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Manipulation and exchange of light with orbital angular momentum in quantum-dot molecules
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We study the interaction of laser pulses carrying orbital angular momentum (OAM) with structural asymmetry
quantum-dot molecules characterized by four energy levels. We demonstrate how the interdot tunneling endows
exchange of optical vortices between different frequencies. We consider a case where a weak probe beam has
an optical vortex and thus has a zero intensity at the center. The presence of tunneling coupling generates an
additional weak laser beam with the same vorticity as that of the incident vortex beam. We analyze conditions
for the vortex of the initial beam to be transferred efficiently to the generated beam. The propagation of
Laguerre-Gaussian (LG) beams possessing OAM states characterized by both azimuthal and radial indices is then
investigated for the case where the strong control beam is also an OAM mode. It is shown that the conservation
of OAM states is always satisfied over the OAM exchange process. Yet, an abnormal case is observed in which
the radial index induces some intensity patterns of the generated beam which differs from a pure LG beam
of incident beams. Analytical solutions are provided to elucidate such effects induced by radial indices on
propagation characteristics of OAM beams. When superimposing two initially present weak OAM modes, it
is observed that the resulting optical vortices move about the beam axis as the light propagates, forming a sort
of “constellation” around the center. The shift in axis of such a composite pulse is due to the effect of interdot
tunneling which is controlled by an external electric voltage. The optical angular momenta may add a new degree
of freedom in the study of solid systems suitable for quantum technologies.
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I. INTRODUCTION

Quantum dots (QDs) are semiconductor nanoparticles pos-
sessing wide application in quantum optics and quantum
information science because of their high nonlinear optical
susceptibility, large electric-dipole moments of intersubband
transitions, and great flexibility in designing devices [1,2].
Their size is typically on the order of several nanometers in
diameter [3]. The electrons and holes in such a scale are con-
fined in all three spatial dimensions making artificial atoms.
Closely spaced coupling of two or more quantum dots can
establish a quantum-dot molecule (QDM), in which an elec-
tron can pass through the potential barrier between quantum
dots via the interdot tunneling. As the QDMs cannot exhibit
vibrational or rotational features, they should display some-
what different properties with respect to the usual molecules.
The interdot tunneling induces the quantum coherence in
QDMs which can be controlled by applying an external static
gate voltage [4,5]. It is well established that quantum inter-
ference can lead to various nonlinear optical phenomena in
QDMs based on the interdot tunneling. Electromagnetically
induced transparency based on the interdot tunneling has
been introduced in 2006 [6]. Several other works have also
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studied various optical phenomena in QDMs controlled by
interdot tunneling. Examples include group velocity of light
pulse [7], four-wave mixing generation [8], entanglement
and quantum-information transfer [9], optical bistability [10],
transmission and reflection of pulse [11], and controlling the
Goos-Hänchen shift [12].

On the other hand, the orbital angular momentum (OAM)
of light affixes a new degree of freedom to optical tech-
nologies enabling widespread applications in data transmis-
sion, optical communication [13,14], optical tweezers [15],
and quantum information [16]. The OAM light is a vortex
beam which has a ring-shape intensity profile accompanied
by the helical phase front [17]. Although having a history
predating 1992, Allen et al. have been pioneers observing
such twisted light beams with helical wave fronts and a
phase singularity that gives rise to a dark spot in the center
with no intensity [18]. Such lights with OAM can be created
artificially through a variety of methods including cylindrical
lens mode converters [19], spiral phase plates [20], forked
diffraction gratings [21], computer-generated holograms [22],
and spatial light modulators (SLMs) [23]. It is worth noting
that an optical vortex, at a short wavelength, can damage
the liquid-crystal-based SLMs. Moreover, the practical lim-
itations are quite complex in the fabrication methods of the
spiral phase plates for the shorter wavelength ranges of
the optical vortices. Low output power and high losses are the
most common drawbacks when using the mode converters and
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forked diffraction gratings to generate the optical vortices with
the short wavelengths. However, the nonlinear effects with
the aid of quantum systems can be used to generate low loss
optical twisted beams [24].

