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Exchange of orbital angular momentum of light via noise-induced coherence
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The noise-induced coherence created via the quantum interference of incoherent radiation in atomic three-level
systems of V and � types driven by a pair of weak laser pulses is shown to result in exchange of optical vortices.
In the three- level V-type atom-light coupling the system is populated in its ground level, while in the � model the
system is initially prepared in an electromagnetically induced transparency state. By solving the quantum optical
Maxwell-Bloch equations and with quantum interference of incoherent radiation present, we show that the orbital
angular momentum (OAM) of the vortex probe beam can be transferred to a generated signal field. While the
exchange efficiency in the V configuration is higher, the losses are less in the � scheme when we consider such
a noise-induced coherence. We further discuss the effects of phase mismatching and inhomogeneous broadening
on the energy conversion between light beams carrying OAM.
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I. INTRODUCTION

Quantum coherence and interference in multilevel quan-
tum systems lead to many novel and unexpected phenomena
such as electromagnetically induced transparency (EIT) [1,2],
lasing without population inversion [3], creation of optical
solitons [4–7], and four-wave mixing (FWM) [8–10]. It is
important to prepare the atomic configurations in order for
these coherent phenomena to appear; however, the incoher-
ent radiation usually plays a destructive role (noise) in the
creation of this coherence. There have been several attempts
in which coherence induced from such noises is employed
for the preparation of the atoms [11–14]. The coherence in-
duced by interference of incoherent radiation has been used to
control the optical bistability [14], lasing without population
inversion [15], quenching of spontaneous emission [16], and
others [17–19].

Light beams can carry an orbital angular momentum
(OAM) [20]. This feature provides additional features for
the coherent control of light as it illustrates another degree
of freedom suitable for applications in the quantum com-
putation, quantum teleportation, and quantum information
storage [21–24]. When interacting with atoms, such optical
vortex beams result in different phenomena, including light-
induced torque [25,26], atom vortex beams [27], entanglement
of OAM states of photon pairs [28], OAM-based FWM
[29–35], spatially dependent optical transparency [36,37], and
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the vortex slow light [38]. The twisted slow light [39] gives
additional possibilities in coherent manipulation of the optical
information during the storage and readout of the slow light
[40].

In previous theoretical studies on interplay of optical vor-
tices with atoms a situation has been considered in which
the atoms are initially in their ground states with the Rabi
frequency of the control fields much stronger than that of the
probe field. The OAM of the control vortex beam has been
illustrated to be transferred to the weak probe beam in the
tripod scheme during the storage and retrieval of the probe
field [41]. The transfer of optical vortices can take also place
without switching off and on of the control fields (without
storage and retrieval of the probe field), by applying a pair
of weaker probe fields in the closed-loop four-level double-�
schemes [30,42]. It has been also shown that the exchange
of optical vortices in non–closed-loop �-type configuration
is possible under the condition of weak atom-light interaction
in coherently prepared atomic media [43]. In such a case, the
atoms are initially populated in a coherent superposition of the
lower atomic levels. If a single vortex beam initially shines on
one transition of the scheme, an additional laser beam is gen-
erated with the same OAM as that of the incident vortex beam.
The absorption of the incident probe beam appears mostly at
the beginning of the atomic medium within the absorption
length. The losses disappear as the probe beam propagates
deeper into the medium where the atoms are transferred to
their dark states.

Following the models proposed in Refs. [13,15], we con-
sider now two different situations in V- and �-type quantum
systems in order for exchanging the optical vortices via coher-
ence induced by incoherent pumping radiation noise. In the
V-type atomic system the system is initially populated in the
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FIG. 1. Schematic of three-level V-type atomic system with
closely spaced upper states. r1 and r2 are pump rates; �p and �s

are probe and signal fields.

ground level while in the �-type quantum system the system
populated in the EIT ground state. It is found that the OAM
exchange can take place in both schemes when the quantum
interference is taken into account. However, the swapping of
OAM is accompanied by strong losses in the V scheme. The
effects of phase mismatching and inhomogeneous broadening
on the energy conversion between light beams carrying OAM
have been also discussed.

