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Abstract
This paper describes the dynamics of solitonic pulse propagation in a closed loop quantum
system comprised of five atomic energy levels. In this system four higher energy levels with four
control laser fields form a closed ring-shape loop which is coherently coupled to a ground level
state by a tunable probe laser field. Although the propagation of an intense probe pulse suffers
losses and broadening in linear regime, there exist specific conditions where the probe pulse is
found to become robust during its propagation. We attribute this regime to the formation of an
optical soliton with a slow group velocity because of the balance between the dispersion and
Kerr optical nonlinearity. Results obtained are based on the theoretical model using the coupled
Maxwell–Bloch equations for the nonlinear propagation.

Keywords: electromagnetically induced transparency, slow light optical soliton, Kerr
nonlinearity

(Some figures may appear in colour only in the online journal)

1. Introduction

The propagation of optical pulses through nonlinear media
coupled coherently to one or several laser fields has been an
active subject of research in various branches of physics
[1–7], ranging from optical communications [8] to quantum
nonlinear optics [3, 9]. The pioneering studies of the non-
linear interactions in the atomic media have opened up many
new aspects in wave propagation such as slow light [10–12],
coherent control of absorption and dispersion [13, 14], and
large enhancement of optical nonlinearities [15–19]. In
addition, a range of other remarkable optical phenomena
have been investigated, such as optical bistability [20–23],
quantum entanglement [24–29], storage and retrieval of light
pulses [30–35], four-wave mixing [36–38], giant Kerr non-
linearity [39–43], stable optical solitons [44, 45] and so on
[46–50].

Due to the nonlinearity of the medium the propagation of
a light pulse may lead to a significant change in its temporal
and spatial profile. However, under specific circumstances,
when the balance between linear and nonlinear effects takes
place, the shape of the optical pulse can be preserved over the

long propagation distances. A special category of stable
shape-preserving waves propagating through the nonlinear
media (called solitons) can be formed as a result of balance
between Kerr nonlinearity and dispersion [51]. Over the
recent years, the subject of solitons has been investigated in
various types of matter including cold-atoms [48, 52, 53],
Bose–Einstein condensates [54, 55], and other nonlinear
media [56].

Following the report of ultraslow optical solitons in a
highly resonant atomic medium by Wu and Deng [44], these
type of wave packets have recently attracted much attention
[32, 45, 57–67]. For instance, ultraslow optical solitons, their
storage and retrieval were reported in ultracold three-level
Rydberg atoms [32]. The dynamics of ultraslow optical
soliton in a cold, highly resonant three-state atomic system
under Raman excitation has been investigated by Huang and
collaborators [61]. Hang et al showed that a large enhance-
ment of Kerr nonlinearity can be realized due to the appear-
ance of a gain induced by the quantum interference in a
four-level atomic system; hence a stable long distance pro-
pagation of optical solitons can be obtained with superluminal
propagating velocity [66]. Due to the high potential of
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shape-preserving optical packets in the applications like
optical information processing, more experimental studies are
expected to be carried out in the near future.

So far, most of the previous studies have addressed the
soliton formation using the basic atomic configurations
comprising few atomic energy levels. The three basic con-
figurations are Λ−, V−, and the ladder-type atom-light cou-
pling schemes [12, 17]. However, in order to achieve greater
control and flexibility over the distortionless pulse propaga-
tion, novel practical schemes are required exhibiting much
richer quantum interference and coherence mechanisms.
Indeed, each extra atomic level impels new physical features
for a particular multilevel atomic system. For instance, four-
level N-type [6] and tripod [68, 69] systems have already
manifested a fascinating usage in the demonstration of slow
light as well as shape-preserving optical pulses [44]. More
complicated level structures suggest even more charming
effects because of the quantum interference and coherence
induced by the extra atomic levels and the coupling light
fields [11, 14, 59, 63]. In this regard, five level systems look
quite promising due to both the increase in flexibility yet
maintaining the reasonable complexity for the theoretical
description.

