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b Department of Physics, National Technical University of Athens, Athens, 157 80, Greece 
c Materials Science Department, School of Natural Sciences, University of Patras, Patras, 265 04, Greece   

A R T I C L E  I N F O   

Keywords: 
Non-linear optics 
Plasmon 
Nanostructure 
Quantum system 

A B S T R A C T   

We investigate the nonlinear optical response of a four-level double-V-type quantum system interacting with a 
pair of weak probe fields while located near a two-dimensional array of metal-coated dielectric nanospheres. 
Such a quantum system contains a V-type subsystem interacting with surface plasmons, and another V-type 
subsystem interacting with the free-space vacuum. A distinctive feature of the proposed setup is its sensitivity to 
the relative phase of the applied fields when placed near the plasmonic nanostructure. We demonstrate that due 
to the presence of the plasmonic nanostructure, the third-order (Kerr-type) susceptibility for one of the laser 
fields can be significantly modified while another probe field is acting. Moreover, the Kerr nonlinearity of the 
system can be controlled and even enhanced by varying the distance of the quantum system from the plasmonic 
nanostructure. We also show that the Kerr nonlinearity of such a system can be controlled by adjusting the 
relative phase of the applied fields. The results obtained may find potential applications in on-chip nanoscale 
photonic devices.   

1. Introduction 

Recently, it has been revealed that nonlinear optical effects can be 
significantly modified and eventually enhanced at the nanoscale when 
quantum systems are placed near plasmonic nanostructures. The strong 
modification of nonlinear effects is attributed to the large enhancement 
of the applied electric field, the substantial modification of the sponta-
neous decay rate, and the strong exciton-plasmon coupling for quantum 
systems near plasmonic nanostructures. Many interesting phenomena 
have been pointed out in this research area including gain without 
inversion [1–6], optical transparency and slow light [7–9], enhance-
ment of the refractive index without absorption [8,10], electromagnet-
ically induced grating [11,12], the manipulation of spontaneous 
emission [13–17], Fano effects in energy absorption [18–21], optical 
bistability [22–24], and enhanced second-harmonic generation [25,26], 
third-harmonic generation [27], and four-wave mixing [28–30]. 

Kerr nonlinearity, which is proportional to the third-order suscepti-
bility, plays a crucial role in nonlinear and quantum optics. A large third- 
order nonlinear susceptibility [31–35] is of interest as it can be used for 
the realization of single-photon nonlinear devices [36,37]. However, for 
many years experimental research on quantum nonlinear optics has 

been limited due to the weak nonlinear response of the available ma-
terials. Recently, modification, and in particular enhancement, of the 
Kerr nonlinearity near plasmonic nanostructures have been proposed 
and analyzed [38–45]. 

A particular quantum system with interesting optical response is the 
four-level double-V quantum system. When located near a two- 
dimensional array of metal-coated dielectric nanosphere, this scheme 
exhibits quantum interference in spontaneous emission [15]. Namely, it 
was shown that optical transparency associated with slow light [7] and 
the strongly modified Kerr nonlinearity [39] appear in this system when 
interacting with a single weak probe beam of light near the periodic 
plasmonic nanostructure. If the system interacts with two laser fields, an 
extra degree of control can be realized exploiting the extra field as well 
as the phase difference of the applied fields. The later gives rise to phase 
dependent optical effects [5,8]. However, the control of Kerr nonline-
arity for this quantum system under the interaction with two laser fields 
has not been yet analyzed. 

In the present work, we explore the nonlinear optical properties of 
the four-level double-V-type quantum system interacting with a pair of 
weak probe fields and placed near a two-dimensional array of metal- 
coated dielectric nanospheres. The double-V-type system has two V- 
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type subsystems. The upper V-type subsystem is influenced by its 
interaction with localized surface plasmons, while the other V-type 
subsystem interacts with the free-space vacuum. By means of a density 
matrix method, we calculate the linear and nonlinear optical suscepti-
bilities for one of the laser fields in the presence of the other field and the 
plasmonic nanostructure. We demonstrate that the presence of the 
plasmonic nanostructure results in significant modification, and even 
enhancement, of the third-order nonlinear susceptibility for one of the 
probe fields. We find that the nonlinear optical susceptibility of the 
quantum system can be controlled through different external parameters 
such as the distance of the quantum system from the nanostructure as 
well as the relative phase between applied fields. 

2. Theoretical model and formulation 

The quantum system under study is presented in Fig. 1(a): a four- 
level system containing two closely lying upper states |2〉 and |3〉, and 
two lower states |0〉 and |1〉, making a four-level double-V quantum 
system. The quantum system is in vacuum and at distance d from the 
surface of the plasmonic nanostructure. It is placed right opposite the 
center of a nanosphere, i.e., at the center of the 2D unit cell of the 
(periodic) plasmonic nanostructure. At this (lateral) placement of the 
quantum system, the resulting quantum interference p is maximized. 
The states |2〉 and |3〉 denote two Zeeman sublevels (J = 1, MJ = ±1). 
The two lower states |0〉 and |1〉 are corresponding levels with J = 0. One 
can define a dipole moment operator as 