II. MODEL AND THEORY

A. V-type atomic system

We consider first a three-level system in a so-called V
scheme interacting with a pair of Rabi frequencies �p and
�s as illustrated in Fig. 1. Two closely spaced doublets |3〉
and |2〉 are coupled by two light fields to the ground state |1〉
via probe and signal fields �p and �s, respectively. The upper
levels decay into the ground level with the rates γ1 and γ2,
respectively. An incoherent pumping field R with pumping
rates r1 and r2 is applied between lower level |1〉 to doublet
levels |2〉 and |3〉. We suppose that one polarized broadband
field can couple with more than one transition. Therefore the
interference from incoherent pumping fields may arrise.

Generally, three main dynamical processes may occur in
the system, including incoherent pump processes through
r1, r2, interaction of the atomic system with coherent fields,
and interaction with the reservoir governing the decay pro-
cesses from levels |3〉 and |2〉 to ground level |1〉. We
charactrize theses processes by interaction terms HR, HA, and
Hγ , respectively.

In the interaction picture, the Hamiltonian can be written
as the sum of these three terms,

H = HR + HA + Hγ . (1)

The first term represents incoherent pump processes mod-
eled via the interaction of the atomic system with the
incoherent radiation R:

HR = μ21R|2〉〈1| + μ31R|3〉〈1| + H.c. (2)

Note that the spectrum of the field covers both upper levels
simultaneously; as a result, one and the same field drives both
transitions. One can characterize these transitions by dipole
matrix elements μ21 and μ31 and transition frequencies ω21

and ω31. The incoherent field has δ-like correlation at different

times, i.e.,

〈R∗(t )R(t ′)〉 = �δ(t − t ′). (3)

One can show the effect of HR through the pumping pa-
rameter r1,2 = 2(μ2

21,31/h̄2)�. It should be pointed out that
these correlations are not expected to cover the whole range
of frequencies. It is sufficient that they are at least approxi-
mately valid in the vicinity of both resonances and cover the
frequency seperation of two upper levels.

The next term in Eq. (1), HA, which is the interaction
Hamiltonian of the system with Rabi frequencies �p(s) =
μ31(21)Ep(s)/h̄ and detuning �p(s), reads

HA = h̄(�p|3〉〈3| + �s|2〉〈2|)
+ h̄(�p|3〉〈1| + �s|2〉〈1| + H.c.). (4)

The last term in Eq. (1) denotes the interaction with the
reservoir of vacuum oscillators. The specified Hamiltonian of
this term is given by

Hγ = − h̄
∑

k

g(1)
k e−iνkt |3〉〈1|âk

− h̄
∑

k

g(2)
k e−iνkt |2〉〈1|âk + H.c., (5)

where g(1,2)
k represent the coupling constant between the kth

vacuum mode and the atomic transitions from |2〉 and |3〉 to
|1〉, âk (â†

k ) is the annihilation (creation) operator of a photon
in the kth vacuum mode, which obey the conventional bosonic
communication rule [âk, â†

k′ ] = δkk′ .
To model the quantum dynamics of the V-type atomic

system driven by coherent and incoherent radiation, one can
consider the interaction terms separately to obtain the corre-
sponding terms in the density-matrix equations. The influence
of the interaction potentials on the density matrix can be
obtained by means of the Liouville equation:

ρ̇ (R,A,γ ) = − i

h̄
[HR,A,γ (t ), ρ (R,A,γ )(t )]

= − i

h̄
[HR,A,γ (t )ρ (R,A,γ )(t ) − ρ (R,A,γ )(t )HR,A,γ (t )].

(6)

The complete density matrix has been reduced here to
different parts as ρ = ρ (R) + ρ (A) + ρ (γ ), coupling only to the
corresponding part of the Hamiltonian. The interaction Hamil-
tonians HA is straightforward to obtain. Yet, those related to
the interference effects (i.e., HR and Hγ ) are quite complicated
to derive (see Appendixes A and B). Transforming to a rotated
frame and including all the atomic decays as shown in Fig. 1,
the resulting density-matrix equations are

ρ̇31 = −
[

1

2
(γ + 3r) + i�p

]
ρ31 − i�p(ρ33 − ρ11)

− i�sρ32 − ηr

2
ρ21,

ρ̇21 = −
[

1

2
(γ + 3r) + i�s

]
ρ21 − i�pρ23

+ i�s(ρ11 − ρ22) − ηr

2
ρ31, (7)
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where we have set r1 = r2 = r, and γ1 = γ2 = γ . The inter-
ference term η containing the products of pump rates is central
to our discussion. This factor is the normalized scalar product
of corresponding dipole matrix elements:

η = μ31μ21

|μ31||μ21| . (8)

In principle the dipole moments μ31 and μ21 have different
directions. When the two electric dipole moments are parallel
the interference is maximum (η = 1), while for the perpen-
dicular electric dipole moments the interference term vanishes
(η = 0).

