our coordinate transformations. Then we Taylor expand the coordinate transformation
around the point ~x0 and keep only terms up to first order in the original coordinates:

x′ = b1 + a11x+ a12y + a13z (21a)

y′ = b2 + a21x+ a22y + a23z (21b)

z′ = b3 + a31x+ a32y + a33z . (21c)

We can ”justify” this linear approximation with the mathematical observation, that higher
powers of a small quantity, i.e. something much smaller than 1, are smaller than the quan-
tity itself. The smaller we choose the neighborhood U , the better the linear approximation
will be. The quantities bi in eq. (21) correspond to the translations we discussed in Sec. 3.1
and the quantities ajk correspond to the rotations discussed in Sec. 3.2. The short index
notation for eq. (21) is

x′
j = bj + ajkxk , (22)

which still are three equations, one equation for each index value of j. This linear set of
equations is mathematically called an affine transformation.

One part of the Taylor expansion of the general coordinate transformations was that we
had to pick the point around which we do the Taylor expansion. This amounts to choosing
the origin of the old and the new coordinate system. When choosing the origin of both
to be the reference point of the Taylor expansion, we can avoid to include the terms bj in
eq. (22), which is the same as setting bj = 0, resulting in homogeneous transformations.
Then the only thing that determines the transformation are the coefficients ajk, which are

5For now we leave out the transformation of time. We will first introduce the common convention with
upper and lower indices, which run from 0 to 3, with 0 meaning the time coordinate, before we discuss
transformations that include time.
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just the coefficients of the first order in the Taylor expansion. That means, we can write

ajk =
∂x′

j

∂xk

. (23)

The transformation for the components of a vector ~v = vj, as can be seen implicitly from
eq. (12), are

v′j = ajkvk =
∂x′

j

∂xk

vk , (24)

which can be used as a definition, that ~v = vj is a vector. This type of definition for a
vector can be found especially in older textbooks. It used the ”natural” understanding of
the coordinate systems to define the properties of a vector and to extend the definition to
tensors. A newer compilation of this approach can be found in [4].

Definition: The components of a tensor transform under coordinate transforma-
tions in the same way as the coordinates themselves:

t′j1j2...jN =
∂x′

j1

∂xk1

∂x′
j2

∂xk2

. . .
∂x′

jN

∂xkN

tk1k2...kN . (25)

Every object that transforms in this way is a tensor. A vector is just a tensor with a single
index. A matrix is a tensor with two indices.

4.1 Tensor product

According to the definition eq. (25) a quantity obtained from the multiplication of two
tensors, is again a tensor:

tj1j2...jMk1k2...kN = aj1j2...jM ⊗ bk1k2...kN . (26)

Of course, a product of two vectors (tensors with a single index) is not again a vector,
because it has not one, but two indices. But we can understand this product as matrix:

aj ⊗ bk = Mjk (27)

or




a1

a2



⊗
(

b1 b2 b3

)

=





a1b1 a1b2 a1b3

a2b1 a2b2 a2b3



 =





M11 M12 M13

M21 M22 M23



 , (28)

where I have chosen to arrange the tensor Mjk with j being the index for the rows and k
being the index for the columns. I could also have chosen differently:

(

a1 a2

)

⊗









b1

b2

b3









=









a1b1 a2b1

a1b2 a2b2

a1b3 a2b3









=









M11 M21

M12 M22

M13 M23









, (29)
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which does not change anything in the way, Mjk is related to aj and bk. In this example
eq. (27) contains six separate equations, a separate equation for each index pair jk. Only
in the above case this tensor product (or direct product or Cartesian product) can be
written in matrix form. When we have more indices the two dimensions of a matrix are
no longer enough to give each index its own dimension.

4.2 Special tensors: the Kronecker delta

A special tensor with two indices is the Kronecker delta δjk. Both indices have to have
the same index range, not like Mjk of the previous example, which has the index ranges for
the first index j = 1, 2 and for the second index k = 1, 2, 3. The values of the components
of the Kronecker delta are 0 or 1: only when both indices are equal, i.e. j = k, the value
of δj=k = 1. When both indices are not equal, i.e. j 6= k, the value of δj 6=k = 0.

Using Einsteins summation convention and multiplying a tensor with the Kronecker
delta, which has indices that appear on the tensor, is called contraction:

tjkn ⊗ δjk =
∑

j,k

tjknδjk =
∑

j

tjjn = t′n . (30)

Both indices j and k in tjkn have to have the same index range. Tensor product and
contraction together allow a definition of the usual matrix multiplication:

A · B = C (31)

with the p × r-matrix A, the r × q-matrix B, and the p × q-matrix C can be written in
tensor form as

Ajk ⊗Bℓn ⊗ δkℓ = AjkBkn = Cjn , (32)

which are p× q equations for the p× q components of C.

4.3 Symmetries of a tensor

When a tensor has two or more indices that have the same index range, one can compare
the components belonging to these indices. If the sum or the difference of the components
of exchanged indices are equal to zero, the tensor is called antisymmetric or symmetric in
these indices. That means for a tensor tjkℓm:

if tjkℓm = tkjℓm =: t(jk)ℓm ⇒ the tensor is called symmetric in j and k

if tjkℓm = −tjkmℓ =: tjk[ℓm] ⇒ the tensor is called antisymmetric in ℓ and m

A first example is the Kronecker delta. Since δjk = δkj , it is symmetric. As a second
example I want to discuss the tensor ajk of eq. (20). It has the components a11 = a22 = 0.87
and a12 = −a21 = 0.48. The last part, a12 = −a21, hints, that it might be antisymmetric.
But the relation for the tensor to be antisymmetric in one of its index pairs, i.e. ajk = −akj,
has to hold for all possible values of the indices. So it has to hold for the case k = j, too,
which means that for ajk to be antisymmetric, the diagonal element, i.e. the elements with
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k = j have to vanish6: ajj = −ajj = 0. But this is not the case in our second example:
a11 = a22 = 0.87 6= 0.

