
7. General Relativity — CMB

Measurements of the Cosmic Microwave Background Radiation

• first (involuntary) measurements by Penzias and Wilson in 1965

⇒ Nobel Prize in 1978

• COBE (Cosmic Background Explorer)

is launched in 1989, takes data until 1991

– FIRAS (Far Infrared Absolute Spectrophotometer)

measures the frequency distribution in 1990

⇒ the CMB is a thermal blackbody radiation with T ∼ 2.725 K

– DMR (Differential Microwave Radiometer)

discovers the primary temperature anisotropy in 1992

⇒ Nobel Prize in 2006

• BOOMERanG and MAXIMA measure the acoustic oscillations

in the angular power spectrum of the CMB anisotropy in 1999
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7. General Relativity — CMB

How is the Cosmic Microwave Background Radiation measured ?

• it is mainly a microwave radiation ⇒ radio antenna

⇒ directional measurements possible

• for higher accuracy in temperature differences

⇒ differential measurement

∗ comparing the radiation coming from two different directions

• WMAP (Wilkinson Microwave Anisotropy Probe) measured

– in 5 radio bands (23, 33, 41, 61, and 94 GHz with ∼ 22% bandwidth)

– 393,216 sky pixels with a solid angle of (0.77, 0.44, 0.26, 0.12, and 0.05) degree

∗ each sky pixel is measured 1000 to 5000 times per year

23 GHz 33 GHz 41 GHz 61 GHz 94 GHz
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7. General Relativity — CMB
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7. General Relativity — Analysing the CMB

WMAP gives the temperature T(θ, φ) of the CMB radiation

• the average temperature is

〈T〉 = 1
4π

∫
T(θ, φ) sin θ dθ dφ = 2.725 K

– the temperature fluctuation

δT

T
(θ, φ) =

T(θ, φ)− 〈T〉
〈T〉

=
∞∑
`=0

∑̀
m=−`

a`mY
m
` (θ, φ)

can be described by spherical harmonics

– the spherical harmonics are orthonormal basis functions

Y m
` (θ, φ) = NeimφPm

` (cos θ) with

∫
Y ∗m` Y m′

`′ sin θ dθ dφ = δ``′δ
mm′

that satisfy an addition theorem∑̀
m=−`

Y ∗m` (n̂1)Y m
` (n̂2) =

2`+ 1

4π
P`(cos θ12)

with Legendre polynomial P` and the angle cos θ12 = n̂1 · n̂2
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7. General Relativity — Analysing the CMB

multipoles of the CMB radiation

• the multipoles are given by

a`m =
∫
Y m∗` (θ, φ)δTT (θ, φ) sin θ dθ dφ

• the two point correlation is

C(θ12) = 〈δT
T

(n̂1)δT
T

(n̂2)〉

=
∑

`1,`2,m1,m2

a`1m1
a`2m2

∫
Y m1

`1
(n̂1)Y m2

`2
(n̂2) sin θ dθ dφ

– use Clebsch-Gordan coefficients to express the product of two Y s

Y m1

`1
(n̂1)Y m2

`2
(n̂2) = |`1m1〉 ⊗ |`2m2〉 = |`1m1`2m2〉

as a sum over single Y s

|(`1`2)`3m3〉 =
∑

m1,m2
|`1m1`2m2〉〈`1m1`2m2|(`1`2)`3m3〉

– since we integrate over the angles ⇒ `3 = m3 = 0

⇒ m1 and m2 have to sum up to zero and `1 = `2

⇒ only the ”diagonal” terms contribute:

C(θ12) = 〈(δT
T

)2〉
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7. General Relativity — Analysing the CMB

multipoles of the CMB radiation

• using the addition theorem ( and C` =
∑

m |a`m|2 ) we get

C(θ12) =
∑
`,m

a`ma
∗
`m

∫
Y m∗` (n̂1)Y m` (n̂2) sin θ dθ dφ

=
∑
`

C`
2`+ 1

4π
P`(cos θ12)

• we are looking for the autocorrelation of density fluctuations

– the angle between a direction and the same direction is zero

⇒ cos θ12 = 1 and P`(1) = 1

• when dealing with a large sum, one can estimate it with an integral

– in this case it is convenient to display the logarithm of `

C =
∞∑
`=0

C`
2`+ 1

4π
P`(1) ∼

∫
C`
`(2`+ 1)

4π
d(ln `)

– the interesting quantity is the integrand, more exactly C`
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7. General Relativity — Analysing the CMB

How can we predict the multipoles of the CMB radiation ?

• first we have to realize how the CMB is produced

– the radiation left over from the hot big bang

• how exactly?

