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Exchange of optical vortices in symmetry-broken quantum systems
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We investigate the interaction of laser pulses carrying orbital angular momentum (OAM) with a symmetry-
broken ladder-type quantum coupling scheme involving three internal states. A weak probe beam acts on the
lower leg of the ladder scheme, while a control beam of higher intensity drives the upper leg. In contrast to
natural atoms, such a model with broken symmetry allows generating a sum-frequency signal beam between
the most upper and lower quantum states, forming a cyclic closed-loop configuration of light-matter interaction.
We propose situations for the efficient transfer of optical vortices to the generated signal beam via a nonlinear
three-wave mixing process. It is demonstrated that the exchange process can occur both in the electromagnet-
ically induced transparency (EIT) and the Autler-Townes splitting (ATS) regimes. The transition between the
EIT and ATS conversion schemes can smoothly happen by simply tuning the knob of the control field. It is
shown that the ATS regime is considerably more favorable than the EIT to achieve maximum energy conversion
efficiency between light beams carrying the OAM. The results may provide an applications-based perspective to
the ongoing research centered on vortex conversion-based comparisons between the ATS and EIT.
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I. INTRODUCTION

Electromagnetically induced transparency (EIT) [1–4] is
a quantum interference effect which appears when coherent
laser beams interplay with an atomic system. The quantum
interference in EIT occurs between alternative transition chan-
nels induced by the laser beams within the internal states
of the atom. As a result, in the EIT the absorption effects
are suppressed for a weak resonant probe field for which
strong absorption would normally be expected [4]. EIT has
a number of interesting applications, such as enhanced four-
wave-mixing [5–8], lasing without inversion [9], slow and fast
light [10–13], enhancement of refractive index [14,15], ultra-
slow optical solitons [16–18], large optical Kerr nonlinearity
[19–21], and many others.

The quantum interference responsible for the EIT vanishes
for strong laser fields, resulting in the Autler-Townes splitting
(ATS) effect [22,23]. The EIT and ATS schemes resemble
each other in terms of a transparency feature, but they are
essentially different quantum optical phenomena. The EIT
stems from a Fano-type interference and is described by the
formation of a dark-state due to a destructive quantum in-
terference between different transition pathways [4], whereas
ATS is described by the AC-Stark effect [23]. Distinctions
between EIT and ATS have been widely studied and discussed
in the literature [24–32].

Optical vortex beams [33,34] are of fundamental interest
due to their applications. An optical vortex with a spiral phase
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carries an orbital angular momentum (OAM) along the propa-
gation axis [33]. There is a phase singularity at the core of the
vortex which evolves its doughnut-shaped intensity profile.
Optical vortices are routinely created to carry specific val-
ues of OAM [35,36]. When interacting with the matter, their
specific characteristics result in various interesting effects,
including ultraprecise atom localization [37], entanglement of
OAM states of photon pairs [38], atom vortex beams [39],
light-induced torque [40–42], and spatially dependent EIT
[43,44].

A transition from a nontrivial (vortex) to a trivial (non-
vortex) state of the light is very promising and may provide
interesting applications in the topological photonic area. The
exchange of optical vortices is a possible tool for the manip-
ulation of information encoded into the OAM of light [45]. It
allows generating a structured light at a wavelength for which
it is not possible to do it directly with standard optics (e.g., far
infrared or UV). Although the exchange of optical vortices
is not directly related to the topological photonics, optical
vortices can be used for creating the synthetic gauge field for
ultracold atoms [46].

In this context, the recently proposed and demonstrated
protocols for exchange of optical vortices in mater waves
have emerged as a direct connection to the OAM-based ap-
plications. Previous scenarios for the OAM translation have
been shown to be possible in the regime of EIT (or Coherent
population trapping) [47–55]. However, ATS has not gained
nearly as much attention. This oversight may be partly be-
cause of a common misconception that quantum interference
is a necessary characteristic for an efficient OAM exchange,
and partly due to lack of interest in the ATS regime.