The third example will be the Riemann tensor, which describes the curvature of a
manifold7. For the example we will assume, that the Riemann tensor describes a surface,
that means its indices can have only two values: 1 or 2. Then the whole Riemann tensor
can only have a single independent component, as it has the symmetry properties:

Rjkℓm = −Rkjℓm = −Rjkmℓ = R[ℓm] [jk] = R1212 . (33)

The Riemann tensor is antisymmetric in the first pair of indices and in the second pair of
indices. Therefore neither the first pair nor the second pair can have the same index. But
with only two choices for the indices, there is only a single index combination for the first
and for the second pair. And since the pairs are symmetric, that means we can exchange
the first with the second pair, only a single independent index combination is left, as we
see in eq. (33).

4.4 Special tensors: the Levi-Civita symbol

Another special tensor is the Levi-Civita symbol. It does not have a fixed number of indices
as it should be completely antisymmetric in the maximum number of possible indices, which
requires that it has as many indices as there are dimensions, i.e. index choices. In two
dimensions it can be written as ǫjk = −ǫkj with ǫ12 = 1. In three dimensions we have three
indices:

ǫjkℓ = ǫℓjk = ǫkℓj = −ǫkjℓ = −ǫℓkj = −ǫjℓk with ǫ123 = 1 . (34)

In four dimensions we have ǫµνρσ, but I will not write the 4! = 24 index combinations
explicitly. The Levi-Civita symbol is used to define volume elements and determinants of
matrices. In [4] the Levi-Civita symbol is called permutation symbol.

4.5 Restrictions on coordinate transformations

The two special tensors (or symbols), the Kronecker delta and the Levi-Civita symbol are
defined in any coordinate system. Since they are tensors, their components have to be
transformed under coordinate transformations, but these transformed components have to
have the same values as in the original system. How is that possible?

Writing the coordinate transformation eq. (20) for the Kronecker delta we get

δ′jk = ajℓakmδℓm = ajℓakℓ , (35)

which tells us, that the coordinate transformation seen as a matrix should be orthogonal.
Since rotations are described by orthogonal matrices this requirement should not surprise
us.

6The underlining of an index indicates, that this index should not be summed over.
7I will neither explain what curvature means, nor what a manifold is. This example should just illustrate

the symmetry properties of a tensor.
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For the coordinate transformation eq. (20) acting on the Levi-Civita symbol we need
to specify the dimensions of our space. We will first assume a two dimensional space and
then a three dimensional. For 2D we get

ǫ′jk = ajℓakmǫℓm = aj1ak2 − aj2ak1 = ǫjk det[a] , (36)

which tells us, that the determinant of the rotation matrix should be +1, which means
that we should only use true rotations without reflections. For 3D we get

ǫ′jkℓ = ajmaknajoǫmno = ǫjkℓ det[a] , (37)

which gives the same conclusion as in the 2D example.

4.5.1 Remark on the shortcomings of this introduction

What was left out in the whole discussion was the concept of the dual space. It helps to
understand better the difference between row and column vectors. It clarifies the different
conventions about upper and lower indices. It gives the Kronecker delta and the contraction
a more natural meaning. It also goes much deeper into the mathematical foundations:
much deeper than is needed to do understand the calculations that are required by this
course.

But when we use Cartesian coordinates the vector space and its dual can be identified.
Therefore I decided to leave out the concept of the dual space and just concentrate on the
methods that are needed for the simple calculations of the homework of this course.

5 Invariants

If we think more carefully about these restrictions on coordinate systems we will find them
rather natural. When we compare different coordinate systems we do not want that the
measured length changes when we use different coordinates. The distance between points
is something that should not depend on our way of looking at them. In the same way the
volume should stay the same. This viewpoint summarizes passive transformations. Our
restrictions describe valid changes of coordinates systems, where we do not change the
definition of our length measurement.

Things that do not change are called invariants. But being invariant is a broader
concept than being invariant only under coordinate transformations. As an example we
consider a pendulum like in Fig. 5. The length of the pendulum is by definition constant,
as is its mass. When the pendulum swings its weight m~g is usually also assumed to be
constant. We can easily see, that this is only an assumption, when we consider a 1000 km
long pendulum mounted on a satellite and swinging in earths gravitational field. Then the
direction of the gravitational force will change depending on the position of the pendulum
and m~g will no longer be constant.

We introduce now a coordinate system and look at the quantities that we need to
describe our pendulum. At each time we have two points, that describe the position of the
pendulum: the point where it is mounted and the point where the weight is. From these
two points we can define the vector ~ℓ, that points from the mounting point O to the weight



SR4WoP February 1, 2013 17

s

w

O

m
~v

~a

m~g

~F

.

.

(a)

s

w

O

m

~v ~a = 0

m~g = ~F
.

.

(b)

s

w

O

m~v

~a

m~g

~F

.

.