μ⃗ = μ′

(|2〉〈0|ϵ̂ − + |3〉〈0|ϵ̂+) + μ(|2〉〈1|ϵ̂− + |3〉〈1|ϵ̂+), (1)  

where ϵ̂± = (ez +iex)/
̅̅̅
2

√
stand for the right-rotating (ϵ̂+) and left- 

rotating (ϵ̂ − ) unit vectors, while μ and μ′ are real. 
We assume that the quantum system interacts with two circularly 

polarized continuous-wave electromagnetic laser fields with total elec-
tric field 

E
⃗
(t) = ϵ̂+Eacos(ωat+φa) + ϵ̂ − Ebcos(ωbt+φb), (2)  

where Ea(Eb) characterizes the electric-field amplitude, ωa(ωb) denotes 
the angular frequency, and φa(φb) is the individual phase for the field a 
(b). The laser field a acts between the lower level |0〉 and the upper state 
|2〉. The second laser field b couples the lower level |0〉 to the upper state 
|3〉. The transition |0〉 ↔|1〉 is dipole forbidden. Note that both fields are 
taken to have equal frequencies ωa = ωb = ωL. 

Next, we assume that the upper V-type subsystem containing the 
states transitions |2〉, |3〉 and |1〉 lies within the surface-plasmon bands 
of the plasmonic nanostructure, whereas the lower V-type subsystem 
with states |2〉, |3〉 and |0〉 is spectrally distant from the surface-plasmon 
bands, and it is therefore not affected by the plasmonic nanostructure 
[15]. As a result, the spontaneous decay in lower V subsystem occurs 
because of the interaction of the quantum system with the free-space 
vacuum electromagnetic modes. This quantum system can be realized 
in hyperfine sublevels of D lines in alkali-metal atomic systems, such as 
85Rb and 87Rb [8,9,17]. Similar interactions can also be realized in 
quantum dots, like in dual CdSe/ZnS/CdSe quantum dots [8,9]. The 
dynamics of the system is described from the master equation 

ρ̇s = −
i
ℏ
[He, ρs] + ℒρs, (3)  

with 

He = ℏ
[(

− δ −
ω32

2

)
|2〉〈2| +

(
− δ +

ω32

2

)
|3〉〈3|

−

(
Ωaeiφa

2
|0〉〈2| +

Ωbeiφb

2
|0〉〈3| + H.c.

)]

,

(4)  

where Ωa = μ′Ea/
̅̅̅
2

√
ℏ and Ωb = μ′Eb/

̅̅̅
2

√
ℏ are the Rabi frequencies for 

the two fields. The parameter δ = ωL − ω̃ is the detuning from resonance 
with the average transition energy of states |2〉 and |3〉 from state | 
0〉 [ω̃ = (ω2 + ω3)/2 − ω0] and ω32 = (ω3 − ω2)/2, where ℏωj = ℏωj, j =
0–3 is the energy of state |j〉. The operator ℒρs in Eq. (3) represents the 
dissipation processes which is given by 

ℒρs = γ′

(|0〉〈2|2ρs|2〉〈0| − |2〉〈2|ρs − ρs|2〉〈2|)
+γ′

(|0〉〈3|2ρs|3〉〈0| − |3〉〈3|ρs − ρs|3〉〈3|)
+γ(|1〉〈2|2ρs|2〉〈1| − |2〉〈2|ρs − ρs|2〉〈2|)
+γ(|1〉〈3|2ρs|3〉〈1| − |3〉〈3|ρs − ρs|3〉〈3|)
+κ(|1〉〈3|2ρs|2〉〈1| − |2〉〈3|ρs − ρs|2〉〈3|)
+κ(|1〉〈2|2ρs|3〉〈1| − |3〉〈2|ρs − ρs|3〉〈2|)
+γ′ ′(|0〉〈1|2ρs|1〉〈0| − |1〉〈1|ρs − ρs|1〉〈1|).

(5)  

The first two terms in Eq. (5) contain the free-space spontaneous decay 
γ′ = Γ0 [5]. The decay from the two upper states to the lower level is 
assumed to be the same. The energy difference of states |2〉 and |3〉 is 
rather small, i.e., ω32 is only a few Γ0, where Γ0 is the decay rate in free 
space [15]. The term involving γ′ ′ is very small (γ′ ′ ≪ γ, γ′) as it arises 
from a dipole forbidden transition. In this paper we neglect it by taking 
γ′ ′ = 0. 

The following equations are obtained for the density matrix elements 
by using Eq. (3) which describes the dynamics of the quantum system 

ρ̇20 =
(

iδ + i
ω32

2
− γ − γ′

)
ρ20 − κρ30 

+i
Ωa

2
(ρ00 − ρ22) − i

Ωb

2
e− iφρ23, (6)  

ρ̇30 =
(

iδ − i
ω32

2
− γ − γ′

)
ρ30 − κρ20 

+i
Ωb

2
e− iφ(ρ00 − ρ33) − i

Ωa

2
ρ32, (7)  

Fig. 1. Schematic diagram of the four-level double-V-type quantum system (a). 
A metal-coated dielectric nanosphere (b) and a 2D array of such spheres (c). 
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ρ̇23 = (iω32 − 2γ − 2γ′