A number of interesting quantum optical effects appear
when such a structured light interplays with the matter, such
as the second harmonic generation (SHG) [25,26], four-wave
mixing [27–30], sum-frequency generation [31], and spatially
structured electromagnetically induced transparency (EIT)
[32,33]. Recently and by using the Laguerre-Gaussian (LG)
beams, the quantum entanglement between an ensemble of
the three-level atomic systems and its spontaneous emissions
has been investigated. It has been found that the atom-photon
entanglement depends on the intensity profile as well as the
OAM of the applied fields in the closed-loop atomic sys-
tems [34]. Besides theoretical studies, there are a number of
valuable demonstrations on the interplay of matter with light
carrying OAM [35–37]. The generation of an OAM-carrying
ultraviolet (UV) light through SHG and OAM-entanglement
frequency transducer has been experimentally examined by
Zhou et al. [38,39]. Recent studies deal with the interaction
of matter with twisted light and explore the possibility of ex-
change of optical vortices between different light frequencies
[40–45]. The Juzelinūas team realized the exchange of OAM
modes in four- and five-level quantum systems [46,47]. The
transfer of optical vortices has been shown to be possible in
four-level EIT [48], coherent population trapping [49], and
phaseonium media [50]. Although the exchange of optical
vortices is not directly related to the topological photonics,
optical vortices can be used for creating the synthetic gauge
field for ultracold atoms [51,52]. Also, a vortex distortion can
induce a mode associated with a topological defect in the bulk
of a two-dimensional photonic material [53]. The transition
from a nontrivial (vortex) to a trivial (nonvortex) state of the
photon looks quite promising and may find some applications
in the topological photonic area.

As is known, the transitions between different electronic
states in semiconductor QD nanostructures can be opti-
cally excited by laser fields. Although plane waves have
mostly been employed to study the light-matter coupling,
little work has been carried out to excite QDs with the
OAM light. The optical absorption of twisted light by disk-
shaped semiconductor-based quantum dots have been theoret-
ically investigated in the presence of a static magnetic field
[54]. Light holes excitation by highly focused optical-vortex
beams have been theoretically studied in small quantum dots
[55]. Recently, the transfer of OAM of the twisted laser
beam into the molecule has been investigated by calcula-
tion of induced electronic orbital currents and magnetic field
[56,57].

The present work concentrates on the interaction of laser
beams carrying OAM with QDMs and studies the transfer of
OAM between laser fields via interdot tunneling. It is shown
that due to the presence of the interdot tunneling, a single
probe vortex beam initially acting on one transition of the
four-level QDM generates an extra laser beam with the same
vorticity as that of the incident vortex beam. Another favor-
able situation is then considered for the exchange of optical
vortices in which the strong control beam represents also a
LG beam. It is shown that the OAM number of the generated

twisted beam stays conserved during the OAM transfer. There
exists an abnormal case, however, where the radial index
develops some intensity-distribution patterns for the generated
beam different from the initial beams. Analytical solutions are
presented to explain this particular case. If the two incident
beams in LG modes are initially nonzero and are superim-
posed, they can generate a pattern of vortices with shifted axes
once the beams are propagating inside the medium. Such a
composite off-axis pattern of resulting beams is due to the
effect of interdot tunneling which can be controlled by an
external electric voltage.

It should be noted that although both works here and in
Ref. [50] utilize multilevel light-matter couplings, there exist
significant differences between them. While Ref. [50] deals
with nonclosed loop structures in cold atoms, here we study
the light-matter propagation in QDMs with energy levels
making a closed-loop level scheme. The atom-light coupling
in [50] is initially prepared in a superposition of lower levels,
creating a so-called phaseonium medium [58]. Moreover,
the atom-light interaction is assumed to be sufficiently weak
(�i � �), resulting in the transfer of vortices between weak
probe fields. On the other hand, the system here is initially
prepared in its ground level. In the presence of the tunneling
coupling, a strong control field could excite population to an
upper level. This allows the OAM of light to be transferred
from the strong control field to a weak generated probe
beam. Such a mechanism is completely different from the one
presented in [50] as it is rather based on a sort of transparency
created by the tunneling coupling (the tunneling induced
transparency) [59].