(c)

Figure 5: A rigid pendulum in three different positions. The forces are written in red, the
velocity in green. The gravitational force is indicated by m~g, the acceleration by ~a and
the centrifugal force by ~F . In (a) the pendulum started very recently to move from its
starting position. It has still nearly all of its potential energy and only a small velocity.
The acceleration is parallel to the small velocity, so the velocity will increase. In (b)
the velocity has increased and all potential energy has been converted to kinetic energy.
When the pendulum swings on, as displayed in (c), its kinetic energy is transfered again to
potential energy and the acceleration is anti parallel to the velocity, slowing the pendulum
down.

m8. To understand the position of the pendulum we need additionally the direction of the
gravitational attraction, which we call ~g, the gravitational acceleration. Kinematically we
also need the velocity ~v of the pendulum and its mass m. But with this information, we
can completely describe it.

When we think now about the coordinate transformations discussed in the previous
section, we can ask, which of the defining quantities of the pendulum stay the same under
a coordinate transformation, that does not change our unit of length.

The directional quantities like ~ℓ and ~g will obviously change when we describe the
pendulum with a rotated coordinate system. But also the coordinates of the points O
and m will change. So these quantities cannot be invariant. The fixed quantities of the
pendulum, its mass m and its length have to stay invariant. The mass is described as a
number and in the context of coordinates as a scalar quantity. The length9 of the pendulum

ℓ = |~ℓ| =
√

~ℓ 2 =
√

~ℓ · ~ℓ =
√

ℓiℓi (38)

is the length of the vector ~ℓ = ℓi. And here we see a connection between the invariants of
the coordinate transformations and invariants in a physical system: since physics should
be independent of our choice of a coordinate system only invariants under coordinate
transformations can be invariants of a physical system.

8In this example I will use the letter m to describe the mass of the pendulum and to name the position
of the mass. There is no confusion about mixing a mass with a position, but an advantage to use the same
letter for the same object, since I do not need to write more letters to the pictures in Fig. 5, which would
reduce its readability.

9The definition of the square of the length of a vector |~ℓ|2 = ~ℓ ·~ℓ needs the definition of a scalar product,
which in turn requires the introduction of a metric. In the spirit of section 4.5.1 I will assume, that we
know, how to calculate the length of a vector and use this understanding as an implicit definition of the
scalar product and the metric.
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Any quantity that does not change under coordinate transformations is called a scalar.
We can think of the scalar as a tensor without an index: when we change our coordinates
and transform the tensor according to eq. (25) we have no factor ∂x′

j/∂xk for a scalar,
since we have no index j that we have to transform.

We can construct many scalar quantities, but not all of them will be invariants for the
physical system, not all of them will stay constant over time. One example for such a
scalar quantity is the product of the vector ~ℓ with the gravitational force m~g:

Epot := −m~g · ~ℓ (39)

describes the potential energy of the pendulum. This quantity will be the same in all
equivalent coordinate systems10. But the potential energy is not the same for the states of
the pendulum in part (a) and part (b) of Fig. 5.

Another scalar quantity is the kinetic energy

Ekin := 1
2
m~v2 . (40)

The vector ~v changes under coordinate transformations, but its scalar length |~v| does not.
Over time Ekin changes as can be seen in part (a) and part (b) of Fig. 5. Now the sum of
both quantities

Etot := Epot + Ekin . (41)

is obviously also a scalar quantity an will not change under coordinate transformations.
But this time, Etot is also a physical invariant, a quantity that does not change over time.

6 Galilean transformations

The coordinate transformations we discussed in sec. 3.1 and 3.2 are part of the Galilean
transformations. Additionally one has transformations including an universal time. The
transformation of time analogous to eq. (6) is the time shift

t′ = t+∆t , (42)

where I wrote the formal parameter ∆t instead of the explicit example values +2 and −1
in eq. (6).

In our three spacial dimensions the translations can be written formally as

x′ = x+∆x , y′ = y +∆y and z′ = z +∆z . (43)

These three equations can be written shorter in vector form

~x′ = ~x+∆~x (44)

or index form

x′
j = xj +∆xj . (45)

10We will call all coordinate systems that do not change the length measurements equivalent.
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original time shift space shift rotation boost

(t, x, y, z) (t+∆t, x, y, z) (t, x+∆x, y, z) (t, xR, yR, zR) (t, x+ wxt, y, z)

(t, ~x) (t+∆t, ~x) (t, ~x+∆~x) (t,R · ~x) (t, ~x+ ~w t)

(t, xj) (t+∆t, xj) (t, xj +∆xj) (t,Rjkxk) (t, xj + wjt)

Table 1: The Galilean transformation in the three ways of writing them. The explicit form
is listed in the first line, where I only write the space shift and the boost for the x̂-direction,
because it would not fit the page width. The vector form is given in the second line and
the index form in the last line. For the rotation in the last line, you should remember
Einsteins summation convention given in eq. (20) and described after the equation.

The rotations of sec. 3.2 are written in eqs. (21a), (21b), and (21c), where the parameters
b1 = b2 = b3 = 0 have to be set to zero. The index form of the rotations can be found
in eq. (22), again setting bj = 0, and the matrix form of the rotations can be found in
eq. (18).

The last Galilean transformation is motivated by the observation, that in every day life
circumstances we can just add velocities like normal vectors. The names of these transfor-
mations are boosts. You can remember the name by imagining, that the transformation
is achieved by giving one coordinate system a boost, that is a push, so that it glides with
constant velocity into the direction in which you pushed it. Formally one can write these
three equations11 as

x′ = x+ wxt , y′ = y + wyt and z′ = z + wzt , (46)

or easier in vector form

~x′ = ~x+ ~w t (47)

or index form

x′
j = xj + wjt . (48)

You can imagine the boosts also as a normal translation that depends linearly on time:
at time t1 you make the translation with ∆~x = ~w t1 and at time t2 you make the translation
with ∆~x = ~w t2. In that sense the boost is not different from the normal translations.