In what follows, we solve Eq. (7) in the weak-field approx-
imation, where the intensities of the probe and signal fields
are sufficiently weak. Within the weak-field approximation,
we can apply the perturbation approach to the density-matrix
equations, which is introduced in terms of the perturbation
expansion

ρi j = ρ
(0)
i j + λρ

(1)
i j + λ2ρ

(2)
i j + · · ·, (i, j = 1, 2, 3), (9)

where λ describes a continuously varying parameter ranging
from zero to unity. It should be pointed out that here ρ

(0)
i j ,

ρ
(1)
i j , and ρ

(2)
i j are of the zeroth, first, and second orders in

weak fields. In the limit of the weak-field approximation, the
atom is predominantly populated in the initial ground state
|1〉. This indicates that, for the zeroth-order density-matrix
elements ρ

(0)
11 = 1 but ρ

(0)
i j = 0(i �= 0, j �= 0). Due to the fact

that the fields are sufficiently weak, only the first-order terms
are important. Therefore, we only keep the first order in the
probe and signal fields. Using this condition and substituting
Eq. (9) into Eq. (7), the equations of motion for the first-order
density-matrix elements change to

ρ̇
(1)
31 = −

[
1

2
(γ + 3r) + i�p

]
ρ

(1)
31 − ηr

2
ρ

(1)
21 + i�p,

ρ̇
(1)
21 = −

[
1

2
(γ + 3r) + i�s

]
ρ

(1)
21 − ηr

2
ρ

(1)
31 + i�s. (10)

After some algebraic calculations, the following off-
diagonal density-matrix elements ρ

(1)
31 and ρ

(1)
21 corresponding

to weak fields are obtained:

ρ
(1)
31 = i�21

�21�31 − K2
�p+ iK

�21�31 − K2
�s = a1�p + b1�s,

(11a)

ρ
(1)
21 = i�31

�21�31−K2
�s+ iK

�21�31−K2
�p = a2�p+b2�s,

(11b)

with �31 = 1
2 (γ + 3r) + i�p, �21 = 1

2 (γ + 3r) + i�s,

K = η

2 r, a1 = i�21
�21�31−K2 , b1 = iK

�21�31−K2 , a2 = iK
�21�31−K2 ,

and b2 = i�31
�21�31−K2 .

Under the slowly varying envelope approximation and as-
suming time-independent fields, the Maxwell equations for
probe and signal fields �p and �s propagating in the z di-

rection take the form

∂�p

∂Z
= iαpγ

2L
[a1�p + b1�s], (12a)

∂�s

∂Z
= iαsγ

2L
[a2�p + b2�s]. (12b)

Here, αp and αs are the optical depths of the corresponding
probe and signal fields, and L characterizes the length of the
medium. Let us now assume that initially at the beginning of
the atomic cloud (Z = 0) �p(Z = 0) = �p(0) and �s(Z =
0) = 0. Solving the coupled equations (12a) and (12b) for the
Rabi frequency of �p and �s, one gets

�s(Z ) = A2

A
�p(0)[e

A
4L Z − e− A

4L Z ]e( A1+B2
4L Z ), (13a)

�p(Z ) = A1 − B2

A
�p(0)e( A1+B2

4L Z )

[
sinh

(
A

4L
Z

)

+ A

A1 − B2
cosh

(
A

4L
Z

)]
, (13b)

where

A1 = iαγ a1, (14a)

B1 = iαγ b1, (14b)

A2 = iαγ a2, (14c)

B2 = iαγ b2, (14d)

A =
√

(A1 − B2)2 + 4A2B1. (14e)

Substituting Eqs (13a) and (13b) into Eq. (11b) yields

ρ21 = a2�p(0)e( A1+B2
4L Z )

[
A1

A
sinh

(
A

4L
Z

)
+ cosh

(
A

4L
Z

)]
.