To this end, a five-level toy-model atom-light coupling
scheme is proposed here in which four control laser com-
ponents couple a pair of internal states to another pair of
states in all possible ways to establish a closed-loop setup of
the atom-light interaction. A probe laser field then couples
the ring-coupling structure to a ground level state. Such a
scheme was first proposed by Kobrak and Rice [70] for
establishing a complete population transfer [71] to a single
target of a degenerate pair of states. Subsequently it has been
employed to show the advantages of the measurement in
coherent control of atomic or molecular processes [72].
Moreover, by using intense laser fields a new quantum
measurement has been introduced in the Kobrak–Rice five-
level system [73]. The Kerr nonlinearity [43] and atom
localization [74] behaviors of such a configuration have
been also investigated.

In our paper, we show that the nonlinear origin of the
coupled Maxwell–Bloch equations describing the interaction
of radiation field with such an atomic medium leads to sig-
nificant effects on the behavior of pulse propagation. When
the probe pulse is weak, it propagates without any significant
loss and pulse shape distortion through the medium. In con-
trast, intense probe pulse intensity results in remarkable
absorption of the probe pulse intensity through the medium
accompanied by a pulse broadening after a very short pro-
pagation distance. Analytical solutions are given to elucidate
such a behavior. Following this theoretical description, we
investigate a different regime where a shape-preserving
probe pulse propagation (soliton pulse) can be achieved. The
corresponding nonlinear wave equation of the pulse propa-
gation and the possible practical implementation of such a
regime are discussed.

2. Model and dynamics of light propagation

Let us consider the propagation of a probe pulse by the
electric field of the form


= +w-( ) ( ) ( )( )E z t e E z t, , e c.c .. 1p p p

k z ti p p

The total electric field of control laser fields is defined as


= +

+ + +

w w
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which acts as control on the propagation of probe pulse. Here,
ei and =( )E i p, 1, 2, 3, 4i are the unit polarization vector as
well as the envelope of the probe and control fields, respec-
tively. The wave number of the probe and control field is
denoted by w= /k c.i i

We consider a level structure as illustrated in figure 1.
The system consists of the excited state ñ∣1 , two non-
degenerate metastable lower states ñ∣3 , ñ∣5 as well as two
intermediate degenerate states ñ∣4 and ñ∣2 . Four strong laser
driving components couple a pair of atomic internal states
ñ∣1 and ñ∣3 to another pair of states ñ∣2 and ñ∣4 in all possible

paths making a ring-coupling structure. Such a level
scheme is equivalent to a consequently coupled cyclic
chain of four states ñ∣1 , ñ∣2 , ñ∣3 , and ñ∣4 resulting in a
closed-loop diamond-shape subsystem. Four Rabi-fre-
quencies W = ( ) /e d E. ,21 1 12 1 W = ( ) /e d E. ,23 2 32 2 W =41

( ) /e d E. ,3 14 3 and W = ( ) /e d E.43 4 34 4 (dij is the electric
dipole matrix element corresponding to the transition
ñ « ñ∣ ∣i j ) are introduced to the transitions ñ «∣2
ñ ñ « ñ ñ « ñ∣ ∣ ∣ ∣ ∣1 , 2 3 , 1 4 , and ñ « ñ∣ ∣3 4 , respectively. An

additional tunable coherent probe field with Rabi-fre-
quency W = ( ) /e d E.p p p35 couples the diamond-shape
subsystem to a ground (or metastable) state ñ∣5 through the
dipole-allowed optical transition ñ « ñ∣ ∣3 5 .

Figure 1. Schematic diagram of the five-level quantum system.
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The total Hamiltonian of the system HTS can be written as

= - W ñá + W ñ á + W ñá

+ W ñá + W ñá +

f( ∣ ∣ ∣ ∣ ∣ ∣
∣ ∣ ∣ ∣) ( )

H 3 5 1 e 4 2 1

3 2 4 3 h.c., 3
pTS 41

i
21

32 43

where f f f f f= + + +41 43 32 21 denotes the relative phase
accumulated after completing a ring, while fij describes the
initial phase of each laser field.