6.1 The pendulum under Galilean transformations

Looking again at the pendulum of Fig. 5 we can apply all three types of Galilean trans-
formations to the quantities defining the pendulum: to the positions of O and m, to the
vectors ~ℓ, ~v, ~g, ~F , and ~a, and the scalar quantities m and ℓ.

11I use the letter w for the velocity of the boost, as I already used the usual letter v for the velocity of
the pendulum, that I want to discuss later again.
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untransformed time shift space shift rotation boost

~O ~O0 = (Ox, Oy, Oz) ~OT = ~O0
~OS = ~O0 +∆~x ~OR = R · ~O0

~OB = ~O0 + ~w t

~m ~m0 = (mx, my, mz) ~m0(t+ δt) ~mS = ~m0 +∆~x ~mR = R · ~m0 ~mB = ~m0 + ~w t

~ℓ ~ℓ0 = ~m0 − ~O0
~ℓ0(t + δt) ~ℓS = ~ℓ0 ~ℓR = R · ~ℓ0 ~ℓB = ~ℓ0

~v ~v0 = (vx, vy, vz) ~v0(t + δt) ~vS = ~v0 ~vR = R · ~v0 ~vB = ~v0 + ~w

~g ~g0 = (gx, gy, gz) ~gT = ~g0 ~gS = ~g0 ~gR = R · ~g0 ~gB = ~g0

~F ~F0 =
(m~g0·~ℓ0)

(~ℓ0·~ℓ0)
~ℓ0 ~F0(t + δt) ~FS = ~F0

~FR = R · ~F0
~FB = ~F0

~a ~a0 = m~g0 − ~F0 ~a0(t+ δt) ~aS = ~a0 ~aR = R · ~a0 ~aB = ~a0

ℓ ℓ0 =

√

~ℓ0 · ~ℓ0 ℓT = ℓ0 ℓS = ℓ0 ℓR = ℓ0 ℓB = ℓ0

m m0 = m mT = m0 mS = m0 mR = m0 mB = m0

Epot Ep,0 = −m~g0 · ~ℓ0 Ep,0(t + δt) Ep,S = Ep,0 Ep,R = Ep,0 Ep,B = Ep,0

Ekin Ek,0 =
1
2
m~v 2

0 Ek,0(t + δt) Ek,S = Ek,0 Ek,R = Ek,0 Ek,B 6= Ek,0

Etot Et,0 = Epot + Ekin Et,T = Et,0 Et,S = Et,0 Et,R = Et,0 Et,B 6= Et,0

Table 2: The Galilean transformation of the quantities that describe the pendulum of
Fig. 5. The first block includes the coordinates of the pendulum ~m, which changes with
time, and the mount of the pendulum ~O, which does not change with time. The second
block includes the vector of the pendulum ~ℓ, which is the difference between the position of
the weight and the mount, the velocity of the pendulum ~v, the gravitational acceleration
~g, the centrifugal force ~F , and the acceleration of the weight ~a. Only the gravitational
acceleration ~g is constant in time. The third block contains the scalar quantities of the
pendulum: the length ℓ and the mass m. These quantities change neither with a coordinate
transformation nor with time. The fourth block includes the energies of the pendulum.

This time I do not give numbers as an example. I leave the transformations and the
describing quantities in parametric form. But I unify the notation for the translations in
time and space and use an index to distinguish them. I use the subscript T for a time
translated quantity, the subscript S for a spacial translated quantity, the subscript R for
a rotated quantity, and the subscript B for a boosted quantity. The transformations are
summarized in table 1.

The first block in table 2 describes the coordinates of the mounting point ~O and the
position of the weight ~m. These vectorial quantities transform exactly like in table 1.
Since the pendulum swings, the position of the weight changes with time. When we look
at the pendulum at a different time, the position will also be different, which is indicated
by writing the time shifted ~mT as a function of the time t and of the time shift ∆t.

The second block contains vectors that are not position vectors. The vector describing
the arm of the pendulum, ~ℓ = ~m− ~O is a difference of position vectors. Since the position
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vector ~m changes with time, but the position vector ~O does not, ~ℓ inherits the same time
dependence as ~m, which is indicated by writing ~ℓT as a function of the time t and of the
time shift ∆t. Any spacial shift leaves ~ℓ invariant, as one can see from table 2. Remember
that the boost is also a spacial shift, but a spacial shift that is different for different times.
Only the rotation changes ~ℓ by rotating it like any other vector:

~ℓR = ~mR − ~OR = R · ~m0 −R · ~O0 = R · (~m0 − ~O0) = R · ~ℓ0 (49)

or

ℓRj = mRj −ORj = Rjkm0k −RjkO0k = Rjk(m0k − O0k) = Rjkℓ0k . (50)

The velocity of the weight ~v is also a difference of two position vectors. But now the
difference is taken at different times12:

~v(t) = lim
δt→0

~m(t+ δt)− ~m(t)

δt
or vj(t) = lim

δt→0

mj(t+ δt)−mj(t)

δt
. (51)

Therefore the boost, which changes the coordinates gives a different ~vB:

~vB(t) = lim
δt→0

[~m0(t+ δt) + ~w · (t+ δt)]− [~m0(t) + ~w · (t)]
δt

(52)

= lim
δt→0

~m0(t+ δt)− ~m0(t)

δt
+ ~w

(t+ δt)− (t)

δt
= ~v0(t) + ~w .