Such a transfer of optical vortices may find potential appli-
cation in the creation of structured light by another light [60]
and in the conversion of phase information from a given input
frequency to a completely different frequency. In addition, the
transfer of vortices is a possible tool for the manipulation of
information encoded into the OAM of light, and have impli-
cations on the inscription and storage of phase information
in light-matter coupling schemes [28]. The described process
allows creating a vortex at a shorter wavelength for which
it is not possible to do it directly with standard optics (e.g.,
far infrared or UV). An optical vortex at a short wavelength
can be used in high-resolution spectroscopy [61], increasing
the resolution below the diffraction barrier in fluorescence
microscopy [62], and entanglement of OAM states of photons
[63]. It is demonstrated that the off-axis optical vortices can
be used to trap and rotate both high and low index particles
using the high- and low-intensity regions of the optical beam
pattern, respectively [64].

The organization of the paper is as follows. In Sec. II we
introduce the model and present the formulation of the basic
set of equations by solving analytically the coupled Maxwell-
Bloch equations. The results are presented in Sec. III, while
Sec. IV summarizes the main results.

II. THEORETICAL FRAMEWORK

Let us consider a lateral quantum coupling between
two self-assembled (In,Ga)As/GaAs quantum dots with
different band structures. The self-assembled lateral QDMs
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FIG. 1. Schematic band structure and level configuration of the
QDM system. The electron and hole are shown by � and ⊕,
respectively.

can be produced by a unique combination of molecular
beam epitaxy and atomic layer precise in situ etching on
GaAs(001) substrates which can provide a low density, about
5 × 107 cm−2, homogeneous ensemble of QDMs consisting
of two dots aligned along the [11̄0] direction [65]. The
average lateral size of each QD is almost 35 nm. The interdot
barrier thickness is assumed to be a few nanometers (<8 nm)
to allow significant interdot electron tunneling to occur. The
interdot coupling can be controlled by applying an external
electric field along the molecular (coupling) axis via simple
Schottky contacts. For further experimental details of the
fabrication technique one can refer to [66].

Figure 1 illustrates a four-energy-level scheme for a double
coupled QD system. The ground state defines a level in which
two QDs are not excited. The state |2〉 stands for the level in
which an electron is excited to the conduction band in one
of the QDs to generate an exciton. The transfer of electron
via interdot tunneling to the conduction band of a second QD
and generation of an indirect exciton is shown by state |3〉.
Finally, state |4〉 describes the biexciton which is established
by exciting the electron to the conduction band of the first QD
[5,67].

The transition |i〉 ↔ | j〉 is excited by an external field with
the frequency ωi j and Rabi frequency �i j = �μi j · �Ei j/h̄(i, j ∈
1, . . . , 4) where μi j and Ei j are the induced dipole moment
of the transition |i〉 ↔ | j〉 and the amplitude of the applied
field, respectively. A weak probe field is applied to the tran-
sition |1〉 ↔ |2〉, while the transition |3〉 ↔ |4〉 is excited by
a strong control field. The states |2〉 and |3〉 are coupled
by the electron tunneling process. An extra weak field with
a frequency ω41 = ω21 + ω32 + ω43 is generated due to the
three-wave mixing. Note that ω32 is considered to be zero
owing to the negligible energy difference of the transition
|2〉 ↔ |3〉.

It is assumed that each pair of QDs is placed at a distance
much smaller than the relevant wavelength of applied fields
and the spatial dependence of the applied fields is dropped
(the dipole approximation), leading to the elimination of the
magnetic component of applied fields.