The atomic motion is modeled by the density operator


r r= - + r [ ] ( )H L

i
, , 4TS

where rL stands for the damping operator represented the
decay of the system. Substituting equation (3) into
equation (4), the optical Bloch equations for density matrix
elements describing the evolution of the system are obtained
and are presented in appendix A.

Maxwell equation controls the evolution of the electric
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with N being the atomic density.
Working in the slowly varying envelope approximation,

one can obtain the temporal and spatial evolution of the probe
pulse as

r
¶W

¶
+

¶W

¶
= ( )

z c t
qi , 7

p p
35

where w= ∣ ∣ /q N d c2 p 35
2 is the propagation coupling constant.

The solution of Maxwell–Bloch equations (4) and (7) describes
the propagation dynamics of probe pulse inside the medium.

3. Linear pulse propagation

In the following, we discuss the linear evolution of probe field
propagating through the five-level atomic system. The solu-
tion of the nonlinearity coupled equations (4) and (7) enables
us to model also the nonlinear propagation of the probe pulse
and provide a rather precise picture of interplay between the
dispersion and nonlinearities inside such a five-level system
which will be studied in next section. However, before sol-
ving these equations for the nonlinear regime we first examine
the linear behavior of the system by presenting some num-
erical results. This may give some effective hints for the study
of nonlinear pulse propagation discussed later. In doing so,
we assume that the atom is initially in ground state ñ∣5 , and
that the Rabi-frequency of the probe pulse is small enough
(compared to the Raby-frequencies of control fields) so that
we can neglect the depletion of the ground level. Therefore,
we can apply the perturbation expansion r r= +( )

ij ij
0

r r+ +( ) ( ) ...ij ij
1 2 where rij

m is the mth-order of rij in terms of

probe pulse W .p The zeroth order solution is r =( ) 155
0 while

other elements being zero. Keeping up to the first order of W ,p

the set of consequential equations from Maxwell–Bloch
equations (4) and (7) can be reduced under linearization to the
form
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Performing the time Fourier transform of equations (8)
and (9), we get
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where w w g g= + D + D + D + +( ) [ ( ) ( )]G i ,p1 14 43 14 12
w w g= + D - D + D +( ) [ ( ) ]G i ,p2 23 23 w w= +( ) (G3

g + D )i ,p35 and w w g= - D + D -( ) [ ( ) ]G i .p4 43 43 Note
thatvp and

( )Yij
1 represent the Fourier transform ofWp and r( ),ij

1

respectively, while w is the Fourier transform variable.
Equations (10a)–(10d) can be solved analytically,

yielding
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A solution of equation (11) is plane wave of the form

v w v w= k w( ) ( ) ( )( )z, 0, e , 15p p
zi

where

k w
w w

w
= -( ) ( )

( )
( )

c
q

L

L
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describes the linear dispersion relation of the system.
Expanding k w( ) in power series around the center frequency
of the probe pulse and taking the first three terms, we get

k w k k w k w= + +( ) ( ), 170 1 2
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where the detailed expressions for Q, B, S and R are given in
appendix B, while L and L1 can be obtained by substituting
w = 0 into equations (13a) and (14) for w( )L and w( )L ,1

respectively. In equation (17), k
k w
w

=
¶
¶

=w=
( ) ∣ ( )i 0, 1, 2i

2

2 0

gives the dispersion coefficients in different orders. In gen-
eral, for k a= F + /i 20 the real part corresponds to the
phase shift F per unit length, while the imaginary part
describes the absorption a of the probe pulse. The group
velocity is k= /v 1 ,g 1 and the nonlinear term k2 is associated
with group velocity dispersion and leads to pulse distortion
during the propagation.