The rotation of the velocity ~vR is obtained in the same way as the rotation of the arm of
the pendulum ~ℓR described in eq. (49) and eq. (50).

The acceleration ~g is in principle defined as the differential of the velocity. Since the
effect of the gravitational acceleration of the pendulum could only be seen directly if the
pendulum was not mounted, we can only argue, that ~g should change like any second
derivative with respect to time. Or we can argue, that ~g should not change, like the
coordinate axes themselves, as we are keeping the gravitational acceleration fixed for the
description of the pendulum. For the change of a second derivative with a boost we discuss
the change of ~a under a boost. The definition of ~a in terms of the velocity ~v uses the same
formalism as the definition of the ~v velocity in terms of the position ~m:

~a(t) = lim
δt→0

~v(t+ δt)− ~v(t)

δt
or aj(t) = lim

δt→0

vj(t+ δt)− vj(t)

δt
. (53)

Calculating the boosted acceleration

~aB(t) = lim
δt→0

~vB(t + δt)− ~vB(t)

δt
= lim

δt→0

[~v0(t+ δt) + ~w]− [~v0(t) + ~w]

δt
= ~a0(t) (54)

works in a similar way as the boosted velocity eq. (52), with the difference, that the boost
does not change the acceleration. So it does not matter, if we treat the gravitational
acceleration ~g as an acceleration or a coordinate axis.

12The limit for infinitesimal small differences is called differentiation.
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The centrifugal force ~F is calculated from vectors that do not change under spacial
translations. Therefore it will not change under spacial translations, either. Under tem-
poral translations ~F will change in a similar way like all the quantities that depend on the
position of the pendulum. That ~F changes under rotations in the same way as ~ℓ follows
from the invariance of the scalar product, which is defined by the Kronecker delta. The
invariance of the Kronecker delta under rotations was discussed in eq. (35).

The third block of table 2 describes the defining scalar quantities of the pendulum.
The length of the arm of the pendulum cannot change due to the physical requirements
of the pendulum: if ℓ would change in time, the pendulum would not be rigid. And if m
could change we would also not have the pendulum we discussed. The constancy of ℓ gives
a restriction, how the weight can move and makes this pendulum a one (two) dimensional
problem, although it moves in two (three) spacial dimensions. Assuming the rigidity, i.e.
that the length ℓ does not change, one can replace the vector ~m by the angles describing
its direction.

The last block of table 2 describes the energies of the pendulum. The potential energy
depends on the direction of the gravitational acceleration ~g and the arm of the pendulum
~ℓ. The gravitational acceleration is constant by assumption, but the arm of the pendulum
swings and so the potential energy changes with time. The potential energy does not
change under a spacial shift since the direction of the arm ~ℓ is the difference of two position
vectors and the gravitational acceleration is constant by assumption. Rotations leave a
scalar product of two vectors invariant, so they do not change the potential energy. Since
boost do not change the vectors defining the potential energy, they do not change the
potential energy, either.

The kinetic energy is given by the length of the velocity vector ~v and changes peri-
odically with time. But spacial translations and rotations do not change the length of a
vector and hence do not change the kinetic energy. But the boost adds its velocity to the
velocity of the pendulum and so it changes the kinetic energy.

The total energy is the sum of potential and kinetic energy. Since both, potential and
kinetic energy are not affected by spacial translations and by rotations, these transfor-
mations will not affect the total energy either. The boosts do not change the potential
energy, but change the kinetic energy and so the total energy will not be constant under
boosts. Both the potential and the kinetic energy change with time, but they change in
a very special way: the kinetic energy increases by the same amount that the potential
energy decreases and vice versa. This makes the total energy a constant of motion for the
pendulum.

This splitting of the total energy in potential and kinetic part is the foundation for
analytical mechanics. The advantage of analytical mechanics is the usage of scalar quan-
tities, the potential and the kinetic energy, instead of using forces and other vector like
quantities, that transform under translations and rotations.

7 Four dimensional spacetime

The difference between Galilean transformations and Lorentz transformations lies only in
the boosts. Whereas Galilean transformations use the notion of an universal time, Lorentz
transformations recognize the connection between time and space, the relativity of time
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measurements. Therefore the first step into Lorentz transformations is the introduction of
the four-vector notation, which unifies time and space formally.

7.1 Four-vectors

In section 2 we introduced the vector by giving the Cartesian coordinates in space. For the
four-vector we just have to include the time that is measured together with the position
and then we have the typical four-vector. But for time we use different physical units
compared to the length measurements in space. The simplest solution is to take the time
coordinate as the distance light travels in the time that we want to write as the time
coordinate:

x0 = ct . (55)

Then there is no problem connecting time and space into the same mathematical object:

xµ = (ct, ~x) = (x0, x1, x2, x3) or xµ =

(

ct

~x

)

=





x
0

x
1

x
2

x
3



 . (56)

As we can see it does not make a difference, whether we write the four-vector as a row
vector or as a column vector. And like in the three dimensional case it will be convenient
to write the four-vector in index notation, discussed in section 4.

In index notation there is now a difference to the three dimensional case. For a four-
vector there exists a distinction between upper and lower indices. In special relativity this
distinction is just a convention, but in Riemannian geometry and general relativity this
index convention is really necessary. In special relativity it also helps to prevent mistakes.
An upper index is called contravariant and a lower index is called covariant. Since a vector
has only a single index, it has to be either contravariant or covariant. But a general tensor
with more than a single index can have contravariant and covariant indices.

