

SPECTRAL PROPERTIES OF SPIRO [CHROMENE-2,2'-INDOLE]-BASED PHOTOCHROMIC MOLECULES

Stepas Toliautas, Svetlana Malickaja, Juozas Sulskus, Mikas Vengris, Leonas Valkunas

Vilnius University, Vilnius, Lithuania stepas.toliautas@ff.vu.lt

Object: spirochromenes

- Class of organic light-driven molecular switches /
- Exhibit fast, reversible and stable **bond cleavage** processes^[1] /
- Studied group has **an outlier** (different absorption, 20× lifetime) /

Goal

- Compare properties of the compounds and explain the outlier / Tools
- Potential energy surface (PES) model for ground and excited / electronic states (successful for similar compounds^[2]) ✓ Including excited-to-ground-state *conic intersection* search
- Ground-state and time-dependent **DFT** (basis: *cc-pVDZ*) /

Experiments: group of 5 compounds ^[1]							$H_3C CH_3$	
	Compound (closed / open)	R	R'	Closed : absorption (nm)	intensity	Open : absorption (nm)	lifetime (ns)	R $NO_{-}NO_{2}$
	9c / 10c	CH ₃	CH ₃	206 245 313	46,3 15,7 13,6	450	22	9a-e H_3C CH_3 MO_2
	9e / 10e	CH ₂ CH ₃	NO ₂	~230 ~330 380	14,1 14,6 22,1	420	484	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
								10а-е

Study: 2 compounds

9c: methylindole (MI) + nitroisochroman (NC), 9e: nitroindole (NI) + nitroisochroman

✓ B3LYP, CAM-B3LYP, LC-BLYP, PBE0 functionals ✓ *PCM* solvent model for acetonitrile ✓ *Gaussian09*^[3] and *GAMESS*^[4] packages

9 and 9^* – closed ring conformers (cf. ^[5]), $9e^{\pm}$ – ethyl group (R) conformers TS – transition state (barrier), CI – conic intersection, 10° – ground-state intermediate

References

Conclusions

- Presence of the NO₂ group yields a second chromophore in the molecular system \checkmark
- Single change in *absorption* properties leads to the different *relaxation* profiles /
- This phenomenon could be exploited while designing molecular devices /

[1] M. Dagilienė *et al.*, *Tetrahedron* **69** (2013) 9309. [2] S. Toliautas *et al.*, *Chem. Phys.* **404** (2012) 64. [3] Gaussian 09, Rev. D.01, Gaussian, Inc., Wallingford CT (2013). [4] M. W. Schmidt et al., J. Comput. Chem. 14 (1993) 1347. [5] S. Prager *et al.*, *J. Phys. Chem. A* **118** (2014) 1339.