4. Influence of Kerr nonlinearity

The linear response of the atomic medium is now obtained
through neglecting higher-order terms of the probe field and
under the weak-field approximation. However, it is known
that for the intense probe pulses the nonlinear factors due to
the inherent Kerr nonlinearity of the system must be also
taken into account. It is due to the significant impact of the
nonlinearity of the system in high powers of probe pulse
which may lead to probe attenuation and distortion. To have a
better understanding of this, the propagation problem is
simulated by solving simultaneously the coupled Maxwell–
Bloch equations for the five-level closed loop system. We
work in the retarded frame with the traveling coordinates
¢ = - ¢ =/t t z c z z, . This choice of coordinates reduces the
partial differential equation (7) with respect to the

independent variable ¢z

r
¶W

¶ ¢
= ( )

z
qi . 19

p
35

We assume the propagation of a Gaussian probe pulse

W ¢ = W t- ¢( ) ( )( )/t0, e , 20p p
t0 0

2

where t0 is the temporal width of the input pulse (its time
duration).

In order to investigate the impact of nonlinearities on
pulse propagation stemming from strong power of probe
pulse, we assume the four control fields as continuous waves
and all the Rabi-frequencies are the same

W = W = W = W = W ( ). 2143 23 41 21

In what follows, we present our numerical results.
Without loss of generality, we take g g g= = =43 23 12
g g g= =14 35 [74]. Figure 2 shows the resulting propagation
dynamics of a weak Gaussian probe pulse through the five-
level quantum system for different values of relative phase f
while gW = 0.01 .p

0 It can be seen from figures 2(a)–(c) that the
relative phasef can seriously affect the absorption of the pulse.
The case with f = 0 (figure 2(a)) gives rise to the loss of the
weak probe pulse intensity through the medium after almost a
short propagation distance. In contrast and as can be observed
from figures 2(b) and (c), when f p= /2 and f p= the weak
probe pulse is transmitted through the phase-sensitive system
almost without any substantial absorption and broadening
while it can still keep its shape for quite a long propagation
distance.

Such a phase-sensitive behavior can be elucidated
through the following analytical model.

Without the ground state ñ∣5 in equation (3), the Hamil-
tonian of the atom-light interaction for the remaining atomic
four-level closed-loop level structure of the ring-coupling
subsystem HSS simplifies to  =( )1 :

å= -W ñ á + + ñá +f

=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥∣ ∣ ∣ ∣ ( )H j j1 e 4 1 h.c . 22

j
SS

i

1

3

In writing equation (22) the Rabi-frequencies are chosen
according to equation (21).

Following [43, 74], the eigenenergies for the Hamilto-
nian equation (22) can be expressed as

l= - W ( )E 2 cos , 23n n

with l
p p f

= - -
n

2 2 4
,n where =( )n 1, 2, 3, 4 .

Let us now inspect the eigenenergies in the limiting cases
depending on the relative phase f.

(i) The case where f = 0. In this situation, equation (23)
reduces to

p
= - W ⎜ ⎟⎛

⎝
⎞
⎠ ( )E

n
2 sin

2
. 24n

Equation (24) results in three eigenenergies
= - = WE E 2 ,3 1 and = =E E 0.2 4 In this case the
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lowest energy eigenstate corresponding to = - WE 21 is
not degenerate.

(ii) The case where f p= /2. If f p= /2, then

p p
= - W -⎜ ⎟⎛

⎝
⎞
⎠ ( )E

n
2 sin

2 8
, 25n

resulting in
p

= - = WE E 4 cos
8

,3 1 and = - =E E4 2

p
W4 sin

8
.

(iii) The case where f p= . In this case, equation (23)
changes to

p p
= - W -⎜ ⎟⎛

⎝
⎞
⎠ ( )E

n
2 sin

2 4
, 26n

giving rise to two pairs of degenerate eigenenergies
= = - WE E 21 2 and = = WE E 23 4 separated by the

energy W2 2 .
Figure 3 illustrates the density plot of probe absorption

against the probe detuning Dp and the relative phase f. One
can see that three, four and two absorption peaks appear for
f = 0, f p= /2, and f p= , respectively. Obviously, the
medium experiences an absorption peak at zero probe
detuning for f = 0 which may result in pulse attenuation
during its propagation, as was observed in figure 2(a).
However, for cases f p= /2 and f p= , the medium is
transparent atD = 0,p leading to a distortionless transmission
of light pulse (see also figures 2(b) and (c)) [43]. This indi-
cates an optical switching between absorption and transpar-
ency through relative phase of applied fields [43].