Einsteins summation convention is slightly different than in three dimensions: each
index that appears once as an upper index and once as a lower index in one term should
be summed over. And this is the part, where the convention about contravariant and
covariant indices can prevent mistakes. If you encounter in your calculation a term that
has two similar indices and both are upper or lower indices, you know, that you either
named a different index with the same name, or that you tried to multiply two incompatible
quantities.

In section 5 we we found that most invariant quantities are scalars. In the context of
special relativity this is true, too. And a scalar is easy to see: it does not have an index.
That can come from the contraction of two indices, which are summed over by Einsteins
summation convention. So one of the indices has to be a contravariant index and the other
a covariant index. But how can one then measure the length of a three dimensional vector,
eq. (56), at a certain time?

7.2 The metric

The metric is the tool that allows the length measurement. In general relativity the
metric becomes the object, that describes the local structure of space and time. In special
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relativity this is the case, too, but the metric in Cartesian coordinates is constant and does
not depend on the place and on the time where the measurement is made.

In Cartesian coordinates we know, that the length measurement, eq. (38), means we
have to sum the squares of the spacial components of the vector to get the square of the
length of the vector we want to measure. So the spacial components of the metric in
Cartesian coordinates have to be the Kronecker delta. The rest of the metric is again
convention. In astronomy people want to measure positive distances and take the metric
to have positive space components. In particle physics we like to have positive energies
and therefore we take the time component to be positive13:

gµν := { g00 = +1 ; g0j = 0 ; gjk = −δjk with µ, ν = 0 . . . 3 and j, k = 1 . . . 3 } . (57)

This metric allows now the connection between contravariant and covariant indices.
We can lower indices by contracting a contravariant index with the metric

aµ = gµνa
ν = {+aµ for µ = 0 and − aµ for µ = 1 . . . 3 } . (58)

We can also lower an index from a multi-index tensor:

t ρσ
µ = gµνt

νρσ or t ρ
µ σ = gµνt

νρ
σ = gσνt

ρν
µ

or tµρσ = gµνt
ν
ρσ = gρνt

ν
µ σ = gσνt

ν
µρ ,

(59)

but here we have to keep the index at its position. Note that the tensor t can describe the
same physical object, but its realisations with different index positions are not the same:

tµρσ 6= t ρσ
µ 6= tµ σ

ρ 6= tµρ σ 6= t σ
µρ 6= t ρ

µ σ 6= tµρσ 6= tµρσ . (60)

For raising indices we need the inverse metric

gµν := { g00 = +1 ; g0j = 0 ; gjk = −δjk with µ, ν = 0 . . . 3 and j, k = 1 . . . 3 } , (61)

which gives the four dimensional Kronecker delta when contracted with the regular metric:

gµνg
νρ = δρµ . (62)

The index position in the four dimensional Kronecker delta is not important, since it
becomes the metric, when one index is lowered or the inverse metric when one index is
raised. And both, the metric and the inverse metric, are symmetric, so it does not matter
which of the indices is in front of the other. In the same way it does not matter which
index of the (inverse) metric we use to lower (raise) an index, since the (inverse) metric is
symmetric in its two indices.

13In quantum mechanics position and momentum are conjugate to each other. In a similar same way
we understand time as being conjugate to energy.
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7.3 Length measurement

In section 5 we discussed the definition of length in Cartesian coordinates, eq. (38). We
have to generalize this result to our four dimensional spacetime. Looking at the pendulum,
Fig. 5, we see, that the length is defined by the difference between the points O and m,
which we can also write with their four dimensional spacetime vectors (in row vector form)

Oµ = (ct, 0, 0, 0) and mµ = (ct,mx, my, mz) . (63)

This means we have the components of O

O0 = ct and O1 = O2 = O3 = 0 (64)

and the components of m

m0 = ct and m1 = mx , m2 = my , and m3 = mz . (65)

We have to take the same time t for both points, as we want to measure the length, and the
length measurement is defined to be at equal times. The four-vector difference between
O and m is

−−→
Omµ = (ct,mx, my, mz)− (ct, 0, 0, 0) = (0, mx, my, mz) = (0, ~ℓ) =: dµs , (66)

where we identified the three dimensional coordinates with the space-like four dimensional
coordinates: ~ℓ = (mx, my, mz). In the three dimensional case of eq. (38) we also had a
metric, which was just the Kronecker delta in Cartesian coordinates. And the square of
the length was written as

ℓ2 = ℓiℓi = ℓjℓkδjk . (67)

A similar calculation with four-vectors gives

gµνd
µ
sd

ν
s = (d0s)

2 − (d1s)
2 − (d2s)

2 − (d3s)
2 = −δjkℓjℓk = −ℓ2 , (68)

which gives a negative number for the square of a length. That means, we have to define

the length measurement in four dimensions as

ℓ :=
√

− [gµνd
µ
sd

ν
s ]space like part . (69)

7.4 Time measurement

The definition of a time measurement seems to be a trivial task: We just take a clock and
measure the time that passes. And nothing is wrong with this. But when we look at the
time measurement having the principle of relativity in mind, we have to ask, how can we
measure the time between two events? And now the answer is: in order to measure the
time uniquely between two events, both events have to be at the same location. Then we
can measure the time that passes in that location and that will give the unique answer.