(15)

By assuming the resonance conditions of the probe and
signal fields, i.e., �p = �s = 0, we have

�p(z) = 1

2
�p(0)

[
exp

(
αZ

L

(η − 3)r − γ

(γ + 3r)2 − r2

)

+ exp

(
−αZ

L

(η + 3)r + γ

(γ + 3r)2 − r2

)]
, (16a)

�s(z) = �p(0)

[
exp

(
αZ

L

(η − 3)r + γ

(γ + 3r)2 − r2

)

− exp

(
−αZ

L

(η + 3)r + γ

(γ + 3r)2 − r2

)]
. (16b)

Let us consider the probe field to carry an optical vortex.
The Rabi frequency of the probe field is characterized by

�p(0) = �p = |�p| exp
(
ilp�

)
, (17)

where � is the azimuthal angle and lp shows the OAM num-
ber. For a Laguerre-Gaussian (LG) doughnut beam we may
write

|�p| = εp(r/w)|lp| exp
(−r2

/w2
)
, (18)

where r represents the distance from the vortex core (cylindri-
cal radius), w denotes the beam waist parameter, and εp is the
strength of the vortex beam.
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FIG. 2. The dependence of the dimensionless intensity of the signal field |�s|2/|�p(0)|2 (a) and the probe field |�p|2/|�p(0)|2 (b) on the
dimensionless distance αZ/L. The selected parameters are α = 20, r = 1γ , �p = �s = 0.

First, we observe that the signal field �s is generated with
the same topological charge as the probe field. Second, we
consider the efficiency of frequency conversion from the ini-
tial beam �p to the generated signal light �s described by
Eq. (16b). The dependence of the intensities |�s|2/|�p(0)|2
and |�p|2/|�p(0)|2 on the dimensionless distance αZ/L is
shown in Figs. 2(a) and 2(b), respectively, for different values
of quantum interference η. As expected, the conversion effi-
ciency governed by |�s|2/|�p(0)|2 is completely zero in the
absence of the quantum interference (η = 0) [see Fig. 2(a)].
One can see that by increasing the quantum interference term
η from 0 to 1, the conversion efficiency is enhanced and
reaches to 18% for η = 1 at αZ ≈ 4 L. However, when the
signal light propagates deeper through the medium the con-
version efficiency reduces to a small value. This is attributed
to the presence of absorption losses for very large propagation
distances which limits the propagation of optical vortices. As

observed in Fig. 2(b), the probe vortex beam also experiences
absorption losses on propagation.

We look for optimal situations in which the energy con-
version efficiency is maximum while simultaneously the
absorption losses are minimum. Figure 3 illustrates the
variation in space of field intensities |�s|2/|�p(0)|2 and
|�p|2/|�p(0)|2 for different values of incoherent pumping
rate when the quantum interference term η is set to be max-
imum (η = 1). It is seen from Fig. 3(a) that by increasing
the incoherent pumping rate, the conversion efficiency is
increased. For a particular value r = 6γ , the exchange effi-
ciency reaches to 24% which is accompanied by negligible
energy losses at larger propagation distances. The probe vor-
tex survives longer now for larger incoherent pumping rates,
as can be seen in Fig. 3(b).

In Fig. 4, we show the exchange efficiency versus optical
depth α for different values of incoherent pumping field when

FIG. 3. The dependence of the dimensionless intensity of the signal field |�s|2/|�p(0)|2 (a) and probe field |�p|2/|�p(0)|2 (b) on the
dimensionless distance αZ/L. The selected parameters are α = 20, η = 1, �p = �s = 0.
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FIG. 4. The dependence of the dimensionless intensity of the
signal field |�s|2/|�p(0)|2 on the optical depth α. The selected
parameters are Z = L, η = 1, �p = �s = 0.

the quantum interference term is maximum. We find that the
maximum exchange efficiency is possible for α = 20 and r =
6γ . However, by increasing the optical depth α, one can find
that the exchange efficiency drops down due to presence of
losses in the medium.

B. �-Type atomic system

Next we consider a �-type three-level atomic system
shown in Fig. 5, where the upper state |3〉 is connected to
two lower closely spaced states |1〉 and |2〉 by dipole allowed
transitions via two light fields �p and �s, respectively.