)ρ23 + i
Ωa

2
ρ03 

− i
Ωb

2
eiφ − κ(ρ22 + ρ33), (8)  

ρ̇00 = 2γ′

(ρ22 + ρ33) − i
Ωa

2
(ρ02 − ρ20)

− i
Ωb

2
(ρ03e− iφ − ρ30eiφ), (9)  

ρ̇22 = − 2(γ + γ′

)ρ22 + i
Ωa

2
(ρ02 − ρ20)

− κ(ρ23 + ρ32), (10)  

ρ̇33 = − 2(γ + γ
′

)ρ33 + i
Ωb

2
(ρ03e− iφ − ρ20eiφ)

− κ(ρ23 + ρ32), (11)  

along with the population conservation ρ00 + ρ11 + ρ22 + ρ33 = 1 and 
ρij = ρ∗ji. The optical coherence corresponding to the probe transition of | 
0〉 → |2〉 (|0〉 → |3〉) is ρ20(ρ30), and the relative phase of the applied 
fields is denoted by φ = φb − φa. Note that the probe fields are assumed 
to be very weak so that one can treat them as a perturbation. In the 
above equations, the parameter κ is the coupling coefficient between 
states |2〉 and |3〉 due to spontaneous emission in a modified anisotropic 
vacuum [46] (anisotropic Purcell effect) which is responsible for the 
appearance of quantum interference [47]. 

The values of γ and κ are given by [13,14,48–52]. 

γ =
μ0μ2ω2

2ℏ
ϵ̂− . ImG(r, r;ω). ϵ̂+, (12)  

κ =
μ0μ2ω2

2ℏ
ϵ̂+. ImG(r, r;ω). ϵ̂+. (13)  

Here, G(r, r;ω) [ω = (ω3 + ω2)/2 − ω1] describes the dyadic electro-
magnetic Green’s tensor, while r and μ0 refer to the position of the 
quantum emitter and the permeability of vacuum, respectively. One can 
obtain the values of γ and κ from Eqs. (12) and (13) as [13,14,48–52]. 

γ =
μ0μ2ω2

2ℏ
Im[G⊥(r, r;ω) + G‖(r, r;ω)]

=
1
2
(Γ⊥ + Γ‖),

(14)  

κ =
μ0μ2ω2

2ℏ
Im[G⊥(r, r;ω) − G‖(r, r;ω)]

=
1
2
(Γ⊥ − Γ‖),

(15)  

where G⊥(r, r;ω) = Gzz(r, r;ω) and G‖(r, r;ω) = Gxx(r, r;ω) show com-
ponents of the electromagnetic Green’s tensor, where the symbol ⊥(‖) 
refers to a dipole oriented normal, along the z axis (parallel, along the x 
axis) to the surface of the nanostructure. Let us also define the sponta-
neous emission rates normal and parallel to the surface as Γ⊥,‖ =

μ0μ2ω2 Im
[
G⊥,‖(r, r;ω)

]/
ℏ. The degree of quantum interference is then 

given by 

p = (Γ⊥ − Γ‖)/(Γ⊥ +Γ‖). (16)  

When p = ±1 the maximum quantum interference is obtained in spon-
taneous emission [47]. This is achieved by placing the emitter close to a 
structure that completely quenches either Γ⊥ or Γ‖. When the emitter is 
placed in vacuum, Γ⊥ = Γ‖ leading κ = 0, hence no quantum interference 
occurs in the system. 

The plasmonic nanostructure considered here is a 2D array of 
touching metal-coated silica nanospheres [see Fig. 1(b) and (c)]. The 
dielectric function of the shell is provided by a Drude-type electric 

permittivity 

ε(ω) = 1 −
ω2

p

ω(ω + i/τ), (17)  

where ωp is the bulk plasma frequency and τ the relaxation time of the 
conduction-band electrons of the metal. A typical value of the plasma 
frequency for gold is ℏωp = 8.99 eV. This also determines the length 
scale of the system as c/ωp ≈ 22 nm. The dielectric constant of SiO2 is 
taken to be ε = 2.1. In the calculations we have taken τ− 1 = 0.05ωp. The 
lattice constant of the square lattice is a = 2c/ωp and the sphere radius S 
= c/ωp with core radius Sc = 0.7c/ωp. Using this particular choice of 
sphere/core radius and lattice constant we achieve maximization of the 
quantum interference rate p which prerequisite for the observation of 
the results present below. 

For the calculation of the spontaneous decay rates next to the plas-
monic nanostructure, we use the layered multiple scattering method 
[13,53–55]. We take ω = 0.632ωp while the distance between the 
quantum system and the surface of the plasmonic nanostructure, d, 
varies from 0.5c/ωp to c/ωp. For the results of Γ⊥ and Γ‖ that are used 
here, we refer to Fig. 3 in Ref. [7]. It is found that Γ‖ gives significant 
suppression and its actual value is remarkably lower than the free-space 
decay rate. In addition, the value of Γ⊥ decreases with increasing dis-
tance between the quantum system and the plasmonic nanostructure. 
For distances close to the plasmonic nanostructure, Γ⊥ becomes much 
larger than the free-space decay rate. The value of Γ⊥ is larger than the 
free-space decay rate for distances up to 0.6c/ωp, while for distances 
between 0.65c/ωp and c/ωp the value of Γ⊥ becomes lower than the 
free-space decay rate. 