Extending previous work, in this study we make a detailed
comparison between the EIT and ATS protocols in order to
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FIG. 1. Interaction of a symmetry-broken three-level ladder
quantum system with three laser beams which can carry optical
vortices.

achieve an efficient transfer of optical vortices in a three-
level ladder-type quantum coupling scheme. The ladder-type
quantum system has been widely used for appearance of EIT
and ATS [56,57]. The system involves a weak probe field
as well as a strong control field which are interacting with
lower and upper legs of the ladder, respectively. As a result
of inversion symmetry of potential energy in natural atoms,
the sum-frequency process is forbidden in the ladder scheme.
However, the common electric-dipole selection rules do not
matter when the inversion symmetry of potential energy in
a quantum system is broken. This leads to generation of a
three-wave mixing (TWM) signal beam between the upper
and lower quantum states of the ladder scheme, creating a
cyclic closed-loop configuration of light-matter interaction
[58–64]. Note that the ladder-type quantum system considered
here has been recently employed for the purpose of efficient
nonlinear frequency mixing [64]. However, the interplay of
such a quantum system with laser pulses carrying optical
vortices has motivated our study. We propose situations for
efficient exchange of OAM beams between different frequen-
cies via a nonlinear TWM process. The control field intensity
plays a critical role for a smooth transition between the EIT
and ATS schemes for the signal beam. We compare both EIT
and ATS protocols for exchange of vortices, and find that the
ATS provides a more favorable scenario than EIT in order to
achieve high conversion efficiency.

II. MODEL AND FORMULATION

We consider a quantum system characterized by a three-
level ladder scheme of energy levels, shown in Fig. 1. The
scheme involves a ground level |1〉 and two excited states
|2〉 and |3〉. The quantum system interacts with a probe
field of lower intensity (with the frequency ωp, wave vector
kp) coupling the transition |1〉 ↔ |2〉, and a control field of
much higher intensity (with the frequency ωc, wave vector kc)
coupling the transition |2〉 ↔ |3〉. The channel |1〉 ↔ |3〉 is
usually forbidden in natural atoms due to presence of selection
rules which prevent any three-wave mixing. However, this

transition is allowed in the symmetry-broken quantum sys-
tems, leading to a second-order nonlinear mixing signal with
a new frequency ωs = ωp + ωc. The nonlinear process for
sum-frequency generation can be described with the phase-
matching condition ks = kp + kc.

Applying the rotating-wave approximation for such a quan-
tum system, the interaction Hamiltonian reads (h̄ = 1)

H = δpσ22 + δpσ33 − 1
2 (�pσ21 + �cσ32 + �sσ31 + H.c.),

(1)
where δp = ω21 − ωp is the detuning of the probe field,
�p, �c and �s characterize the probe, control, and signal
laser fields, respectively, defined by �p = μ12Ep/h̄, �s =
μ13Es/h̄, �c = μ23Ec/h̄, where μi j is the electric dipole ma-
trix element associated with the transition from |i〉 to | j〉, and
Ep, Ec, Es are the slowly varying amplitudes of the applied
fields. Moreover, σi j = |i〉〈 j| characterizes the projection op-
erator of the ladder quantum scheme.

The control field frequency ωc is considered to match the
energy spacing ω32 between the levels |2〉 and |3〉. Yet, there
is one more detuning condition which should be satisfied
(δs = δp + δc), leading to the energy requirement condition
ωs = ωp + ωc. Since we assume δc = 0, this leads to δs = δp,
which has been applied in the Hamiltonian of Eq. (1). This
implies that the change in one detuning will also change the
other one.