Now, we investigate the propagation of probe pulses with
higher intensities. This is the situation where the effect of
nonlinearities becomes important. The propagation dynamics
of an intense probe pulse with gW =p

0 is plotted in figure 4
for different values of f for the same parameters as used in
figure 2. Clearly, the intense probe pulse is strongly atte-
nuated by the medium even more rapidly with respect to
figure 2(a) (figure 4(a)). The interesting results are obtained
for the cases f p= /2 (figure 4(b)) and f p= (figure 4(c)).

Figure 2. Propagation dynamics of a Gaussian probe pulse with gW = 0.01p
0 and (a) f = 0, (b) f p= /2, (c) f p= . The other parameters

are g g g g g g= = = = = ,14 12 23 43 35 D = D = D = D = D = D = 0,p12 14 23 43 gW = W = W = W = W = 1043 23 41 21 and t g= /60 .0

Figure 3. Density plot of probe absorption against Dp and f for the
same parameters as figure 2.
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Evidently, in both situations the intense probe pulse suffers
strong absorption and broadening during the propagating
through the closed-loop medium.

In a linear regime and for a Gaussian shape incoming probe
pulse of the form W = W t-( ) ( )/t0, ep p

t0 0
2
with a duration t ,0 the

time evolution of probe pulse after carrying out an inverse

Fourier transform is k
k
t

W =
W

-
-⎡

⎣⎢
⎤
⎦⎥( ) ( )

z t
x

z
t z

x
, exp ip

p
0

0
1

2

0
2

where = -x u ui ,1 2 k t= + ( )/u z1 4 Re1 2 0
2 and =u2

k t( )/z4 Im .2 0
2 Therefore, even in absence of the absorption

effects in the medium ( k =( )Im 0i ) the dispersion effects take
part to the spreading and attenuation of the pulse during propa-
gation. This is a key result indicating that at higher intensities the
dispersion effects may contribute in pulse distortion and
attenuation. We aim at obtaining the shape-preserving and loss-
less optical pulses propagating inside the medium. In order to
compensate the dispersion effects, in next section we include the
Kerr nonlinearity of probe pulse into the pulse propagation which
results in robust and shape preserving optical pulses.

5. Soliton regime

In what follows we turn to study the nonlinear evolution of
the probe pulse through the phase sensitive atomic structure.
In order to investigate the nonlinear propagation of light, one
needs to evaluate the nonlinear effects induced by Kerr
nonlinearity, which is due to nonlinear terms up to the third

order of W .p According to [44], we take a trial function

v w v w= k( ) ˜ ( ) ( )z z, , e . 27p p
zi 0

Substituting equation (27) into wave equation (11) and using
equation (17) we obtain

v
k w k w v

¶

¶
= +( ) ( )

z
i , 28

p
p1 2

2

where we only kept terms up to the order w2 in expanding the
dispersion relation k w( ). Note that here we have replaced vp

with ṽp for the sake of convenience. Since we are interested
in nonlinear evolution of light, we must take into account the
nonlinear polarization of the probe pulse by the form
hr hr c +( )i i i35 35

1
NL where the nonlinear term is

åc r r= - k-

=

( )( ) ( )qe , 29z

i
iNL

i
35
1

1

4

5
10

and r( )
i5
1 can be obtained by taking w = 0 in equations (12a)–

(12d). Reminding k = -vg1
1 and after carrying out inverse

transform, equation (28) takes the form

k c-
¶
¶

+
¶
¶

W +
¶
¶

W =-⎡
⎣⎢

⎤
⎦⎥ ( )

z
v

t t
i . 30g p p

1
2

2

2 NL

Defining new coordinates z = z and h = - /t z v ,g we arrive
at the nonlinear wave function of slowly varying envelope Wp

as

z
k

h
¶
¶

W -
¶
¶

W = W Waz- ∣ ∣ ( )Ni e , 31p p p p2

2

2
2

with a k= ( )2Im 0 being the absorption coefficient. The
nonlinear coefficient N of probe pulse proportional to