3. Calculation of linear and nonlinear susceptibilities 

In this section we calculate the linear and nonlinear electric sus-
ceptibilities for the laser field Ωa. The probe fields are weak enough and 
are treated as perturbation to the system under steady-state condition. 
The method we use extends to third order the method presented in 
Ref. [56], and it is similar to that used in Ref. [57]. Under the weak-field 
approximation, the perturbation approach is applied to the 
density-matrix elements, which is expressed in terms of a perturbative 
expansion 

ρij = ρ(0)
ij + λρ(1)

ij + λ2ρ(2)
ij + λ(3)ρ(3)

ij + …, (18)  

where λ is a continuously varying parameter ranging from zero to unity. 
The constituting terms ρ(n)

ij with n = 1, 2, 3 are of the nth order in the 
probe fields. Since the probe fields are assumed to be weak, the zeroth- 
order solution is ρ(0)

00 = 1, while the other elements ρ(0)
ij = 0. Replacing 

Eq. (18) into Eqs. 6–11, the equations of motion for the first- and third 
order density-matrix elements are given by 

ρ̇(1)
20 =

(
iδ + i

ω32

2
− γ − γ′

)
ρ(1)

20 − κρ(1)
30 + i

Ωa

2
, (19)  

ρ̇(1)
30 =

(
iδ − i

ω32

2
− γ − γ′

)
ρ(1)

30 − κρ(1)
20 + i

Ωb

2
e− iφ, (20)  

and 

ρ̇(3)
20 =

(
iδ + i

ω32

2
− γ − γ′

)
ρ(3)

20 − κρ(3)
30 

+i
Ωa

2
(ρ(2)

00 − ρ(2)
22 ) − i

Ωb

2
e− iφρ(2)

23 , (21)  

ρ̇(3)
30 =

(
iδ − i

ω32

2
− γ − γ′

)
ρ(3)

30 − κρ(3)
20 

+i
Ωb

2
e− iφ(ρ(2)

00 − ρ(2)
33 ) − i

Ωa

2
ρ(2)

32 . (22) 

After some lengthy but straightforward algebra we get 
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ρ(1)
20 = i

Ωa

2
S1 − iκ

Ωb

2
e− iφS2, (23)  

ρ(1)
30 = i

Ωb

2
e− iφS3 − iκ

Ωa

2
S2. (24)  

and 

ρ(3)
20 = − a2κ − a1

(
iδ − i

ω32

2
− γ − γ′

)
(25)  

ρ(3)
30 = − a1κ − a2

(
iδ + i

ω32

2
− γ − γ′

)
, (26)  

where 

S1 =

(
− iδ + i ω32

2 + γ + γ′
)

(
− iδ + i ω32

2 + γ + γ′

)(
− iδ − i ω32

2 + γ + γ′

)
− κ2

, (27)  

S2 =
1

(
− iδ + i ω32

2 + γ + γ′

)(
− iδ − i ω32

2 + γ + γ′

)
− κ2

, (28)  

S3 =

(
− iδ − i ω32

2 + γ + γ′
)

(
− iδ + i ω32

2 + γ + γ′

)(
− iδ − i ω32

2 + γ + γ′

)
− κ2

, (29)  

and 

a1 =
− i Ωa

2 (ρ(2)
00 − ρ(2)

22 ) − i Ωb
2 e− iφρ(2)

23(
− iδ + i ω32

2 + γ + γ′

)(
− iδ − i ω32

2 + γ + γ′

)
− κ2

, (30)  

a2 =
− i Ωb

2 e− iφ(ρ(2)
00 − ρ(2)

33 ) − i Ωa
2 ρ(2)

32(
− iδ + i ω32

2 + γ + γ′

)(
− iδ − i ω32

2 + γ + γ′

)
− κ2

. (31) 

The second-order density matrix elements of Eqs. (25) and (26) 
featured in Eqs. (30) and (31) can be solved to obtain the steady-state 
solutions ρ(2)

ij (see Appendix A). In order to obtain the linear suscepti-
bility χ(1) and the third-order nonlinear susceptibility χ(3), the suscep-
tibility is assumed to be written as 

χ ≈ χ(1) + 3χ(3)E2
a

/
4. (32)  

Then, using 

χ(δ) =
̅̅̅
2

√
Nμ′

ϵ0Ea
ρ20, (33)  

and expanding ρ20 in perturbation series we get 

χ(1)(δ) =
̅̅̅
2

√
Nμ′

ϵ0Ea
ρ(1)

20 =
Nμ′2

ϵ0ℏ
ρ(1)

20

Ωa
, (34)  

and 

χ(3)(δ)E2
a =

4Nμ′2

3ϵ0ℏ
ρ(3)

20

Ωa
. (35) 

Substituting Eqs. 27–31 [and using Eqs. 44–50] into equations 23 
and 25 and defining x =

Ωb
Ωa

, Eqs. (34) and (35) become 

χ(1)(δ) =

Nμ′2

ϵ0ℏ

− iκA + B
(

δ −
ω32

2
+ iγ + iγ′

)

(
− iδ + i

ω32

2
+ γ + γ′

)(
− iδ − i

ω32

2
+ γ + γ′

)
− κ2

,
(36)  

and 

χ(3)(δ) =

2Nμ′4

3ϵ0ℏ3

− iκC + D
(

δ −
ω32

2
+ iγ + iγ′

)

(
− iδ + i

ω32

2
+ γ + γ

′
)(

− iδ − i
ω32

2
+ γ + γ

′
)
− κ2

,
(37)  

where here ϵ0 is the vacuum permittivity and N is the density of the 
quantum systems, where A, B, C and D are defined in Appendix B. 