The equations of the motion for the matter fields are

ρ̇31 = (γ31 + iδp)ρ31 + i

2
�s(ρ11 − ρ33) + i

2
�cρ21 − i

2
�pρ32,

ρ̇32 = −γ32ρ32 + i

2
�c(ρ22 − ρ33) − i

2
�∗

pρ31 + i

2
�sρ12,

(2)

ρ̇21 = −(γ21 + iδp)ρ21 + i

2
�p(ρ11 − ρ22) + i

2
�∗

cρ31 − i

2
�sρ23,

where the damping rates γ31, γ32 and γ21 are added
phenomenologically.

We assume the weak-field approximation [4,65] and apply
the perturbation ρi j = ρ

(0)
i j + ρ

(1)
i j + ..., where ρ

(0)
i j , ρ

(1)
i j , are

of the zeroth and first order in the weak fields. We further
assume that the quantum system is initially prepared in its
ground level |1〉. In this case, the zeroth-order solution is
ρ

(0)
00 � 1, and the other elements are zero (ρ (0)

i j = 0).
Considering the steady state of the fields by neglecting

the time derivatives in Eq. (2), and after some alge-
braic calculations, one can obtain the following off-diagonal
density-matrix elements describing the corresponding first-
order and second-order processes [64]:

ρ
(1)
21 = ρ

(L)
21 + ρ

(N )
21 = i�p(γ31 + iδp)

2Y
+ i2�∗

c�s

4Y
, (3a)

ρ
(1)
31 = ρ

(L)
31 + ρ

(N )
21 = i�s(γ21 + iδp)

2Y
+ i2�p�c

4Y
, (3b)

with Y = (γ21 + iδp)(γ31 + iδp) + |�c|2/4. The first terms
ρ

(L)
21 and ρ

(L)
31 in Eqs. (3a) and (3b) are proportional with

linear susceptibilities of the probe and sum-frequency gener-
ated signal beams. The second terms ρ

(N )
21 and ρ

(N )
31 describe

the second-order nonlinear TWM and its backward nonlin-
ear process via reabsorption, respectively [64]. Under the
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slowly varying amplitude approximation, the Maxwell equa-
tions governing the propagation of the probe field and the
generated sum-frequency signal field are

∂�p

∂z
= iα12ρ

(1)
21 , (4a)

∂�s

∂z
= iα13ρ

(1)
31 , (4b)

with the propagation constants α12(α13) proportional to
ωp|μ12|2(ωp|μ13|2). The diffraction terms containing the
transverse derivatives (2kp)−1∇2

⊥�p and (2ks)−1∇2
⊥�s are dis-

regarded in the Maxwell Eq. (4) (kp = ωp/c and ks = ωs/c are
the central wave vectors of the probe and generated beams).
These terms are considered as ∇2

⊥�p(s) ∼ ω−2�p(s), where ω

is a characteristic transverse dimension of the laser beams. It
can be a width of the vortex core if the beam carries an OAM
or a characteristic width of the beam for a nonvortex beam.
The change of the phase of the beams due to the diffraction
term after passing the medium is then approximated to be
L/2kω2, where L is the length of the sample, with k ≈ kp(s).
The phase change L/2kω2 can be neglected when the sample
length is not too large, Lλ/ω2 � π , where λ = 2π/k is an
optical wavelength. For instance, taking the length of the sam-
ple as L = 100 μm, the characteristic transverse dimension
of the beams to be ω = 20 μm, and the wavelength to be
λ = 1 μm, one finds Lλ/ω2 = 0.25. The diffraction terms in
such a condition do not play an important role and they can be
neglected from Eq. (4).