We can also use the four-vector notation for the two events A and B:

Aµ = (at = ctA, ax, ay, az) and Bµ = (bt = ctB, bx, by, bz) . (70)
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In order to measure the time between A and B they have both to be at the same location,
which means

ax = bx , ay = by , and az = bz , (71)

which simplifies the difference

−→
ABµ = (bt, bx, by, bz)− (at, ax, ay, az) = (c(tB − tA), 0, 0, 0) = (c∆t, 0, 0, 0) =: dµt . (72)

Using the metric as with the length measurement we can define the time measurement as

c∆t :=
√

+ [gµνd
µ
t d

ν
t ]time like part . (73)

This definition unifies space and time and motivates the definition of the four-distance
squared d2 between A and B:

dµ := Bµ −Aµ and d2 := gµνd
µdν . (74)

7.5 Lorentz transformations

The Galilean transformations listed in Table 1 can be understood as the linear transfor-
mations that leave the length measurement, eq. (38), invariant. Since time is not changed
by the Galilean transformations, also the time measurement is invariant under Galilean
transformations.

In this context Lorentz transformations can be understood as the linear transformations
that leave the four-distance squared, eq. (74), invariant. This feature already determines
the Lorentz transformations. This approach to the Lorentz transformations is used in [1]
and in the lecture.

Using four-vectors and index notation we can write the Lorentz transformation Λ(v)
as the transformation from the frame O with Cartesian coordinates xµ to the frame O′

with Cartesian coordinates x′µ which moves with the constant velocity ~v = (v, 0, 0) in
x̂-direction with respect to the frame O:

x′µ = Λµ
ν x

ν . (75)

This can be written out explicitly into four equations

x′0 = Λ0
0 x

0 + Λ0
1 x

1 + Λ0
2 x

2 + Λ0
3 x

3

x′1 = Λ1
0 x

0 + Λ1
1 x

1 + Λ1
2 x

2 + Λ1
3 x

3

x′2 = Λ2
0 x

0 + Λ2
1 x

1 + Λ2
2 x

2 + Λ2
3 x

3

x′3 = Λ3
0 x

0 + Λ3
1 x

1 + Λ3
2 x

2 + Λ3
3 x

3 .

(76)

The Lorentz transformation affects only the time coordinate and the coordinates in the
direction of the velocity. Since we choose the velocity to point into the x̂-direction the
coordinates in ŷ-direction and ẑ-direction are not changed:

x′2 = x2 and x′3 = x3

< or Λ2
2 = Λ3

3 = 1 and (77)

Λ0
2 = Λ0

3 = Λ1
2 = Λ1

3 = Λ2
0 = Λ2

1 = Λ2
3 = Λ3

0 = Λ3
1 = Λ3

2 = 0 .
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Requiring the invariance of eq. (74) for x′µ and xµ we get (x′)2 = (x)2. Writing x′µ explicitly
by using eq. (76) with the restrictions eq. (77) we get

(x′0)2 − (x′1)2 − (x′2)2 − (x′3)2

= (Λ0
0 x

0 + Λ0
1 x

1)2 − (Λ1
0 x

0 + Λ1
1 x

1)2 − (x2)2 − (x3)2

= (Λ0
0)

2(x0)2 + 2Λ0
0Λ

0
1x

0x1 + (Λ0
1)

2(x1)2

−(Λ1
0)

2(x0)2 − 2Λ1
0Λ

1
1x

0x1 − (Λ1
1)

2(x1)2 − (x2)2 − (x3)2

= [(Λ0
0)

2 − (Λ1
0)

2](x0)2 + 2[Λ0
0Λ

0
1 − Λ1

0Λ
1
1]x

0x1

+[(Λ0
1)

2 − (Λ1
1)

2](x1)2 − (x2)2 − (x3)2

.
= (x0)2 − (x1)2 − (x2)2 − (x3)2 . (78)

Since there is no term proportional x0x1 on the right hand side of
.
= we know that its

coefficient has to vanish. This gives the equation

Λ0
0Λ

0
1 − Λ1

0Λ
1
1 = 0 . (79)

The coefficients for (x0)2 and (x1)2 have to be the same in eq. (78). So we get two more
equations:

(Λ0
0)

2 − (Λ1
0)

2 = 1 (80)

and (Λ0
1)

2 − (Λ1
1)

2 = −1 . (81)

Remembering the meaning of x0 = ct being the time we can assume that the transforma-
tion eq.(76) has to have Λ0

0 6= 0, so that we can solve eq.(79) to get

Λ0
1 =

Λ1
0Λ

1
1

Λ0
0

, (82)

which we can put into eq.(81)

(

Λ1
0Λ

1
1

Λ0
0

)2

− (Λ1
1)

2 =

(

Λ1
1

Λ0
0

)2
(

(Λ1
0)

2 − (Λ0
0)

2
)

= −1 . (83)

Using eq.(80) we get

(

Λ1
1

Λ0
0

)2

= 1 or Λ1
1 = ±Λ0

0 . (84)

We can now stop and think of the meaning of the signs of Λ0
0 and Λ1

1. When Λ0
0 > 0

time in both frames, O and O′, are measured in the same direction, which is what we
experience in everyday life: both physicists, the one at rest and the one moving get older
and not younger. If Λ0

0 < 0 one of them would have to get younger when the other
one gets older. The sign of Λ1

1 is a convention of the coordinate systems. If Λ1
1 < 0 the

physicist in O′ measures the coordinate in x̂-direction into the opposite direction compared
to the physicist in O. This is not convenient when we want to compare systems which are
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moving only very slowly with respect to each other. So the usual convention is to choose
Λ1

1 > 0, too. This determines now

Λ1
1 = Λ0

0 (85)

and therefore from eq. (79) or eq. (82) also

Λ0
1 = Λ1

0 . (86)

This leaves only one equation, eq. (80) or eq. (81). They can be solved by parameterizing
either both elements, Λ0

0 and Λ1
0, by two functions and one parameter η, called rapidity,

Λ0
0 = cosh η and Λ1

0 = ± sinh η , (87)

or by parameterizing the ratio by β,

Λ1
0

Λ0
0

= ±β , (88)

to get

(Λ0
0)

2 − (±βΛ0
0)

2 = (Λ0
0)

2(1− β2) = 1 (89)

and calculating then both elements

Λ0
0 =

1
√

1− β2
=: γ and Λ1

0 = ±γβ . (90)

The sign in eq.(87) or eq.(88) tells the direction of the motion between the frames O and O′:
when the Lorentz transformation from O to O′ has the minus sign, then the transformation
back from O′ to O has the plus sign and vice versa.