The incoherent pump field r1(2) drives the two lower states
to the same upper state and back. The upper state decays
through two different paths to lower states. By the same
method as in the previous section we will derive the motion
equations of the density-matrix elements for the atomic sys-
tem:

ρ̇31 = − 1
2 (2γ + 3r + i�p)ρ31 − i�sρ21

+ i�p(ρ33 − ρ11) − 1
2ηrρ32, (19a)

ρ̇32 = − 1
2 (2γ + 3r + i�s)ρ32 − i�pρ12

+ i�s(ρ33 − ρ22) − 1
2ηrρ31. (19b)

FIG. 5. Schematic of three-level �-type quantum system with
closely spaced ground states. r1 and r2 are pump rates; �p and �s

are the probe and signal fields.

In the above equations we have set r1 = r2 = r, and γ1 =
γ2 = γ . We assume the weak-field approximation. We also
consider that the three-level system is initially populated in the
ground state |1〉, i.e., ρ (0)

11 = 1. After using the perturbation ex-
pansion featured in Eq. (9), the off-diagonal matrix elements
of the first order ρ

(1)
31 and ρ

(1)
32 for the corresponding probe and

signal transitions in their resonance conditions are given as
follows:

ρ
(1)
31 = 4i�

4�2 − η2r2
�p, (20a)

ρ
(1)
32 = − 2iηr

4�2 − η2r2
�p, (20b)

where � = 1
2 (2γ + 3r). Under the slowly varying enve-

lope approximation and assuming time-independent fields,
the following expressions for the propagation of weak fields
�p and �s are obtained, when we assume at the begin-
ning of the atomic cloud (Z = 0) �p(Z = 0) = �p(0) and
�s(Z = 0) = 0:

�s(Z ) = �p(0)
ηr

2γ +3r

[
exp

(
−αZ

L

(2γ + 3r)

(2γ + 3r)2 − η2r2

)
−1

]
,

(21a)

�p(Z ) = �p(0) exp

(
−αZ

L

(2γ + 3r)

(2γ + 3r)2 − η2r2

)
. (21b)

Clearly, the generated signal beam acquires again the same
vorticity as that of the probe field. Figure 6 shows the de-
pendence of the dimensionless intensities |�s|2/|�p(0)|2 and
|�p|2/|�p(0)|2 on the dimensionless distance αZ/L for differ-
ent values of quantum interference η. The absence of quantum
interference results in zero exchange efficiency, indicating no
OAM transfer between the probe and signal fields. The OAM
exchange takes place in the presence of quantum interference
term, and for η = 1 the exchange efficiency reaches to its
maximum value [Fig. 6(a)]. Comparing to the V-type system,
the generated signal beam does not oscillate now on propa-
gation and the beam experiences no absorption loss for large
propagation distances. The probe field will soon be absorbed
by the medium, as observed in Fig. 6(b).

The effect of incoherent pumping rate on variation in space
of probe and signal beams is illustrated in Fig. 7 for the
case that the quantum interference is unity. As displayed in
Fig. 7(a), the exchange efficiency increases by enhancing the
incoherent pumping rate. On the other hand, the probe vor-
tex suffers less absorption effects during the propagation for
larger incoherent pumping rates. Therefore, adjusting together
the incoherent pumping rate and quantum interference term
provides a control in order to enhance the exchange efficiency.

Next, we show in Fig. 8 the exchange efficiency versus
optical depth α for different value of incoherent pumping field
for maximum value of quantum interference term. As can be
seen, the larger the incoherent pumping rate and the optical
depth, the larger the exchange efficiency, and the smaller the
absorption losses.

C. Inhomogeneous medium

Inhomogeneous broadening of the transition lines in an
atomic system is an important peculiarity, and even at low
temperature, its magnitude is several orders wider than the
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FIG. 6. The dependence of the dimensionless intensity of the signal field |�s|2/|�p(0)|2 (a) and probe field |�p|2/|�p(0)|2 (b) on the
dimensionless distance αZ/L. The selected parameters are γ = 1γ , α = 30, r = .1γ , �p = �s = 0.

transition linewidth [44]. The optical fields experience dif-
ferent detunings due to inhomogeneous broadening. The
detunings can be read as �̃p = �p − �ih, �̃s = �s − �ih,
where �ih = ω31 − ω̃31 and ω̃31 is the mean transition fre-
quency. The off-diagonal matrix elements in both systems
featured by Eqs. (11a), (11b) and (20a), (20b), in the presence
of inhomogeneous broadening can be calculated by taking
their averages over �ih as follows:

〈
ρ

(1)
m1 (�ih)

〉 =
∫ ∞

−∞
f (�ih)ρ (1)

m1 (�ih)d�ih, (22)

where m = 3, 2 and f (�ih) is the Gaussian distribution func-
tion given by

f (�ih) = 1√
2π�

e− �2
ih̄

2�2 , (23)

where � is the full width at half maximum.