Applying the dipole and rotating-wave approximations, the
interaction Hamiltonian of the system can be written as

H =
∑

j

ε j | j〉〈 j| + Te(|2〉〈3| + |3〉〈2|)

− h̄[�∗
21ei�21t |1〉〈2| + �43e−i�43t |4〉〈3|

+�∗
4ei�41t |1〉〈4| + H.c.], (1)

where ε j is the energy of the state | j〉 and �i j = ωi j − ωi j de-
scribes the frequency detuning between the applied laser field
and resonant frequency, associating with the corresponding
transitions, |i〉 ↔ | j〉. The parameter Te represents the strength
of the interdot tunneling between the states |2〉 and |3〉 created
by a static electric field. The density-matrix equations for the
matter fields are

ρ̇11 = 2�21ρ22 + 2�41ρ44 + i�∗
21ρ21 − i�21ρ12 + i�∗

41ρ41

− i�41ρ14,

ρ̇22 = −2�21ρ22 + i�21ρ12 − i�∗
21ρ21 + iTe(ρ32 − ρ23),

ρ̇33 = 2�43ρ44 + i�∗
43ρ43 − i�43ρ34 + iTe(ρ23 − ρ32),

ρ̇12 = −(i�21 + �21)ρ12 + i�21(ρ22 − ρ11) − iTeρ13

+ i�∗
41ρ42,

ρ̇13 = −i[�41 − �43]ρ13 − i�43ρ14 + i�∗
21ρ23 + i�∗

41ρ43

− iTeρ12,

ρ̇14 = −[i�41 + �41]ρ14 − i�∗
43ρ13 + i�41(ρ44 − ρ11)

+ i�∗
21ρ24,

ρ̇23 = −�21ρ23 − i[�41 − �21 − �43]ρ23 + i�21ρ13

− i�43ρ24 + iTe(ρ33 − ρ22),

ρ̇24 = −[(i(�41 − �21) + �21 + �43 + �41)]ρ24 + iTeρ34

+ i�21ρ14 − i�∗
43ρ23 − i�∗

41ρ21,

ρ̇34 = −[i�43 + (�41 + �43)]ρ34 + iTeρ24 − i�∗
41ρ31

+ i�∗
43(ρ44 − ρ33),

ρ̇44 = −(ρ̇11 + ρ̇22 + ρ̇33). (2)

The above density-matrix equations represent the evolution of
the system affected by the laser fields and tunneling coupling.
They follow from the general quantum Liouville equation for
the density-matrix operator

∂ρ

∂t
= −i

h̄
[H, ρ] + L(ρ), (3)

where the damping operator L(ρ) describes the decoherence
processes. The steady-state analytical expressions for the co-
herence terms ρ21 and ρ41 can be obtained, by solving Eq. (2)
for �21 = �41 = �43 = γ under multiphoton resonance con-
dition, �43 = 0, �21 = �41 = �, giving

ρ21 = (Te�41 − �43�21)�∗
43 + i(γ� − �2)�21

(γ − i�)
(
iT 2

e + γ� − i�2 + i|�43|2
) ,

ρ41 = −Te(Te�41 − �43�21) − iγ��41 − �2�41

(γ − i�)
(
iT 2

e + γ� − i�2 + i|�43|2
) . (4)
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The Maxwell wave equations in the slowly varying envelope
approximation read

∂�21(z)

∂z
= i

αγ

2L
ρ21,

∂�41(z)

∂z
= i

αγ

2L
ρ41, (5)

where L and α are the length of the QDM ensemble and the
optical depth for both fields [48], respectively. Substituting
Eq. (4) into Eq. (5) and assuming � = 0, �41(z = 0) = 0, and
�21(z = 0) = �21, one arrives at the following equations:

�21(r, ϕ, z) = �21(r, ϕ)
[
T 2

e + exp
( − zα

2L

)|�43|2
]

T 2
e + |�43|2 (6)

and

�41(r, ϕ, z) = −
[ − 1 + exp

( − zα
2L

)]
Te�21(r, ϕ)�43

T 2
e + |�43|2 , (7)

which describe the propagation of fields inside the medium.