Substituting Eq. (3) into the Maxwell Eqs. (4) results in

∂�p

∂z
= iα12

[
i�p

2Y
(γ31 + iδp) + i2�s�

∗
c

4Y

]
, (5a)

∂�s

∂z
= iα13

[
i�s

2Y
(γ21 + iδp) + i2�p�c

4Y

]
. (5b)

III. EXCHANGE OF OPTICAL VORTICES

Let us consider a situation where the probe field is present
at the entrance to the medium �p(z = 0) = �p0 while the sig-
nal beam is absent �s(z = 0) = 0. Assuming α12γ31 = α13γ21

for simplicity, a solution to Eq. (5) for the generated signal
light �s reads

�s = γ21

γ31
�p0

�c√
δ2

p

(
1 − γ21

γ31

)2 + |�c|2 γ21

γ31

sin
βZ

4Y

× exp

[
−γ31Z

2Y
−

iδp
(
1 + γ31

γ21

)
Z

4Y

]
, (6)

where we have defined a modified propagation distance Z =
α12z, and β =

√
δ2

p(1 − γ31/γ21)2 + |�c|2γ31/γ21. One can fur-
ther simplify Eq. (6) for δp = 0, leading to

�s =
√

γ21

γ31
�p0

�c

|�c| exp

×
[
− γ31

γ21γ31+|�c|2/4
Z

]
sin

( √
γ31/γ21|�c|

4γ21γ31+|�c|2
Z

)
. (7)

FIG. 2. The dependence of dimensionless intensity
|�s(z)|2/|�p(0)|2 (TWM efficiency) against the effective
propagation distance Z/γ31 in two different regimes of EIT
(|�c| = 0.3γ31) and ATS (|�c| = 3γ31). The solid curve corresponds
to the EIT regime and dashed curve corresponds to the ATS regime.
The selected parameters are δp = 0 and γ21 = 0.05γ31.

Equations (6) and (7) indicate that the generated signal
beam �s can attain a vortex during its propagation if any of
the probe �p or the control �c beams is initially a vortex. In
this case, the OAM of initial vortices will be transferred to
the generated signal �s. The signal beam will have the same
vorticity as the initial vortex beams. Such an optical vortex
translation can be made possible in two different regimes;
the EIT and the ATS. EIT occurs for the signal beam in the
control field regime |�c| < |γ31 − γ21|, while ATS appears
in the control field regime |�c| > |γ31 − γ21| [8,64] (see also
the discussion in the Appendix). This implies that tuning the
knob of the control field causes smooth transition between the
EIT and ATS. Assuming γ21 = 0.05γ31, the EIT limit reduces
to |�c| < 0.95γ31 while it changes to |�c| > 0.95γ31 for the
ATS limit.

Before proceeding further, let us introduce the form of a
beam carrying an optical vortex

� j = ε j

(
r

ω

)|l j |
e− r2

ω2 eil jφ, (8)

with l j , φ, ω, ε j, and r parameters denoting OAM number, the
azimuthal angle, the beam waist, the strength of the beam, and
a cylindrical radius.

A. OAM exchange from probe to signal

With the goal of efficient transfer of optical vortices, let us
first consider a situation where the probe beam �p is vortex
defined by Eq. (8) with j = p. Figure 2 shows the dependence
of dimensionless intensity |�s(z)|2/|�p(0)|2 against the ef-
fective propagation distance in two different regimes of EIT
[|�c| = 0.3γ31(a)] and ATS [|�c| = 3γ31 (b)]. From Fig. 2(a),
one can see that when δp = 0, the generated beam in the EIT
limit is completely suppressed by the unwanted absorption
effects that cause signal loss on propagation, eliminating the
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FIG. 3. Intensity of control field |�c| as a function of r/ω for (a) lc = 1 and (b) lc = 3. The selected parameter is εc = 8γ31.

TWM efficiency for larger propagating distances. On the other
hand, the vortex conversion efficiency is enhanced by the ATS.
The maximum conversion efficiency in this case is observed to
reach 60%. This implies that the energy conversion between
probe and signal beams carrying an OAM in the ATS condi-
tion is considerably more efficient than that in the EIT limit.