The refraction part of the third-order susceptibility χ(3) corresponds 
to the Kerr nonlinearity, while its imaginary part determines the 
nonlinear absorption. The real and imaginary parts of χ(1) represent the 
linear dispersion and absorption, respectively. From Eqs. (36) and (37) 
one can clearly see that the expressions for the linear and nonlinear 
susceptibility are very similar in form with the only difference in their 
coefficients. So, one may expect to observe similar variation of the 
curves for χ(1) and χ(3) with the difference in their magnitude. However, 
this does not happen as the coefficients of the linear susceptibility does 
not depend on the detuning δ and the coefficients of the nonlinear sus-
ceptibility depends strongly on the detuning δ, so the frequency varia-
tion of the two susceptibilities is different. In addition, one can see that 
the linear and nonlinear susceptibilities χ(1) and χ(3) can be controlled by 
the system parameters such as the relative phase of applied fields φ. 

4. Phase dependent Kerr nonlinearity 

Next we study the nonlinear response of the quantum system to the 
probe field Ωa for weak intensities via numerical simulation (the linear 

and nonlinear susceptibilities are plotted in units of Nμ′2

ϵ0ℏ and 2Nμ′4

3ϵ0ℏ3, 
respectively). Fig. 2 shows the real and imaginary parts of χ(1) and χ(3) as 
a function of the detuning δ when the quantum system is in vacuum, i.e., 
without the plasmonic nanostructure. We assume that the two upper 
levels are degenerate (E2 = E3 leading to ω32 = 0). This assumption 
significantly simplifies Eqs. (36) and (37) giving (for δ = 0) analytical 
expressions for the linear as well as nonlinear absorption and dispersion 
coefficients (see Appendix C). The typical linear [Fig. 2(a)] and 
nonlinear [Fig. 2(b)] susceptibility spectra for this case are such that the 
medium experiences strong linear and nonlinear absorption at δ = 0. 
This is already expected from Eqs. (36) and (37) when the quantum 
system is not near the plasmonic nanostructure (κ = 0 and γ = Γ0). 
Setting κ = 0 and γ = Γ0 into Eqs. (63)–(66), one can simplify these 
equations giving the resonant linear and nonlinear absorption and 
dispersion coefficients 

Im(χ(1)(δ= 0)) =
Nμ′2

ϵ0ℏ
1

(Γ0 + γ′
)
, (38)  

Re(χ(1)(δ= 0)) = 0, (39)  

Im(χ(3)(δ= 0)) =
2Nμ′4

3ϵ0ℏ3
1 − x2

8(Γ0 + γ′
)

2, (40)  

Re(χ(3)(δ= 0)) = 0. (41) 

Fig. 2. (a) Linear susceptibility χ(1) and (b) nonlinear susceptibility χ(3) of the 
quantum system for the weak probe field Ωa in arbitrary units as a function of 
the probe detuning δ in the absence of the plasmonic nanostructure. We have 
assumed that ω32 = 0, γ′ = 0.3Γ0 and γ′ ′ = 0. 
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On exact resonance, the Kerr nonlinearity is zero for the quantum 
system [see Fig. 2(b) and (Eq. (41))], while its magnitude is very weak 
around the resonance accompanied by the linear (Eq. (38)) and 
nonlinear (Eq. (40)) absorption. The slope of linear dispersion is nega-
tive around zero probe detuning suggesting superluminal light propa-
gation [Fig. 2(a)]. We note that no phase dependence is obtained in this 
case. 

The linear and nonlinear optical properties of the quantum system 
are very different when the quantum system is placed near the plas-
monic nanostructure. In Fig. 3(a) and (c) where the quantum system is 
near the plasmonic nanostructure, we obtain a gain dip in the linear 
absorption profile at δ = 0. The slope of linear dispersion becomes 
positive, indicating slow light condition. As shown in Fig. 3(b) and (d), 
the enhanced Kerr nonlinearity appears inside the linear gain regions. 
The maximal Kerr nonlinearity around resonance is enhanced by almost 
four times when the distance between the quantum emitter and the 
nanostructure increases from d = 0.3c/ωp [Fig. 3(b)] to d = 0.6c/ωp 
[Fig. 3(d)]. 

