

Bacteriorhodopsin, summary of:

• Widely investigated:

- Nature 34 papers (1990 2012)
- Science 43 papers(1990 2012)
- PNAS -173 papers (1990 2012)

(Source: Web of science)

Function:

- Light drive proton pump that pushes protons across the membrane against the direction of the electric field.
- Found in purple membranes of Halobacterium salinarium, op to 90% of membrane mass.

Structure: membrane protein

- Structure resolved to 1.65 Å.
- 7 alpha helices containing a retinal chromophore

Advantages:

- Chemically stable and photostable
- Well known structure, easy to crystalize
- Bacteria grow a lot of it
- Fast, photoactive and therefore interesting
- Can be used as biomolecular tool or a model system for photoreactions

Isomerization of Retinal $\begin{aligned} & + (++) + (++) + (+)$

No detailed information about the structural changes of the molecule

....solution: go infrared! ©

Vibrational features of *cis* appear within < 1ps!

The IR spectrum of *cis* known from FTIR measurements forms in <1 ps.

First evidence that it is isomerization that causes fluorescence to disappear so fast.

Herbst et al. Science, 2002

What is the function of the protein?...

...Solution: go UV! 🔘

Protein role in BR isomerization?...

Schenkl et al. Science 2005

Protein role in BR isomerization?...

کلسن UV absorbance spectra of the three aromatic amino acids phenylalanine, tryptophan, and tyrosine

Protein reacting to electric field of retinal

Adding a twist...

Advanced ultrafast spectroscopies

Twist #1:

Multi-pulse transient absorption

Near-IR transient Absorption spectra of peridinin

Twist #2: Femtosecond stimulated Raman spectroscopy (FSRS)

Twist #2: Femtosecond stimulated Raman spectroscopy (FSRS)

- Playing around with electronic states is all good and well, however, the underlying structural changes are mostly guesswork.
- Raman spectroscopy is measuring vibrational frequencies, therefore it is directly sensitive to conformational changes in molecules.
- Raman spectroscopy is not prone to problems with midIR (bad detectors, ambient air absorption, etc.)
- However, to resolve narrow vibrational lines require narrow Raman Pump spectra (poor time resolution ~3 ps).
- Enter FSRS.

Twist #2: Femtosecond stimulated Raman spectroscopy (FSRS)

Pump-probe with a pair of probe pulses: one long (for narrow spectrum and good spectral resolution), and one short (for femtosecond time resolution).

(spoiler alert: it's non-existent)

Indolo-benzoxazines: new generation photochromic switches

Tomasulo, M.; Sortino, S.; Raymo, F. i. M. *Organic Letters* **2005**, *7*, 1109. Tomasulo, M.; Sortino, S.; White, A. J. P.; Raymo, F. M. *Journal of Organic Chemistry* **2005**, *70*, 8180. and at least 10 more papers on the same subject

Shachkus, A. A.; Degutis, J. A.; Urbonavichyus, A. G. *Khim. Geterotsikl. Soed.* **1989**, 5, 672.

- Structure similar to spiropyrans;
- No triplet state stable in aerobic conditions
- Fast thermal recyclization (25 ns)

Photoinduced absorption spectrum similar to that induced by the addition of strong base (Bu₄NOH)

Photochromism of indolo-benzoxazines

Prevailing view: UV light induces bond cleavage, and produces a p-nitrophenolate chromophore responsible for the visible absorption.

Transient grating

• Combined with temperature dependence, can reveal the difusion coeffcients and recombination rates and modes in semiconductors.

More general case: three pulse echo

Three pulse echo

- The "writing" pulses are separated in time, and their spectra are as wide as the absorption band of the sample. Shifted pulses result in frequency beating or *frequency grating*.
- The further the pulses the finer the grating is.
- When too fine, it is very sensitive to spectral diffusion and signal quickly disappears (or, if inhomogeneous broadening is non-existent, the grating is not created to begin with;
- When too coarse, diffraction is weak
- Therefore, signal maximum is observed when the writing pulses are *SLIGHTLY* separated in time.

Problems

- After all this work, just one decaying curve is measured. Cannot produce too much science with just one curve ^(C).
- Data interpretation requires the microscopic model (hamiltonian) of spectral diffusion.

2D electronic spectroscopy

- What if we measure not just the intensity of the photon echo, but the time dependence of the radiated EM field?
- We get 2D NMR analogue in optics, called two dimensional electronic spectroscopy (2DES).

2D spectroscopy: plethora of pulses

FIG 1. Definition of time variables. Time zero is defined at the center of the third excitation pulse. The first two excitation pulses arrive at times $r_1 < 0$ and $r_2 < 0$, sprated by the coherence time r which is positive for the shown pulse order, and negative if pulse 2 arrives first. The population time T > 0 is the separation between the second and third excitation pulse at $r_2 = 0$. Non-linear third-order polarization at time t is induced by field interactions at time $t_1 + r_1$, $r_2 + r_2$, $r_1 + r_2$, $r_2 + r_3$, $r_4 + r_4$, making the maximum of the excitation pulse envelopes. This leads to a free-induction decay and for inhomogeneously broadened systems, an additional photon echo signal is observed with an average arrival time t_1 that is similar to the coherence tume. The local oscillator (LO) used for heterodyned signal detection always arrive first at time t_4 .

Experimental implementation

FIG. 2: Experimental setup i two parates cosmis or tenuose-con user paises in the visible spectral region are focused by a lens onto a graning The first diffraction orders: emerge with high efficiency and provide the excitation publics 1–3 as well as a local oscillator (4=LQ) for heterodyn-effected three-public photom-echo electronic spectroscopy. A spherical mirror (27 = 50 cm) creates an image of the public overlap in the sample cell via a plane folding mirror. The required tume delays are provided with subwavelength precision by motor-controlled movable glass wedges. Full characterization of the nonlinear phase-matched signal field is carried out by spectral interferometry with the attenuated LO. An automatted beam shutter is used for subtraction of scattering contributions. This diffractive-optics based setup is sinkerrely phase-stabilized.

2D Electronic spectroscopy

- Can distinguish homogeneous and inhomogeneous broadening;
- Time resolution is not limited by spectral resolution on excitation scale;
- It's like many pump-probe experiments in one go!

2D electronic spectroscopy

My never published data from 2000

Coherent response of nucleic subsystem to the excitation.

- Good old Rps. Acidophila;
- Pump-probe at 77K;

• Purpose: observe how the nuclei of BChI molecules respond to the electronic excitation.

Instead of conclusions...

Time-resolved spectroscopy comes in a lot of different guises and is used in different fields for understanding the quantum-mechanical functioning of light sensitive matter.

Used wisely, it is a powerful box of tools for investigating nature.

Used bravely, it gets you papers in Nature (sometimes even despite the science being wrong).