B. OAM exchange from control to signal

In a second OAM exchange scenario, we consider a situa-
tion where the strong coupling field �c is an optical vortex
defined by Eq. (8) with j = c. As the control field is now
inhomogeneous, we need to identify the limits for the ATS
and EIT regimes. The intensity of control field |�c| is plotted
in Fig. 3 versus r/ω when εc = 8γ31 and for different OAM
numbers lc = 1 (a) and lc = 3 (b), respectively. The white
area represents the cylindrical radius zone where the EIT is

dominant (|�c| < 0.95γ31), while the gray area shows the
ATS zone (|�c| > 0.95γ31). Larger OAM numbers shift the
beam intensity profile; therefore, the EIT and ATS will be
established at different radial distance.

Identifying the cylindrical radius limits for the EIT and
ATS, we demonstrate in Fig. 4 the efficiency of TWM versus
r/ω for (a) lc = 1 and (b) lc = 3 at δp = 0. As expected, the
mixing efficiency in the EIT regime is quite lower than that in
the ATS regime. Moreover, the efficiency of TWM is changed
over the radial zone when the topological charge of vortex
beam is varied.

As shown in Fig. 4, the system lies always in the ATS
regime at r/ω = 1.4, while it goes to the EIT regime at r/ω =
2.5. The effect of OAM number lc on the efficiency of TWM
in both the ATS (a) and EIT (b) regimes is illustrated in Fig. 5.
One can see that the maximum TWM vortex conversion effi-
ciency for the EIT is quite low even for larger OAM numbers,

FIG. 4. TWM efficiency as a function of r/ω for (a) lc = 1 and (b) lc = 3. The selected parameters are γ21 = 0.05γ31, δp = 0, εc = 8γ31,
and Z = 1γ31.
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FIG. 5. TWM efficiency against the effective propagation distance Z/γ31 in (a) EIT regime (r/ω = 2.5), and (b) ATS regime (r/ω = 1.4).
The selected parameters are γ21 = 0.05γ31, δp = 0, and εc = 8γ31. The solid (dashed) curve corresponds to the OAM number lc = 1 (lc = 3).

and vanishes on propagation [see Fig. 5(a)]. However, the
conversion efficiency becomes considerably large in the ATS
limit, while it is enhanced for larger OAM numbers [see the
dashed curve in Fig. 5(b) for lc = 3].

To get a deeper physical insight into the origin of above
results, we plot in Fig. 6 the dependence of dimensionless
intensity |�s(z)|2/|�p(0)|2 against the probe field detuning
δp. We select r/ω = 2.5 in Fig. 6(a) to satisfy the EIT
limit (|�c| < 0.95γ31) on resonance of the probe field, while
r/ω = 1.4 in Fig. 6(b) for the ATS limit (|�c| > 0.95γ31)
at δp = 0. Obviously, there is a hole bored into the TWM
efficiency profile [Fig. 6(a)]. This suggests the presence of
strong absorption losses in the EIT limit when |�c| < 0.95γ31,
which suppresses the nonlinear sum-frequency process and
reduces the efficiency of vortex conversion on resonance. The
resonant TWM efficiency is greatly enhanced for the ATS
case when |�c| > 0.95γ31, indicating the superiority of ATS

to significantly enhance the nonlinear sum-frequency vortex
generation.

IV. SUMMARY

In summary, we have considered propagation of optical
vortices in a symmetry-broken three-level ladder quantum
coupling scheme interacting with probe, signal and control
beams. We studied the light-matter interaction under the sit-
uation where either the control or the probe beams carries
optical vortices. We have shown that the OAM of the initial
vortex beams can be transferred to a generated signal field via
a TWM process, and under two different regimes of EIT and
ATS. It is shown that the ATS regime provides much more
powerful condition than the EIT to exchange optical vortices
with maximum efficiency.