As illustrated in Fig. 4, both χ(1) and χ(3)are observed to behave 
differently for large distances of the quantum system from the plasmonic 
nanostructure. We observe that linear gain changes to a double-peaked 
absorption spectrum for d = 0.7c/ωc (Fig. 4(a)). The Kerr nonlinearity 

find its maximal value around the zero probe field detuning [Fig. 4(b)]. 
In Fig. 4(d), nonlinear gain takes also place in the medium by altering 
the distance d (which leads to the change in values of Γ⊥ and Γ‖). We 
obtain different behaviors of χ(1) and χ(3). This is the main reason for 
appearance of gain or absorption in the quantum system as demon-
strated in Figs. 3 and 4. The minima of linear (and nonlinear) absorption 
or gain in Figs. 3 and 4 are given by Eqs. (63) and (65)). One can show 
from Eq. (63), that the gain is present at δ = 0 when (Fig. 3) 

Ωb >
2γ′

+ Γ⊥ + Γ‖

(Γ⊥ − Γ‖)cos φ
Ωa, (42)  

while absorption takes place when (Fig. 4) 

Ωb <
2γ′

+ Γ⊥ + Γ‖

(Γ⊥ − Γ‖)cos φ
Ωa. (43)  

Eqs. (36) and (37) and their corresponding coefficients in Appendix B 
prove that in the presence of the plasmonic nanostructure, the linear and 
nonlinear susceptibilities are sensitive to the relative phase of the weak 
probe fields. Figs. 5 and 6 illustrate the dependence of χ(1) and χ(3) on φ 
when the quantum system is placed at a distance d = 0.4c/ωp from the 
surface of the plasmonic nanostructure. The strong variation of linear 
and nonlinear absorption and dispersion profiles for different values of φ 
is obvious. In particular, for φ = 0 the maximal of Kerr nonlinearity is 
placed in a region of linear gain around δ = 0. Subluminal response takes 
place in this situation on resonance [see Figs. 5(a) and 6(a)]. When φ 
becomes π, a strong absorption instead of gain appears at line center for 
the χ(1) profile, as can be seen in Fig. 5(c). Such a phase sensitive gain 
and absorption is well understood through Eqs. (42) and (43). In both 
cases, the value of the Kerr index at exact resonance is zero. According to 
Eq. (66), for φ = 0 and φ = π, both sine terms in Eq. (66) vanish leading 
to zero Kerr nonlinearity on resonance. It should be mentioned that a 
nonzero resonant Kerr nonlinearity can be obtained for φ = π/2 [Fig. 6 
(b)] and φ = 3π/2 [Fig. 6(d)]. 

The results obtained here may suggest a tunable control over the Kerr 
nonlinearity of the quantum system near the plasmonic nanostructure 
by using the relative phase of the applied fields. In Fig. 7 we present an 
example of the variation of the Kerr nonlinearity spectra for different 
distances of the quantum system from the plasmonic nanostructure, d =
0.2c/ωp (dot line), d = 0.5c/ωp (dash line), d = 0.7c/ωp (solid line). A 
wide range of tunability can be observed over the refractive part of 
third-order nonlinear susceptibility χ(3) spectra just by adjusting the 

Fig. 3. (a,c) Linear susceptibility χ(1) and (b,d) nonlinear susceptibility χ(3) of 
the quantum system for the weak probe field Ωa in arbitrary units as a function 
of the probe detuning δ in the presence of the plasmonic nanostructure. We take 
here ω32 = 0, γ′ = 0.3Γ0, γ′ ′ = 0, x = 1.5, φ = 0, ω = 0.632ωp, and d = 0.3c/ωp 

(a,b), d = 0.6c/ωp (c,d). 

Fig. 4. (a,c) Linear susceptibility χ(1) and (b,d) nonlinear susceptibility χ(3) of 
the quantum system for the weak probe field Ωa in arbitrary units as a function 
of the probe detuning δ in the presence of the plasmonic nanostructure. We take 
here ω32 = 0, γ′ = 0.3Γ0, γ′ ′ = 0, x = 1.5, φ = 0, ω = 0.632ωp, and d = 0.7c/ωp 

(a,b), d = 0.8c/ωp (c,d). 

Fig. 5. Linear susceptibility χ(1) of the quantum system for the weak probe field 
Ωa in arbitrary units as a function of the probe detuning δ in the presence of the 
plasmonic nanostructure. We have assumed that ω32 = 0, γ′ = 0.3Γ0, γ′ ′ = 0, x 
= 1.5, φ = 0, ω = 0.632ωp, d = 0.4c/ωp and (a), φ = 0, (b), φ = π/2, (c) φ = π, 
and (d) φ = 3π/2. 
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relative phase parameter. We find that the whole profile for Kerr 
nonlinearity is enhanced for larger distances due to the reduction of both 

Γ⊥ and Γ‖ reduces by distance. The nonlinear dispersion becomes zero at 
φ = nπ, while it obtains its maximal amplitude for φ = n π

2. It also 
changes from negative to positive and back to positive as the relative 
phase changes from 0 to 2π. 

5. Conclusion 

We have studied the third-order nonlinear susceptibility behavior of 
a four-level closed-loop double-V-type quantum system near a plas-
monic nanostructure. In the system under study, the lower V-type 
transition interacts with the free-space vacuum, while the upper V-type 
transition is affected by the interaction with localized surface plasmons. 
Two orthogonal circularly polarized laser fields with the same frequency 
and different phases and electric field amplitudes act on both transitions 
of the lower V-type system. A 2D array of metal-coated dielectric 
nanospheres is considered as a plasmonic nanostructure for which the 
relevant decay rates are calculated by a rigorous electromagnetic Green 
tensor technique. 