III. RESULTS AND DISCUSSIONS

The complex form describing the distribution of the field
amplitude of a LG beam can be expressed cylindrically as

�(r, ϕ) = �0
1√|l|!

(√
2r

wLG

)|l|
L|l|

p

(
2r2/w2

LG

)
e−r2/w2

LG eilϕ,

(8)
where �0, wLG, l , and p show the constant Rabi frequency,
beam waist radius, and azimuthal (OAM) and radial indices
of the LG modes, respectively. Here, the associated Laguerre
polynomial, L|l|

p , has the form

L|l|
p (x) = exx−|l|

p!

d p

dxp
[x|l|+pe−x], (9)

with x = 2r2/w2
LG determining the radial dependence of the

LG beams for different radial mode numbers. When l is not
zero, the LG light beams possess OAM along the optical axis.

A. Exchange of vortices

Let us now consider the spatial profile of the laser fields
described by Eq. (8). As Eq. (7) shows, the Rabi frequency of
the generated third field corresponds to the interdot tunneling
as well as the Rabi frequency of the probe and the strong
control fields. Thus, the generated laser field �41 is a vortex
if any of the fields �21, �43, or both of them are initially
vortices. Such a transfer of optical vortices is because of the
presence of the interdot tunneling which can be controlled by
applying an external electric voltage. Let us first assume that
only the probe field �21 is vortex. The effect of the interdot
tunneling strength, Te, on the dimensionless intensity of the
generated field |�41(z)|2/|�21(0)|2 has been shown by means
of Eq. (7). The dimensionless plot for the intensity of the
generated OAM field as a function of the tunneling strength
is shown at z = L in Fig. 2 for wLG = 0.5 mm, �43 = γ , and
α = 20. As expected, the intensity of the generated third field
is zero when the interdot tunneling strength is zero, Te = 0.
The generated third field grabs its maximal value for Te = 1.

FIG. 2. The dimensionless intensity of the generated third field
|�41(z)|2/|�21(0)|2 versus the tunneling strength for z = L, �43 =
γ , and α = 20.

This is an optimal value of tunneling coupling for which the
intensity of the generated OAM mode is the largest.

Next we consider the optimal interdot tunneling effect
and investigate the intensity of the probe and generated third
beams inside the QDM medium, using Eqs. (6) and (7). Fig-
ure 3 shows the dimensionless intensities |�21(z)|2/|�21(0)|2
and |�41(z)|2/|�21(0)|2 against the dimensionless distance
z/L for Te = 1. The other parameters are the same as in Fig. 2.
One can see that the laser field �41 has not yet been created at
the beginning of the ensemble where the weak probe beam has
just entered. Propagating inside the QD ensemble, the beam
�41 is generated. Equations (6) and (7) and Fig. 3 indicate
that both OAM beams experience energy losses mostly at the
beginning of the ensemble; going deeper into the ensemble,
losses disappear where the system is transferred to some
transparency state (see Fig. 3).

FIG. 3. The dimensionless intensity of fields |�21(z)|2/|�21(0)|2
and |�41(z)|2/|�21(0)|2 versus the dimensionless distance z/L for
Te = 1. Other parameters are the same as in Fig. 2.
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FIG. 4. The intensity and phase profiles of the generated third field as a function of x and y for the different modes of the probe LG field,
l21 = −2, −1, . . . , 2, with p21 = 0 (a) and p21 = 1 (b). The interdot tunneling parameter, beam waist, and constant Rabi frequency of the probe
LG field are chosen as Te = 1, wLG = 0.5 mm, and �210 = 0.01γ , respectively. The value of the interdot tunneling parameter is Te = 1. Other
parameters are the same as in Fig. 2.

In what follows, we proceed with the numerical simula-
tions to describe such a swapping in OAM modes based on
the interdot tunneling effect.