We plot in Fig. 9 the dimensionless intensity of the sig-
nal field |�s|2/|�p(0)|2 versus αZ/L for homogeneous and
inhomogeneous media for V type (a) and � type (b). We
realize that the efficiency decreases in both cases when the
inhomogeneous broadening is taken into account.

D. Effect of phase mismatch

Thus far our discussion has been limited to the phase-
matching condition (��k = �kp − �ks = 0); however, experi-
mentally it is difficult to ignore the phase-mismatch effect
(��k �= 0). In order to include the phase-mismatch effect in
the proposed V model, Eq. (12b) is modified as [45]

∂�s

∂Z
+ i�k�s = iαsγ

2L
[a2�p + b2�s]. (24)

The solution for �s can be obtained by solving Eqs. (24)
and (12a) with boundary conditions �p(Z = 0) = �p(0) and

FIG. 7. The dependence of the dimensionless intensity of the signal field |�s|2/|�p(0)|2 (a) and probe field |�p|2/|�p(0)|2 (b) on the
dimensionless distance αZ/L. The selected parameters are γ = 1γ , α = 30, η = 1, �p = �s = 0.
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FIG. 8. The dependence of the dimensionless intensity of the
signal field |�s|2/|�p(0)|2 on the optical depth α. The selected
parameters are Z = L, η = 1, �p = �s = 0.

�s(Z = 0) = 0, giving

�s(Z ) = A2

APM
�p(0)

[
e

APM
4L Z − e− APM

4L Z
]
e( BPM

4L Z ), (25)

where BPM = A1 + B2 − 2i�kL, and APM = A =√
(A1 − B2 + 2i�kL)2 + 4A2B1. If the incident weak field �p

is at angle θ , then we can define the phase-mismatch condition
as ��k = (�kp − �ks) cos θ , with |�kp(s)| = (np(s)ωp(s) )/c. To
consider dispersion of the generated field, we select
ns = 1 + 1/2Re[ρ (1)

31 ] and np = 1. The value of ��k then
becomes [46]

��k = 1

c

(
(ωp − ωs) cos θ − ωs

2
Re

[
ρ

(1)
31

])
. (26)

In order to investigate the influence of phase mismatch
on the exchange efficiency of OAM transfer, we plot the

exchange efficiency versus �KL for homogeneous (a) and
inhomogeneous (b) broadening for the V-type scheme in
Fig. 10.

We observe that not only phase-mismatch effect reduces
the OAM conversion efficiency, the effect becomes even more
significant for the case of inhomogeneous broadening medium
[Fig. 10(b)]. Similar results can be obtained for the �-type
EIT medium.

III. SUMMARY

In summary, we have considered propagation of optical
vortices in three-level V- and �-type atomic systems via
noise-induced coherence created by the quantum interfer-
ence from incoherent pumping field. In the V configuration,
the system is initially prepared in its ground state while in the
�-type scheme the system is initially in an EIT condition. We
have realized that the exchange of optical vortices is possible
in two different situations when the quantum interference is
present. In both cases a generated signal field can obtain the
same OAM as the vortex probe light during the propagation.
The exchange efficiency of optical vortices is higher in the
V-type system; however, the losses are always present. The
losses are absent on propagation for the case of the � sys-
tem, and one can control and even enhance the efficiency by
properly adjusting the quantum interference term as well as
the incoherent pumping rate. We have also considered the
effects of phase mismatching and inhomogeneous broadening
on exchange efficiency of vortex light.
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FIG. 9. The dependence of the dimensionless intensity of the signal field |�s|2/|�p(0)|2 on the dimensionless distance αZ/L, for V-type
(a), and �-type (b) atomic systems. Solid line corresponds to inhomogeneous and dashed line corresponds to inhomogeneous broadening. The
selected parameters are for (a) α = 20, η = 1, �p = �s = 0, r = 6γ , (b) α = 30, η = 1, �p = �s = 0, r = 0.8γ .
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FIG. 10. Exchange efficiency of OAM vs phase mismatch in homogeneous (a) and inhomogeneous broadening (b) for V-type atomic
system. The selected parameters are α = 20, η = 1, �p = �s = 0, r = 6γ , Z = L.