We have shown that the presence of the plasmonic nanostructure 
significantly modifies the nonlinear response of the system resulting in 
large enhancement of the Kerr nonlinearity. In particular, the Kerr 
nonlinearity can be remarkably modified by increasing the distance of 
the quantum system from the plasmonic nanostructure. Phase control of 
the Kerr nonlinearity has also been discussed for such a quantum system. 
A wide range of tunability has been observed over the Kerr nonlinear 
response through the effect of the relative phase. Such a mechanism for 
phase control of the Kerr nonlinearity may be realized by the state-of- 
the-art nanomethods and it may find application in on-chip photonic 
nonlinear devices. 
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A. Explicit expressions for ρ(2)ij 

The expressions for the steady-state solutions ρ(2)
ij are: 

ρ(2)
11 = −

(r + s)
2γ′ , (44)  

ρ(2)
22 =

2γ′κr + κγ(r + s)
4γ′ κ(γ + γ′

)
, (45)  

ρ(2)
33 =

2γ′κs + κγ(r + s)
4γ′ κ(γ + γ′

)
, (46)  

ρ(2)
23 =

κ(r + s) − 2γ′ t
2γ′

(iω32 − 2γ − 2γ′
)
, (47)  

and ρ(2)
00 = 0, where 

Fig. 6. Nonlinear susceptibility χ(3) of the quantum system for the weak probe 
field Ωa in arbitrary units as a function of the probe detuning δ in the presence 
of the plasmonic nanostructure. We have assumed that ω32 = 0, γ′ = 0.3Γ0, γ′ ′

= 0, x = 1.5, φ = 0, ω = 0.632ωp, d = 0.4c/ωp and (a), φ = 0, (b), φ = π/2, (c) 
φ = π, and (d) φ = 3π/2. 

Fig. 7. The refractive part of third-order nonlinear susceptibility Re(χ(3)) (Kerr 
nonlinearity) of the quantum system for the weak probe field Ωa in arbitrary 
units as a function of the relative phase φ for different distances from the 
plasmonic nanostructure d = 0.2c/ωp (dot line), d = 0.5c/ωp (dash line), d =
0.7c/ωp (solid line). We take here ω32 = 0, γ′ = 0.3Γ0, γ′ ′ = 0, x = 1.5, φ = 0, 
ω = 0.632ωp. 
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t =
iΩa

2

(
− i

Ωb

2
eiφS∗

3 + iκ
Ωa

2
S∗

2

)

− i
Ωb

2
eiφ

(
i
Ωa

2
S1 − iκ

Ωb

2
e− iφS2

)
,

(48)  

r =
iΩa

2

((
− i

Ωa

2
S∗

1 + iκ
Ωb

2
eiφS∗

2

)

−
(

i
Ωa

2
S1 − iκ

Ωb

2
e− iφS2

))
,

(49)  

s =
iΩb

2

((
− i

Ωb

2
eiφS∗

3 + iκ
Ωa

2
S∗

2

)
e− iφ

−
(

i
Ωb

2
e− iφS3 − iκ

Ωa

2
S2

)
eiφ

)
(50)  

B. Explicit expressions for A, B, C, D, and fi 

The expressions for the coefficients A, B, C and D are: 

A = e− iφx, (51)  

B = 1, (52)  

C =
1
8

[

−
2γ′ f1 + γf2

4γ′
(γ + γ′

)
−

κf3 + 2γ′ f4

2γ′
(− iω32 − 2γ − 2γ′

)

]

, (53)  

D =
1
8

[

−
2γ′ f5 + γf6

4γ′
(γ + γ′

)
−

κf7 + 2γ′ f8

2γ′
(iω32 − 2γ − 2γ′

)

]

, (54)  

with 

f1 = − x3e− iφ(S3 + S∗
3) + x2κe− 2iφS∗

2 + κx2S2, (55)  

f2 = − xe− iφ(S1 + S∗
1) + κx2(S2 + S∗

2)

− x3e− iφ(S3 + S∗
3) − κx2e− 2iφ(S2 − S∗

2),
(56)  

f3 = − (S1 + S∗
1) + κxe− iφS2 + xκeiφS∗

2

− x2S3 + xκS2eiφ − x2eiφS∗
3 + κxS∗

2e− iφ,
(57)  

f4 = xe− iφ(S3 + S∗
1) − κS2 − x2κS∗

2, (58)  

f5 = (S1 + S∗
1) − xκS∗

2 − κxS2e− iφ, (59)  

f6 = (S1 + S∗
1) − κx(eiφS∗

2 + S2e− iφ + S∗
2e− iφ + S2eiφ)

+x2(S3 + S∗
3),

(60)  

f7 = xe− iφ(S1 + S∗
1) − κx2(S2 + S∗

2)

− κx2e− 2iφ(S2 + S∗
2) + x3(e− iφS3 + S∗

3),
(61)  

f8 = − x2S∗
3 + xκe− iφS∗

2 − x2S1 + κx3S2e− iφ. (62)  