FIG. 6. TWM efficiency against the probe field detuning δp for (a) r/ω = 2.5, and (b) r/ω = 1.4. Here, Z = 1γ31, and the other selected
parameters are same as Fig. 5. The solid (dashed) curve corresponds to the OAM number lc = 1 (lc = 3).
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FIG. 7. The absorption spectrum of the system for the probe (a),(c) and signal (b),(d) beams against the probe field detuning δp for
�c = 0.3γ31(a),(b) and �c = 3γ31(c),(d). The selected parameters are same as Fig. 2.

A threshold factor |γ31 − γ21| is introduced to distinguish
between two different regimes where the OAM exchange can
occur. An increase of the intensity of the control field results
in a transition from EIT to ATS. EIT (ATS) is established
when the absolute value of the control field Rabi frequency
is smaller (larger) than the threshold factor. This indicates that
in the pursuit of empirically optimized high efficiency OAM
exchange process, the spatial shape of an intense control beam
becomes important if this beam carries an OAM. However, the
spatial profile of the weak probe field does not play any impact
in efficiency of energy conversion as the threshold factor is
controlled only by �c.

It should be pointed out that in addition to the two cases
proposed here for the exchange of vortices (probe to sig-
nal and control to signal), the OAM exchange can take
place under the condition where both probe and control
fields are initially vortices. The generated vortex beam in
this case acquires a vorticity of lc + lp. Yet, the generated
beam will experience strong absorption losses at the vortex
core.

APPENDIX: EIT AND ATS FOR THE PROBE AND
SIGNAL BEAMS

In this Appendix we make a few remarks related to the
three-level scheme proposed here and discuss conditions for
the appearance of EIT and ATS for the probe and signal
beams, enabling us to elucidate the origin of higher OAM
conversion in the ATS regime. We do so by studying absorp-
tion dependence of probe and signal beams without taking
into account any transverse dependence of the applied fields.
The light-matter coupling scheme illustrated in Fig. 1 can
be viewed as a three-level ladder-type EIT system with an
additional signal beam �s, making a closed-loop level struc-
ture. Such a closed-loop light-matter coupling consists of two
subschemes: (i) a ladder-type scheme which is composed of

|1〉 �p→ |2〉 and |2〉 �c→ |3〉 transitions, and (ii) a �-type scheme

made of transitions |1〉 �s→ |3〉 and |3〉 �c→ |2〉.
Let us now consider the decay rates γ31, γ21. In this pa-

per all involving parameters have been scaled by γ31, while
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we have assumed γ31 � γ21 such that a threshold factor
|γ31 − γ21| distinguishes the EIT and ATS limits. This as-
sumption for the decay rates makes it impossible to observe
EIT in the ladder scheme (i) when |�c| � γ31. Note that for
the ladder scheme (i) state |3〉 plays the role of a metastable
state which should weakly decay to get a perfect EIT γ31 → 0,
or |�c| � γ31 in order to observe an imperfect EIT. Therefore,
we expect a strong resonant absorption (instead of EIT) for
the weak probe field in the ladder scheme (i) in the regime
|�c| � γ31, as can be seen in Fig. 7(a).

On the other hand for the � scheme (ii) the middle state
|3〉 strongly decays, while the metastable state |2〉 decays with
a very weak rate. Therefore, the resonant absorption effects
can be reduced even for the weak coupling fields |�c| � γ31

[see Fig. 7(b)], which is the feature of EIT. Figure 7(d) shows
that stronger coupling intensities results in a more pronounced
transparency window around zero detuning due to the ATS
effect. Therefore, one may distinguish the EIT and ATS by
the coupling field intensity for the behavior of the signal field
[in the � scheme (ii)]. This is not, however, possible for the
behavior of the probe field [ladder scheme (i)], as no EIT
happens for a weak coupling field, and one may only see
absorption reduction in the probe field by a strong coupling
field and due to the ATS [see Fig. 7(c)]. This discussion
explicitly demonstrates the reason for superiority of ATS over
EIT in more efficient exchange of optical vortices as the probe
field in the EIT case always experiences absorption losses at
δp = 0.
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