– studying the distribution of photons

∗ coming from the pair annihilations and scatterings

∗ of the available particles during the expansion

⇒ coupled Einstein-Boltzmann equations

Dark Matter Neutrinos

Photons Metrik Neutrons

Electrons Protons

Compton
Scattering

Coulomb
Scattering

Nucleo-
synthesis

Nucleo-
synthesis
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7. General Relativity — fluctuation of densities

the Boltzman transport equation

d

dt
fi(~r, ~p, t) =

(
∂

∂t
+ ~v · ∇~r + ~F · ∇~p

)
fi(~r, ~p, t) =

(
∂f

∂t

)
coll

• describes the change in the phase space density of particle i:

– the flow ~v of particles changes their number in a region of space

– the force ~F acting on the particles changes their momentum

– the collisions (and decays) can change number and momentum

• how can we understand this equation in a covariant way?

– we have 3 + 1 and not only 3 dimensions . . .

⇒ field equations (equations of motion) constrain pµ:

– in flat space:

m2 = p2 ⇒ p0 = E =
√
m2 + ~p2
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7. General Relativity — fluctuation of densities

in curved space

• field equations (equations of motion)

– couple to the Einstein equations

• taking the Robertson-Walker metric as a background:

gµν ≈

 1
−a2

−a2
−a2


– with scalar metric perturbations

g00 = 1− 2Φ and gjk = −δjka2(1− 2Ψ)

∗ Φ corresponds to the Newtonian potential

∗ Ψ is the curvature perturbation

– one gets the constraint on the momentum

m2 = gµνp
µpν = E2(1− 2Φ)− ~p2a2(1− 2Ψ)

∗ that contains already a dependence on the curvature . . .
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7. General Relativity — fluctuation of densities

curvature is still given by Einsteins equations

• but now linearlized
– the scale factor a is determined without perturbations
– Φ and Ψ are determined by the first order in the perturbations

• the stress energy tensor is given by the particles

– weighted by their densities:

Tµν =
∑

i=all particles

niT
µν
i

– the density is given by the phase space density

ni = gi

∫
d3p

(2π)3fi(~r, ~p, t)

∗ with gi the number of degrees of freedom per particle

∗ which is also the zero-order ”moment” of the phase space density

– the velocity ~vi is then the first-order moment

~vi =
gi

ni

∫
d3p

(2π)3

~pi

Ei
fi(~r, ~p, t) =

〈
~pi

Ei

〉

Thomas Gajdosik – Concepts of Modern Cosmology 23.04.2012 11



7. General Relativity — fluctuation of densities

the integrated collision term C[f ] is given by

C[f ] =

∫
p1

(
∂f

∂t

)
coll

=

∫
p1

∫
p2

∫
p3

∫
p4

(2π)4δ4(pµ1 + pµ2 − p
µ
3 − p

µ
4)|M|2

×{f3f4[1± f1][1± f2]− f1f2[1± f3][1± f4]}

• with

∫
pi

:=

∫
d3pi

(2π)32Ei

– M describes the matrix element for the process 1 + 2 ⇀↽ 3 + 4

∗ to be calculated in Quantum Field Theory (next semester)

– ± describes Bose enhancement / Pauli blocking (+/−) for bosons / fermions

– for high temperatures these factors become less important

⇒ the distributions f = [e
E−µ
kT ∓ 1]−1 approach the Boltzmann distribution e−

E−µ
kT

∗ with the chemical potential µ, which is related to the density

ni

gi
=

∫
d3p

(2π)3
fi(~r, ~p, t) = eµ/kT

∫
d3p

(2π)3
e−E/kT ≈


(
mikT

2π

)3/2
e−mi/kT mi � kT

(kT )3

π2 mi � kT

• in equilibrium C[f ] = 0 = (e(µ1+µ2)/kT − e(µ3+µ4)/kT)
∫
|M|2

⇒ the chemical potentials have to be equal: µ1 + µ2 = µ3 + µ4
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7. General Relativity — fluctuation of densities

introducing the equilibrium density n
(0)
i = gi

∫
d3p

(2π)3e
−E/kT

• one can rewrite eµ/kT = ni/n
(0)
i

• and defined the thermally averaged cross section

〈vσ〉 :=
(2π)4

n(0)
1 n(0)