C. Explicit expressions for the resonant coefficients Im(χ (1,3)(δ)) and Re(χ (1,3)(δ)) 

Setting ω32 = 0 and δ = 0, Eqs. (36) and (37) and their corresponding coefficients given in Appendix B simplify, resulting in the following analytical 
expressions for the linear absorption/dispersion, and third-order (Kerr) nonlinear absorption/dispersion susceptibilities 

Im(χ(1)(δ= 0)) =
Nμ′2

ϵ0ℏ
γ + γ′

− κxcos(φ)
(γ + γ′

)
2
− κ2

, (63)  

Re(χ(1)(δ= 0)) =
Nμ′2

ϵ0ℏ
− κAsin(φ)

(γ + γ′
)

2
− κ2

, (64)  

Im(χ(3)(δ= 0)) =
2Nμ′4

3ϵ0ℏ3
− m1cos(φ) − m2cos(2φ) − m3

32γ′
(γ + γ′

)((γ + γ′
)

2
− κ2)

2 , (65) 
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Re(χ(3)(δ= 0)) =
2Nμ′4

3ϵ0ℏ3
− m4sin(φ) − m2sin(2φ)

32γ′
(γ + γ′

)((γ + γ′
)

2
− κ2)

2, (66) 

where 

m1 = 4γ′ x3κ(γ + γ′

) − 6xκγ(γ + γ′

) + 2γx3κ(γ + γ′

)

− 4κ3x − κ2x2(γ + γ
′

) − 7γ
′

κx(γ + γ
′

)

− 4κxγ(γ + γ′

) − 2xκ(γ + γ′

)
2
− κx3(γ + γ′

)
2

− γ′κx3(γ + γ′

),

(67)  

m2 = 2κ2x2γ
′

+ 2κ2x2(γ+ γ
′

), (68)  

m3 = 2κ2(γ + γ′

)(1 + 2x2) + 2γ′ κ2(1 − x2)

− 2γ′ κx(γ + γ′

)

− κx3(γ + γ
′

)
2
+ 4γ

′

(γ + γ
′

)
3
(x2 − 1),

(69)  

m4 = 3κγ′x3(γ + γ′

) + 2γx3κ(γ + γ′

) − κ2x2(γ + γ′

)

− 5γ′xκ(γ + γ′

) − 2xκ(γ + γ′

)
2
− κx3(γ + γ′

).
(70)  

D. EM Green’s tensor for a 2D periodic nanostructure 

The classical EM Green’s tensor is defined through the following equation: 

∇×∇× G(r, r′

;ω) − k2G(r, r′

;ω) = 13⋅δ(r − r′

), (71)  

where k =
̅̅̅̅̅εd

√ ω/c is the wavevector inside the material, ω is the angular frequency of incident light, c is the speed of light in vacuum, and 13 is the 3 ×
3 unit matrix. 

We deal with arrays of macroscopic spheres with 2D periodicity. The method employed here is an EM Green’s tensor formalism based on an EM 
layer-multiple-scattering (LMS) method [53,54]. The LMS method is ideally suited for the calculation of the transmission/reflection/absorption 
coefficients of an EM wave incident on slab containing a number of planes of non-overlapping scatterers with the same 2D periodicity. Namely, for 
each one plane of spheres, the method determines the full multipole expansion of the total multiply scattered wave field and deduces the corre-
sponding transmission and reflection matrices of the while slab in the plane-wave basis. Having determined the transmission/reflection matrices via 
the LMS method one can the calculate the EM Green’s tensor from [13,55] 

GEE
ii′ (r, r

′

;ω) = gEE
ii′ (r, r

′

;ω)

−
i

8π2

∫∫

SBZ
d2k‖

∑

g

1
c2K+

g;z
×

vgk‖ ;i(r)exp(− iK+
g ⋅r)êi′ (K

+
g ),

(72)  

with 

vgk‖ ;i(r) =
∑

g′
Rg′ ;g(ω, k‖)exp(− iK−

g′ ⋅ r)êi(K−

g′ ), (73)  

and 

K±
g = (k‖ + g, ± [q2 − (k‖ + g)2

]
1/2

). (74) 

The vectors g correspond to the reciprocal-lattice vectors associated with the 2D periodic lattice of the plane of scatterers. k‖ is the reduced 
wavevector which lies within the surface Brillouin zone od the corresponding reciprocal lattice [53,54]. When q2 = ω2/c2 < (k‖ + g)2, K±

g defines an 
evanescent wave. The term gEE

ii′ (r, r
′

;ω) of Eq. (72) is the free-space Green’s tensor and ̂ei(K±
g ) denotes the polar unit vector normal to K±

g . Rg′;g(ω, k‖) is 
the reflection matrix which provides the sum (over g’s) of reflected beams generated by the incidence of plane wave from the left of the plane of 
scatterers and is calculated via the LMS method [53,54]. We note that the above expression [Eq. (72)] is derived from the transverse part of the general 
classical-wave Green’s tensor [55]. Also, in Eq. (72), the terms corresponding to s-polarized waves (those containing components with the azimuthal 
unit vector êi(K±

g ) normal to K±
g ) have very marginal contribution to the decay rates and have been, justifiably, neglected. 
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