APPENDIX A: DERIVATION OF INTERFERENCE TERMS
FOR THE DECAY RATES FOR V-TYPE ATOMIC SYSTEM

In this Appendix, we study the impact of the Hamiltonian
Hγ on the density-matrix elements. Let us consider all the
three-levels without the presence of the pumping terms. The
coupling of the atomic system due to vacuum reservoir is
described by Eq. (5). In the interaction picture, one can char-
acterize the Liouville equation for the total density operator
ρT of the system (atom+reservoir) as

ρ̇T = − i

h̄
[Hγ (t ), ρT (t )]. (A1)

By integrating this equation once and replacing the result
in it, we get

ρ̇T = − i

h̄
[Hγ (t ), ρT (0)]

+ (i/h̄2
) ∫ t

0
dt ′[Hγ (t ), [Hγ (t ′), ρT (t ′)]], (A2)

where the initial conditions are

ρT (0) = ργ (0)ρF , ρF ≡ 〈{0k}||{0k}〉. (A3)

Here, ργ (0) describes the atomic density operator at t = 0, ρF

characterizes the field density operator, and |{0k}〉 represents
the vacuum state. Since the reservoir is assumed to be a
large extended open system characterized by many degrees
of freedom and weakly coupled to the atom, the total density
operator can be factorized into the product

ρT = ργ (t )ρF (A4)

for any t > 0. Such a factorization allows calculating the
partial trace over the reservoir degrees of freedom, enabling
formulation of equations of motion for the atomic density
matrix. It follows then that the density-matrix element ρ

(γ )
21

satisfies the motion equation:

ρ̇
(γ )
21 = −

∫ t

0
dt ′ ∑

k

g(1)2
k exp[iνk (t − t ′)]ργ

21(t ′)

= −
∫ t

0
dt ′ ∑

k

g(1)
k g(2)

k exp[iνkt − iνkt ′)]ργ

31(t ′).

(A5)

Following the Wigner-Weisskopf approximation [16],

∑
k

... →
∫ ∞

−∞
dνkD(νk )..., (A6)

and on interchanging the integrations over νk and t ′, one gets

ρ̇
(γ )
21 = −

∫ t

0
dt ′

∫ ∞

−∞
dνkD(νk )g(1)

k

{
g(1)

k ρ
(γ )
21 (t )

× exp[iνk (t − t ′)] + g(2)
k ρ

(γ )
31 (t ′) exp(iνkt )

× exp(iν ′
kt ′)

}
, (A7)

where

D(νk ) = V ν2
k

π2c3
(A8)

shows the density of states while V stands for the quantization
volume. If one considers that both atomic states |3〉 and |2〉
are close to each other, then the density of states D(νk ) and
the coupling constants g(1)

k and g(2)
k can contribute significantly

only around νk = ω. As a result, νk can be replaced by ω in
the corresponding terms, giving

ρ̇
(γ )
21 = − D(ω)g(1)

ω

∫ t

0
dt ′

∫ ∞

−∞
dνk

{
g(1)

k ρ
(γ )
21 (t )

× exp[iνk (t − t ′)] + g(2)
k ρ

(γ )
21 (t ′) exp(iνkt )

× exp(iν ′
kt ′)

}
, (A9)
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where after carrying out the integration

ρ̇
(γ )
21 = −1

2
γ2ρ

(γ )
21 − 1

2
√

γ1γ2ρ
(γ )
31 , (A10)

with γ1 = 2πD(ω)g(1)2
ω , γ2 = 2πD(ω)g(2)2

ω . It should be
pointed out that both coupling constants are assumed to be
positive. Following the same approach will lead to

ρ̇
(γ )
31 = −1

2
γ1ρ

(γ )
31 − 1

2
√

γ1γ2ρ
(γ )
21 . (A11)

Clearly, the terms containing the product of γ1 and γ2 char-
acterize the quantum interference induced by the decay rates.
Note that we ignore this type of noise-induced coherence in
this paper, as we are interested here only in the effect of
quantum interference induced by incoherent pumping process
on our results. Therefore, we have

ρ̇
(γ )
21 = − 1

2γ ρ
(γ )
21 , ρ̇

(γ )
31 = − 1

2γ ρ
(γ )
31 , (A12)

as presented in Eq. (7).