The meaning of the parameter β is visible, when we look at the motion of the origin
of frame O′ in our frame O. When the origin of O′ moves with the speed v in positive
x̂-direction, we see it at the time t0 at the position x0 and at time t1 = t0 + ∆t at the
position x1 = x0 + v∆t. But the coordinates in O′ stay the same at both times, x′

1 = x′
0,

since it is still the origin of O′. This gives us the equation

Λ1
0 ct0 + Λ1

1 x0 = Λ1
0 ct1 + Λ1

1 x1 = Λ1
0 c(t0 +∆t) + Λ1

1 (x0 + v∆t) (91)

or

0 = (Λ1
0 c+ Λ1

1 v)∆t = γ(±βc+ v)∆t . (92)

Here we see the usual choice for the Lorentz transformation from O to O′: one chooses the
minus sign and gets the transformation parameter

β =
v

c
. (93)

This gives finally the form of the Lorentz transformations in x̂-direction that most people
are familiar:

ct′ = γ (ct− βx)

x′ = γ (x− βct)

y′ = y

z′ = z

or

t′ = γ
(

t− v·x
c2

)

x′ = γ (x− v · t)
y′ = y

z′ = z .

(94)
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7.6 Four-momentum

Up to now we talked only about general frames. The only difference between frames was
their relative velocity. And it does not make sense to give an abstract frame another
quantity. But that changes in particle physics. Each massive particle that we see in the
laboratory can be understood as the anchor of its own frame: the rest frame of the particle.
For photons, the particles of light, we cannot find a rest frame as they are moving with
the speed of light and the Lorentz transformation is only well defined for relative speeds
that are smaller than the speed of light, as can be seen from eq. (90).

When we deal with particles it turns out that it is more convenient to use energy
and momentum to describe a particle. From classical mechanics we know, that a particle
that does not move also has no momentum. But the energy is more tricky. In classical
mechanics there is no energy attributed to the mass of a particle. That changes with
special relativity. Here we have Einsteins famous formula

m =
E

c2
, (95)

that relates the gravitational attraction with the energy content of the attracted object.
This relation can also be used to assign the particle an energy, that corresponds to its
mass. Although the term rest mass is redundant14, it emphasizes how we measure the
mass of a particle: we go to its rest frame and measure the gravitational attraction with
scales or the inertial resistance to acceleration. Both measurements give the same result15.

Using the rest energy and the vanishing momentum in the rest frame of the massive
particle with mass m, we can assign it a four vector

pµrest =

(

E

c
= mc, 0, 0, 0

)

or pµrest =





E

c
= mc

0

0

0



 , (96)

similar to the four vectors of eq. (56). We have to divide the energy by c in order to have
the same units for all components of the four vector. Comparing the four momentum with
the four vector of eq. (56) we can identify the energy with the time component and the
three dimensional momentum with the space components.

When we see this particle of mass m moving in our frame with a velocity ~v, we can make
a Lorentz transformation using the velocity ~v to transform into the particles rest frame.
That means we can do the Lorentz transformation with −~v from the particles rest frame
into our frame, where we will see the particle moving with the velocity ~v. For simplicity we
will align the x̂-axis of our coordinate system again with the velocity: ~v = (v, 0, 0). Then
the four momentum in our frame is

pµ = Λ(−v)µν p
ν
rest , (97)

14Mass alone means already the mass of the object when the object is at rest. In that sense the term
rest mass is redundant. The old term relativistic mass for the energy of a moving object is unnecessary
and misleading and I strongly suggest to forget and bury it as soon as possible. In that respect I go further
than Griffiths [5], who already in 1987 tried to dissuade people to use it.

15Einsteins equivalence principle states, that the gravitational mass should be equal to the inertial mass.
Several experiments measured the difference between the gravitational mass mg and the inertial mass mI

and established an upper limit for the relative difference of |mg −mI | < 10−12(mg +mI).
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or explicitly







E

c

p

0

0






=







γ γβ 0 0

γβ γ 0 0

0 0 1 0

0 0 0 1






·







mc

0

0

0






= γmc







1

β

0

0






, (98)

like the definition for the relativistic momentum used in [5]. That means we have now
energy and momentum of a particle given by

E = γmc2 and ~p = γm~v . (99)

We can use this relation also to obtain the velocity of a particle, if we have its energy and
its momentum:

~v =
~pc2

E
. (100)

When we treat the four momentum as the quantity that describes the particle, we can
ask, what the invariant of this four momentum is. The answer should not surprise us
anymore: we can calculate this invariant in any frame and it becomes particularly simple
in the rest frame of the particle as

p2 = gµνp
µpν =

E2

c2
− (~p)2 = m2c2 − 0 = m2c2 . (101)

So we can calculate the energy of the moving particle not only using the velocity, like in
eq. (99), but also directly using only the mass and the momentum:

E2 = m2c4 + (~p)2c2 . (102)

This is the most important form of relating mass, energy, and momentum in particle
physics.
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