2

∫
p1

∫
p2

∫
p3

∫
p4

δ4(pµ1 + pµ2 − p
µ
3 − p

µ
4)|M|2e−(E1+E2)/kT

• then the Boltzmann equation for the number density becomes∫
p1

d
dtf1(~r, ~p, t) = d(a3n1)

a3 dt
= n

(0)
1 n

(0)
2 〈vσ〉

{
n3

n
(0)
3

n4

n
(0)
4

− n1

n
(0)
1

n2

n
(0)
2

}

• now d(a3n1)
a3 dt

∼ Hn1 if H � n2 〈vσ〉

⇒ the bracket has to become zero:
n3

n
(0)
3

n4

n
(0)
4

=
n1

n
(0)
1

n2

n
(0)
2

∗ chemical equilibrium . . . for heavy relics of the early universe

∗ nuclear statistical equilibrium . . . for Big Bang nucleosynthesis

∗ Saha equation . . . for recombination and ionization balance
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7. General Relativity — fluctuation of densities

applying this ansatz to

• dark matter particles and SM particles

⇒ dark matter abundance

∗ needs non-equilibrium solution for freeze-out

• protons, neutrons and nuclei

⇒ Big Bang nucleosynthesis

∗ needs non-equilibrium solution for neutron capture and decay

• electrons, positrons, photons, and neutrinos

⇒ CMB temperature versus neutrino temperature

• electrons, nuclei, and photons

⇒ recombination, CMB photon spectrum

∗ still have to calculate the density fluctuations

⇒ we have to solve the linearized Einstein-Boltzmann equations
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7. General Relativity — fluctuation of densities

linearized Einstein-Boltzmann equations

• introducing the metric perturbations Φ and Ψ

• introducing linearized density fluctuations for all particles:
– for the photons Θ(~x, p̂, t), indepentent of |~p|:

fγ(~x, ~p, t) =

[
exp

{
|~p|

T (t)[1 + Θ(~x, p̂, t)]

}
− 1

]−1

– for the other particles as a density contrast δi(~x, t) and a velocity ~vi(~x, t)

ni(~x, t) = n(0)
i (~x, t) [1 + δi(~x, t)] and ~vi(~x, t) =

〈
~pi

Ei

〉
∗ both, δi(~x, t) and ~vi(~x, t), are considered first order

∗ the zero-order velocity is in equilibrium ⇒ ~v(0)
i = 0

– minimal amount of relevant particles:

* photon * baryon ( includes e− ! ) * neutrino * dark matter

⇒ 10 coupled partial differential equations
– Fourier transform Θ(~x) =

∫
d3k

(2π)3e
i~k.~xΘ(~k) decouples the Fourier modes of Θγ

⇒ CMB power spectrum in the multipoles C` = 1
(−i)`

∫ 1
−1

d(p̂.k̂)
2
P`(p̂.k̂)Θ(~k)

– ~vi is already the ”dipole” of ni
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7. General Relativity — Big Bang nucleosynthesis (following Dodelson)

cosmic plasma at a temperature of 1 MeV (universe a few minutes old)

• in equilibrium: electrons, positrons, photons . . . relativistic

• decoupled neutrinos . . . still relativistic
– for eν ⇀↽ eν the coupling 〈vσ〉 < H

• coupled baryons: protons and neutrons . . . non-relativistic
– antibaryons have annihilated with the baryons
– the remaining baryons can come from Baryogenesis (introduced by Sakharov)
∗ the baryon asymmetry is estimated as (nb − nb̄)/s ≈ 10−10

∗ compatible with the ratio of baryons to photons today: nb/nγ ≈ 5.5 · 10−10

– these baryons can form nuclei . . . step by step

? coupled equations for all the elements until iron

• simplifications:
– with ∼ 1010 photons per baryon and a temperature kT ∼ 0.1 MeV
∗ a binding energy of deuterium (2H) of Eb = 2.2 MeV

∗ there are 1010 × e−2.2MeV/0.1MeV ∼ 2.2 photons with Eγ > Eb per nucleon

⇒ nearly all nuclei are disintegrated by high energy photons

– Li, Be, and B are less bound than He
⇒ nH and nHe are relevant, nLi only marginal
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7. General Relativity — Big Bang nucleosynthesis (following Dodelson)

cosmic plasma at a temperature of 0.1 MeV (universe a few minutes old)

• for the reaction p+ n ⇀↽ D + γ we have the equilibrium

nD
npnn

=
n(0)
D

n(0)
p n(0)

n

=
gD
∫

d3p
(2π)3e

−ED/kT

gp
∫

d3p
(2π)3e−Ep/kTgn

∫
d3p

(2π)3e−En/kT

≈
3
[
mDkT
(2π)

]3/2
e−

mD
kT

2
[
mpkT
(2π)

]3/2
e−

mp

kT 2
[
mnkT
(2π)

]3/2
e−

mn
kT

=
3

4

[
2πmD

mpmnkT

]3/2

e
mp+mn−mD

kT

– mp ' mn ' mD/2 ' 1 GeV, but mp +mn −mD = Eb ∼ 2.2 MeV

– at kT ∼ 1 MeV the densities for p and n are similar to nb

nD

nb
=

nD
npnn

nn ≈
3

4

[
2πmD

mpmnkT

]3/2

e
Eb
kT

nb

nγ
nγ ≈

3

4

[
4π

mpkT

]3/2

e
Eb
kT 5.5 · 10−10 (kT )3

π2

≈ 1.86 · 10−9

[
kT

mp

]3/2

e
Eb
kT

– which becomes smaller than 1 for kT > 63.6 keV

⇒ nD is at higher kT exponentially suppressed: nD
nb

∣∣∣
1 MeV

≈ 5.3 · 10−13
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7. General Relativity — Big Bang nucleosynthesis (following Dodelson)

cosmic plasma at a temperature of 0.1 MeV (universe a few minutes old)