1. First case: Only �21 is a vortex

In Fig. 4(a), we show the intensity and phase profiles of the
generated OAM mode as a function of x and y for different
winding numbers l21 = −2,−1, . . . , 2 but with zero radial
index p21 = 0. The horizontal and vertical axes x and y are
scaled in millimeters. We take Te = 1, wLG = 0.5 mm, and
�210 = 0.01γ , and the other parameters the same as in Fig. 2.
It is observed that the intensity profile of the third generated
field has a Gaussian profile when l21 = 0. Yet, the doughnut
intensity profiles appear with a dark (blue) hollow center for
nonzero l21, indicating a conserved transfer of optical vortex
of the probe beam to the generated third beam. The diameter
of the doughnuts increases for the larger topological charges
l21. The helical phase patterns help to realize the nature of
the singularity at the core of the generated third OAM beam.
No singularity takes place at phase patterns when l21 = 0,
confirming a Gaussian-shaped wave front of the laser field

with a normal phase. The phase patterns start twisting for
nonzero vorticities.

Note that all profiles shown in Fig. 4(a) exhibit a single ring
in their intensity patterns, indicating their radial indices are
all at zero. Let us study in Fig. 4(b), the effect of the nonzero
radial index p (p21 = 1) on the intensity and phase profiles of
the generated OAM field for the different azimuthal indices
l21 = −2,−1, . . . , 2. While the central dark holes always
exist for nonzero vorticities, the radial index of the probe
LG beam develops some remarkable changes in the intensity
and phase profiles of the generated third field. In particular,
there exists now a dark ring between two bright rings in
each diagram for the intensity profile. However, measuring
an intensity profile is not always a very accurate way to
determine different mode indices for a particular vortex beam,
as sometimes the bright rings are too dim to be distinguished
by the naked eye (e.g., see intensity diagrams shown later in
Fig. 5). Helical phase profiles, instead, provide an accurate
and convenient way to check for different azimuthal and radial
indices. As an example, let us read the case with l21 = 2 and
p21 = 1, illustrated in the last diagram in the second row of
Fig. 4(b). The phase jumps from 0 to 2 × 2π = 4π at the
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FIG. 5. The intensity profiles of the generated field versus x and
y for different modes of the weak probe and strong control LG fields
with p21 = 1, p43 = 2, l21, l43 ∈ −1, 0, 1, �210 = 0.01γ , and �430 =
γ . Other parameters are the same as in Fig. 4.

beam center, indicating an azimuthal index l21 equal to 2.
Two zones appear from the core to the border of the phase
profile; at their boundary the phase diagram experiences a π

shift, where the corresponding light goes to zero in intensity.
The radial index for the generated beam is read to be 1,
which is due to the existence of two zones in the profile
separated by one π -shift boundary circle. To read and identify
l and p numbers for any unknown vortex beam, one can
develop a general manner; the azimuthal index is read with
nl if the phase jumps from 0 to 2nπ around the singularity
point, while the radial index is read with mp if the phase
diagram demonstrates a number of mπ -shift boundary circles
from the radial direction. One can use the above manner to
distinguish different azimuthal and radial indices for more
complex vortex beams such as those described in the next
sections.

2. Second case: Both �21 and �43 are vortices

Next, we study a situation where both �21 and �43 describe
optical vortices. In Fig. 5, we depict the intensity of the
generated third field as a function of x and y for different
modes of the probe and strong control LG beams with p21 =
1, p43 = 2, l21, l43 ∈ −1, 0, 1, �210 = 0.01γ , and �430 = γ ,
while the other parameters are the same as in Fig. 4. Figure 6
shows the corresponding phase patterns.