Figure 4. Propagation dynamics of a Gaussian probe pulse with gW =p
0 and (a) f = 0, (b) f p= /2, (c) f p= . The other parameters are the

same as figure 2.
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nonlinear Kerr susceptibility is defined by

=
-

- W - W

´ Y + Y + Y + Y
∣ ∣

( )

( ) ( )

N
q

L L
G G G G G

, 32

2 1 2 4 4 21
2

2 41
2

1 2 3 4

where the coefficients Y Y Y, ,1 2 3 and Y4 are presented in
appendix C.

Equation (31) has generally complex coefficients. How-
ever, the absorption coefficient a may be very small for some
specific parametric values, i.e. a » 0, and the real parts of the
complex coefficients may become much larger than the
corresponding imaginary parts

k k k k= + » ( )i , 33R I R2 2 2 2

and

= + » ( )N N N Ni . 34R I R

In this case, we get

z
k

h
¶
¶

W -
¶
¶

W = W W∣ ∣ ( )Ni . 35p R p R p p2

2

2
2

Equation (35) is the well-known nonlinear Schrodinger
equation (NSE) which governs the nonlinear pulse propaga-
tion, which is well studied in fiber optics [75]. Similar
equation was deduced, for example, in [44, 45] in cold three-
and four- state atomic structures. Although the five-level
atomic structure consider in this work and the three- and four-
level schemes in [44, 45] reduce to the same NSE, however,
our proposed scheme has some advantages over the pre-
viously studied configurations. A main advantage of our
proposed model is the phase sensitivity of our proposed
scheme, as discussed in details in section 4. In addition, as a
result of the quantum interference and coherence induced by
the extra atomic levels and the coupling light fields, such a
five-level scheme can result in larger magnitude of the Kerr
nonlinearity with respect to the three and four-level counter-
parts [43].

Depending on the sign of k N ,R R2 equation (35) allows
bright and dark soliton solutions. A bright soliton is obtained
when k NR R2 is positive

h t zW = W - W W[ ] ( ∣ ∣ ) ( )/ Nsech exp i , 36p p R p p0
2

while a dark soliton is expected when k NR R2 is negative

h t zW = W - W W[ ] ( ∣ ∣ ) ( )/ Ntanh exp i . 37p p R p p0
2

It should be pointed out that t kW = ( )( )/ / /N1p R R0 2
1 2

denotes the typical Rabi-frequency of the probe field and t is
the typical pulse duration.

Next we give a numerical example for the formation of
the shape preserving optical solitons. The proposed level
structure can be experimentally implemented using the Rb87

atoms. The ground level ñ∣5 can be assigned to the state /S5 .1 2

The level ñ∣3 can be attributed to the /P5 .3 2 Two intermediate
levels ñ∣2 and ñ∣4 can be assigned to either the fine structure of
the /D4 3 2 or the /D4 5 2 sub-states, as long as the dipole
transition selection rules on the F quantum number is satisfied
(the same F quantum number for the intermediate states). The
top level ñ∣1 can be chosen to the /P6 3 2 state. Taking

g g g g g= = = = = ´ -3.7 10 s21 23 43 53
7 1 [74], t = -10 s,9

= - -q 10 cm s ,10 1 1 W = W = W = W = W = ´2.5921 41 43 32
-10 s ,9 1 D = ´ -2.96 10 s ,12

9 1 D = ´ -1.11 10 s ,14
9 1

D = ´1.85 10 ,43
9 D = ´1.48 10 ,23

9 D = 0,p and f p= ,
one can obtain k = + ´ ´- - -( )i9.44 7.7 10 10 cm s,1

2 10 1

k = - ´ ´- - -( )i1.02 6.5 10 10 cm s,2
3 19 1 = -(N 2.39

´ ´- - -)i6.95 10 10 cm s .2 20 1 2 Clearly, the imaginary parts
of the complex coefficients are much smaller than the
corresponding real parts. Thus, the conditions (33) and (34)
are satisfied. In this situation, the standard NSE (35) with
k >N 0R R2 is well characterized, leading to the generation of
bright solitons in the proposed system. Such a soliton has a
width and amplitude satisfying tW »∣ ∣ 2.06.p0 With the above
system parameters, one can find » ´ -v c3.5 10 ,g

2 indicating
that the soliton propagates with a slow propagating velocity.
As can be observed from figure 5, such a bright soliton
remains fairly stable during propagation, which may be due to
the balance between the group velocity dispersion and Kerr-
type nonlinearity.