• the neutron-proton ratio comes mainly from p+ e ⇀↽ n+ ν

– for equilibrium we have n
(0)
p /n

(0)
n = e(mn−mp)/kT = eQ/kT

– the electrons are still in thermal equilibrium: ne = n
(0)
e

– the neutrinos decouple with this reaction completely

– starting with the Boltzman equation

d(a3nn)
a3 dt

= n
(0)
n n

(0)
ν 〈vσ〉

{
np

n
(0)
p

− nn

n
(0)
n

}
= n

(0)
ν 〈vσ〉

{
npe
−Q/kT − nn

}
– λnp = n

(0)
ν 〈vσ〉 describes the rate for neutron-proton conversion

– the neutron fraction Xn = nn
np+nn

”freezes” below kT ∼ 0.5 MeV

– nucleosynthesis starts at kT = 70 keV with Xn ≈ 0.11

⇒ He mass ratio ∼ 4 ·Xn/2 ≈ 22%

∗ all neutrons are bound in He, since Eb(4He) ∼ 28 MeV� Eb(2D) ∼ 2.2 MeV
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7. General Relativity — Big Bang nucleosynthesis (following Dodelson)

cosmic plasma at a temperature < 0.1 MeV (universe a few minutes old)

• only at kT = 70 keV nucleosynthesis really starts

– nearly all D is processed further to 4He

– the left over D depends on the baryon density nb
⇒ measurement of the ratio D/H ∼ 3 · 10−5 determines Ωb ∼ 0.04

– the produced 7Li gives also tight bounds
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7. General Relativity — Recombination (following Dodelson)

cosmic plasma at a temperature < 14 eV

• Recombination goes by the process p+ e ⇀↽ H + γ

– for equilibrium we have
nenp
nH

=
n

(0)
e n

(0)
p

n
(0)
H

– with the free electron fraction Xe = ne
ne+nH

=
np

np+nH
we get

X2
e

1−Xe
=

1

ne + nH

(
mekT

2π

)3/2
e(mH−mp−me)/kT

– for kT ∼ ε0 = mp +me −mH all Hydrogen is ionized

– recombination has to end in an excited state

∗ a photon from ground state recombination has Eγ ≥ ε0
⇒ instant reionization

– solving the equation for the electron fraction

⇒ determines the decoupling temperature (or redshift ∼ 1000)

⇒ CMB pattern: C`-distribution, CMB polarization
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7. General Relativity — dark matter

dark matter balance

• for simplicity we take a single particle X

– with a (very) weak coupling X +X ⇀↽ Y + Z

• the Standard Model particles Y and Z are in thermal equilibrium

⇒ nY,Z = n
(0)
Y,Z and the number density equation becomes

d(a3nX)
a3 dt

= 〈vσ〉
{

(n(0)
X )2 − (nX)2

}
– eventually we want to express the density in terms of the temperature kT

∗ the temperature scales inverse to the scale factor: T ∼ a−1

∗ in the radiation dominated time H(a) = H(a1)(a1/a)2

∗ with x = mXa we have dx
dt

= mȧ = mHa = xHm(x
m
/x)2 = Hm/x

∗ using Y := a3nX and d
dt

= dx
dt

d
dx

= Hm

x
d
dx

we get

Hm
x
dY
dx =

m3
X
x3 〈vσ〉

(
Y 2

EQ
− Y 2

)
or dY

dx = − λ
x2

(
Y 2 − Y 2

EQ

)
– Riccati equation with λ = m3

X〈vσ〉/Hm
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7. General Relativity — dark matter

dark matter balance

• for estimating λ = m3
X〈vσ〉/Hm we need

– the mass mX

– the cross section σX+X→Y+Z

– the Hubble parameter Hm at the mass scale mX

• for X from Supersymmetry (SUSY) we know the cross section σ

– we get limits on the mass mX

– v and Hm are given by the Einstein-Boltzmann equations

⇒ for the lightest supersymmetric particle (LSP) 6= gravitino

ΩX ∼ 0.3
(xf

10

)(
g∗(mX)

100

)1/2 10−39cm2

〈vσ〉

– the gravitino couples as
E2
X

M2
P

∼ (103 GeV)2

(1019 GeV)2 ∼ 10−32 � αem

⇒ it is only at the Plank epoch in thermal equilibrium

∗ all estimates for ΩX have to be reassessed
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