It is seen that the generated third beam develops a new
OAM state with the total azimuthal index of l21 + l43, mean-
ing that the total azimuthal index of applied beams remains
constant over the OAM exchange process. This is quite under-
standable from Eq. (7) as it is as a result of the OAM conserva-
tion. In a particular case when l21 = −l43 �= 0, the generated
third beam is no longer a vortex as the total topological charge
associated with the sum of incident beams becomes zero.
As an example, let us consider the last diagrams in the first
row in Figs. 5 and 6. As expected, the phase diagram of the
generated beam shows no singularity at the core. However,

FIG. 6. The phase profiles of the generated third field versus x
and y for the different modes of the applied LG fields. The parameters
used here are the same as in Fig. 5.

the intensity profile demonstrates a multiring pattern. Note
that such a pattern is not called a vortex, although it has
a zero intensity at the beam center. This abnormal intensity
distribution is due to the nonzero radial index for the incident
beams �21 and �43. According to Eqs. (8) and (9), the radial
coordinate dependence of the LG beam is modified when
p > 0, resulting in p + 1 concentric rings in the intensity
profiles with zero-intensity center.

According to Eq. (7), the generated third field is propor-
tional to the product of the weak probe �21 and strong control
�43 fields which are considered as the LG modes. When p =
0, the product of two Rabi frequencies of the LG modes makes
a single mode with l = l21 + l41, but the situation is com-
pletely different for p > 0. The product of two LG modes can
be expanded as a linear superposition of different LG modes.
The appropriate superposition of the contributing LG modes
of the generated third field has been analytically obtained for
several different LG modes. The detail of calculation is given
in the Appendix when l21 = −1, p21 = 1 and l41 = −1, p41 =
2. The coefficients appearing in the superposition mode deter-
mine the contribution of each LG mode to generate the third
field. The intensity and phase profiles of the corresponding
linear superpositions are shown in Fig. 7 for several different
LG modes. The first and second rows show the characteristics
of the weak probe and strong control fields, respectively, while
the third row illustrates the linear superposition for different
LG modes forming the generated third field. Note that such a
linear superposition state of different LG modes takes place
only under the effect of the QDM medium. Therefore, the
transfer of OAMs is accompanied by the exchange of different
radial modes of the applied LG fields.

B. Composite vortices

Let us next consider a case where both vortex beams
�41(z = 0) = �41(r, ϕ) and �21(z = 0) = �21(r, ϕ) are inci-
dent on the medium. The analytical expression describing the
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FIG. 7. The intensity and phase profiles of the corresponding superposition states by considering the effect of the QDM medium.

propagation of �41 then takes the form

�41(r, ϕ, z) =
[

exp
( − zα

2L

)
T 2

e + |�43|2
]
�41(r, ϕ)

T 2
e + |�43|2

+
[
1 − exp

( − zα
2L

)]
Te�43�21(r, ϕ)

T 2
e + |�43|2 . (10)

The intensity and helical phase profiles of the generated field
�41 are displayed in Figs. 8 and 9 for different interdot
tunneling parameters, Te = 0, 0.5, and 1. Different modes
of the probe LG fields are considered, i.e., (l21 = 1, l41 =
2), (l21 = 1, l41 = 3), (l21 = 1, l41 = 4), and (l21 = 1, l41 =
5), while p21 = p41 = 0. We take �410 = 0.01γ and the other

FIG. 8. The intensity profiles of the third field versus x and y
for the different modes of the probe LG fields, i.e., (l21 = 1, l41 =
2), (l21 = 1, l41 = 3), (l21 = 1, l41 = 4), and (l21 = 1, l41 = 5), with
p21 = p41 = 0 for different interdot tunneling parameters, Te =
0, 0.5, and 1. The constant Rabi frequency of the third field is chosen
as �410 = 0.01γ and the other parameters are the same as in Fig. 2.

parameters are the same as in Fig. 2. The left column of
Fig. 8 shows that for Te = 0, the two incident LG fields,
�41(0) and �21(0), do not interact with each other; hence, the
output field featured by Eq. (10) contains the same vorticity
as the input field �41(0). The incident applied LG fields start
interacting in the presence of the interdot tunneling effect,
forming the composite vortices. The tunneling coupling grows
more singularities at the transverse plane associated with zero-
intensity regions. For instance, when Te = 0.5 (as indicated in
the middle columns), the resulting composite beam �41 ex-
hibits a singularity at the core surrounded by some peripheral
vortices (constellation patterns). Increasing the interdot tun-
neling parameter to Te = 1, moves the position of peripheral
vortices far away from the central vortex. Generally speaking,
if |l21| < |l41|, the resulting composite beam acquires a vortex
of vorticity |l21| located at the beam core which is surrounded
by |l21 − l41| peripheral vortices.