APPENDIX B: DERIVATION OF INTERFERENCE
TERM FROM THE INCOHERENT PUMPING FIELD

FOR V-TYPE ATOMIC SYSTEM

In the following appendix, we provide a detailed analysis
on noise-induced coherences created by the quantum interfer-
ence of incoherent pumping rates, which is described by the
Hamiltonian given in Eq. (3).

The Liouville equation for the density-matrix equations
becomes

ρ̇ (R) = − i

h̄
[H (R), ρ (R)] = − i

h̄
(H (R)ρ (R) − ρ (R)H (R) ). (B1)

Expanding Eq. (B1) yields

ρ̇
(R)
31 = − i

h̄
R
[
μ31

(
ρ

(R)
33 − ρ

(2)
11

) + μ21ρ
(R)
32

]
,

ρ̇
(R)
21 = − i

h̄
R
[
μ21

(
ρ

(R)
22 − ρ

(2)
11

) + μ31ρ
(R)
23

]
,

ρ̇
(R)
32 = − i

h̄

[
μ21R∗ρ (R)

31 − μ31Rρ
(R)
12

]
,

ρ̇
(R)
11 = i

h̄
R∗[μ21ρ

(R)
21 + μ31ρ

(R)
31

] − i

h̄
R
[
μ21ρ

(R)
12 + μ31ρ

(R)
13

]
,

ρ̇
(R)
33 = − i

h̄
μ21

[
R∗ρ (R)

21 − Rρ
(R)
12

]
,

ρ̇
(R)
33 = − i

h̄
μ31

[
R∗ρ (R)

31 − Rρ
(R)
13

]
. (B2)

Following a similar method as applied in Appendix A, we
integrate these equations once and then replace them back
into the above equation. Let us consider the density-matrix
equation for the element ρ

(R)
31 . We will require expressions for

ρ
(R)
33 (t ), ρ

(R)
11 (t ), and ρ

(R)
32 (t ). After the formal integration these

expressions are

ρ
(R)
33 (t ) = − i

h̄
μ21

∫ t

0
dτ

[
R∗(τ )ρ (R)

21 (τ ) − R(τ )ρ (R)
12 (τ )

]
,

ρ
(R)
11 (t ) = i

h̄

∫ t

0
dτR∗(τ )

[
μ21ρ

(R)
21 (τ ) + μ31ρ

(R)
31 (τ )

]
,

ρ
(R)
32 (t ) = − i

h̄

∫ t

0
dτ

[
μ21R∗(τ )ρ (R)

31 (τ ) − μ31R(τ )ρ (R)
12 (τ )

]
.

(B3)

Substituting Eq. (B3) in the equation for ρ̇
(R)
31 in B2, we

arrive at

ρ̇
(R)
31 = 2

( i

h̄

)2

μ2
31

∫ t

0
dτR(τ )R∗(τ )ρ (R)

31 (τ )

+
( i

h̄

)2

μ2
21

∫ t

0
dτR(τ )R∗(τ )ρ (R)

31 (τ )

+
( i

h̄

)2

μ21μ31

∫ t

0
dτR(τ )R∗(τ )ρ (R)

21 (τ ). (B4)

Then, using the δ correlation of the pumping fields, we get

ρ̇
(R)
31 = −1

2
(2r1 + r2)ρ31 − 1

2

√
r1r2ρ21, (B5)

where

r1,2 = 2
(
μ2

31,21/h̄2
)�. (B6)

We can obtain the equations of the motion for the remain-
ing matrix elements by following the same approach:

ρ̇
(R)
21 = − 1

2
(2r2 + r1)ρ21 − 1

2

√
r1r2ρ31. (B7)

Note that the terms involving products of r1 and r2 cor-
respond to interference between the pumping processes from
two upper states to ground level.
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