6. Concluding remarks

In conclusion, the problem of pulse propagation has been
theoretically investigated for a five-level toy-model atom-
light coupling system in which the probe laser beam couples a
ground level to the ring-coupling subsystem consisting of
four atomic energy levels. We have found that the dis-
tortionless propagation of the probe pulse without significant
absorption and broadening is possible in the linear regime
when the intensity of the probe pulse is sufficiently weak. In
contrast, for higher intensities, the probe pulse will be atte-
nuated by the medium after almost a short propagation dis-
tance. We then presented an analytical model to elucidate the
origin of such behavior. By employing a simple theoretical
model for the nonlinear pulse propagation, we found the
regime of stable distortionless probe pulses propagation
through such a medium. Based on the coupled Maxwell–
Bloch equations, a nonlinear equation governing the

Figure 5. Propagation dynamics of a slow optical soliton with
t = =- l10 s, 1 cm9 and the parameters given in the main text.
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evolution of the probe pulse envelope has been obtained
showing the existence of stable optical solitons with a slow
propagating velocity. The formation of these shape-preser-
ving optical solitons has been attributed to the balance
between dispersion and Kerr nonlinearity of the system. A
possible experimental realization of the investigated model
has been proposed for the Rb87 atomic medium with suitable
parameters.

As a result of the quantum interference and coherence
effects induced by the extra atomic levels and the coupling
light fields in such a five level atomic structure, the proposed
atomic model has potential applications for establishing a
complete population transfer to a single target of a degenerate
pair of states [71], or high precision and high resolution
localization of an atom [74]. The obtained results may be
helpful for guiding experimental investigations of linear and
nonlinear optical properties of atomic systems and for appli-
cations of optical information processing and engineering.
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Appendix A. Explicit expressions of the optical
Bloch equation

Under the rotating wave approximation, the equation of
motion (4) for the density operator describing the atomic
system reduces to

r r r r r= - + W - W + Wf ( )g i e i i , A1p15 1 15 41
i

45 13 21 25

r r r r r= - + W + W - W ( )g i i i , A2p25 2 25 21 15 32 35 23

r r r r r r= - + W + W + W - ( )
( )

g i i i ,

A3
p35 3 35 43 45 32 25 55 33

r r r r r= - + W + W - Wf- ( )g i e i i , A4p45 4 45 41
i

15 43 35 43

r r r r r r= - + W - + W - Wf- ( )
( )

g i e i i ,

A5
41 5 41 41

i
11 44 43 31 21 42

r r r r
r r

= - + W + W
- W - W

f-
( )

g i e i

i i , A6
42 6 42 41

i
12 43 32

32 43 21 41

r r r r r
r r

= - + W + W -
- W - W

f- ( )
( )

g i e i

i i , A7p

43 7 43 41
i

13 43 33 44

32 42 45

r r r r r r= - - W + W - + Wf- ( )
( )

g i e i i ,

A8
21 8 21 41

i
24 21 11 22 32 31

r r r r r
r r

= - + W + W -
- W - W

 ( )
( )

g i i

i i , A9p

23 9 23 21 13 32 33 22

43 24 25

r r r r r
r r

= - + W + W - W
+ W - W

f-
( )

g i i i e

i i , A10
p31 10 31 32 21 51 41

i
34

43 41 21 32

r g g r r r
r r

= - + + W -
- W -

f f- ( ) ( )
( ) ( )

2 i e e

i , A11
11 14 12 11 41

i
41

i
14

21 12 21

r g r g r r r
r r

= - + W -
+ W -

 ( )
( ) ( )