FIG. 9. The phase profiles of the third field versus x and y. The
parameters used here are the same as in Fig. 8.
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IV. CONCLUDING REMARKS

To conclude, we have investigated the interplay of light
beams with OAM with structural asymmetry quantum-dot
molecules with four energy levels. It has been shown that
the interdot tunneling effect can induce the OAM transfer
between different frequencies. We have considered a partic-
ular situation where a weak probe beam is initially a vortex
beam. Due to the effect of tunneling coupling, an extra laser
is generated with the same winding number as that of the
incident probe field. An efficient condition is considered for
such exchange of optical vortices. We have also studied the
propagation of LG beams with azimuthal and radial indices
when the strong control beam is also an OAM mode. An
abnormal case is observed in which the radial index induces
some intensity patterns for the generated beam which is quite
different from the incident pure LG beams. An analytical
model is presented to understand such an effect of radial
index. We have also shown that when the two vortex beams
are present at the beginning of the medium and as a result
of tunneling coupling, composite vortices can take place with
shifted axes.
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APPENDIX

In this Appendix, we evaluate the pure LG modes that
contributed to the generation of the third field. Considering
two applied fields as

�21(r, ϕ) = �210

1√|l21|!

(√
2r

wLG

)|l21|
e−il21ϕ

× L|l21|
1

(
2r2/w2

LG

)
e−r2/w2

LG ,

�43(r, ϕ) = �430

1√|l43|!

(√
2r

wLG

)|l43|
e−il43ϕ

× L|l43|
2

(
2r2/w2

LG

)
e−r2/w2

LG , (A1)

with l21 = l43 = −1, the generated third field has the form

�41(r, ϕ, z) = −
[ − 1 + exp

( − zα
2L

)]
Te�21�43

T 2
e + |�43|2

= −
[ − 1 + exp

( − zα
2L

)]
Te

T 2
e + |�43|2 �210�430

×
(

1√| − 1|!
)2

⎡
⎣

(√
2r

wLG

)|−1|⎤⎦
2

× e−2r2/w2
LG e−2iϕL|−1|

1

(
2r2/w2

LG

)
× L|−1|

2

(
2r2/w2

LG

)
. (A2)

Some of the associated Laguerre polynomials can be used for
obtaining the superposition of the pure LG modes forming
the generated third field. The needed associated Laguerre
polynomials are

L|−1|
1 (x) = (2 − x),

L|−1|
2 (x) = 1

2 (6 − 6x + x2),

L|−2|
0 (x) = 1,

L|−2|
1 (x) = 3 − x,

L|−2|
2 (x) = 1

2 (12 − 8x + x2),

L|−2|
3 (x) = 1

6 (60 − 60x + 15x2 − x3). (A3)

Substituting Eq. (A3) into Eq. (A2), the following superpo-
sition of pure LG modes is obtained for the generated third
field

�41(r, ϕ, z) = −
[ − 1 + exp

( − zα
2L

)]
Te

T 2
e + |�43|2 �210�430

(
1√| − 1|!

)2
⎡
⎣(√

2r

wLG

)|−1|⎤⎦
2

e−2r2/w2
LG e−2iϕ

(
6 − 9x + 4x2 − 1

2
x3

)
,

= −
[ − 1 + exp

( − zα
2L

)]
Te

T 2
e + |�43|2 �210�430 e−r2/w2

LG
( − 3LG−2

0 + 7LG−2
1 − 7LG−2

2 + 3LG−2
3

)
, (A4)

in which LGl
p indicates a pure LG mode with the radial index p and azimuthal index l .
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