2 2 i

i , A12
22 12 11 23 22 32 32 23

21 12 21

r g r g r g r r r

r r r r

= + - + W -

+ W - - W -

 ( )

( ) ( )
( )

2 2 2 i

i i ,

A13
p

33 43 44 23 22 35 33 43 43 34

32 23 32 35 53

r g r g r r r

r r

= - - W -

- W -f f-

 ( )
( ) ( )

2 2 i

i e e , A14
44 14 11 43 44 43 43 34

41
i

41
i

14

r r r r r+ + + + = ( )1, A1511 22 33 44 55

with g g= - D + D + D + +[ ( ) ( )]g i ,p1 14 43 14 12 =g2
g- D - D + D +[ ( ) ]i ,p23 23 g= - D( )g i ,p3 35 = D +[ (g i4 43

gD -) ],p 43 g g g= D + + +[ ( )]g i ,5 14 43 14 12 = - D -[ (g i6 12

g gD + +) ( )],14 43 23 g g= - D + +[ ]g i ,7 43 43 35 = D +[g i8 12

g g g+ +( )],14 12 23 = - D -[ (g i9 12 gD +) ]23 and =g10
g gD + D + +[ ( ) ( )]i .14 43 14 12 The one-photon resonance

detuning parameters for transitions ñ « ñ∣ ∣4 3 , ñ « ñ∣ ∣2 3 ,
ñ « ñ∣ ∣1 4 , ñ « ñ∣ ∣2 1 and ñ « ñ∣ ∣3 5 are w wD = - ,43 4 43

w wD = - ,23 2 23 w wD = - ,14 3 14 w wD = - ,12 1 12 and
w wD = - ,p p 35 whileD = D - D + D - D12 14 23 43 and wi

represent the multi-photon detuning and the central frequency
of the corresponding laser field. The spontaneous decays from
the excited state ñ∣1 to the lower levels ñ∣3 and ñ∣5 are ignored
due to the assumption that the corresponding transitions are
dipole forbidden. The spontaneous decay rates of upper level
ñ∣i to the lower level ñ∣ j is described by g2 .ij

Appendix B. Explicit expressions of Q; B; S and R

Expressions for Q, B, S and R read

= W + W - - - ( )Q G G G G G G , B121
2

41
2

4 1 2 1 2 4

= W + W + W + W + W + W

+ W + W - -

- -

( )

B G G G G G G

G G G G G G G G

G G G G G G ,

B2

32
2

4 32
2

1 43
2

2 43
2

4 21
2

1 21
2

3

41
2

2 41
2

3 3 4 1 3 2 1

3 4 2 2 4 1

= - W + W + W + W + +
+ + + +

(
) ( )

S G G G G
G G G G G G G G

2
, B3

21
2

32
2

41
2

43
2

2 1 3 1

2 4 3 4 2 3 1 4

g g= D - D + D + D + -( ) ( )R 2 2 2 2 2i , B4p14 23 23 43

where G G G G L, , , ,1 2 3 4 and L1 can be obtained by sub-
stituting w = 0 in coefficients w w w( ) ( ) ( )G G G, , ,1 2 3

w w( ) ( )G L,4 and w( )L ,1 respectively.
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Appendix C. Explicit expressions of Ψ1; Ψ2; Ψ3 and Ψ4

Expressions for Y ,1 Y ,2 Y3 and Y4 can be expressed as

* * * *

* * * * *

* * * * *

*

Y = - W

- W - W + W

+ W W - W + W W

+ W

( )

G G G G G G G G G G

G G G G G G G G G G

G G G G G G G G

G G ,
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1 1 1 2 2 4 4 21
2

1 2 4 4

41
2

1 2 4 2 21
2

4 1 2 4 21
4

4 4

21
2

41
2
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2

2 1 2 4 21
2

41
2

2 4

41
4

2 2

* * * *

* * *
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+ W W W W - W W

- W W + W

f

f-

( )

G G

G G G G

G G G G G G
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2 32
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