
Citation: Asadpour, S.H.; Hamedi,

H.R.; Paspalakis, E. Transfer of

Orbital Angular Momentum of Light

Using Autler-Townes Splitting.

Photonics 2022, 9, 954. https://

doi.org/10.3390/photonics9120954

Received: 10 November 2022

Accepted: 29 November 2022

Published: 9 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Article

Transfer of Orbital Angular Momentum of Light Using
Autler-Townes Splitting
Seyyed Hossein Asadpour 1 , Hamid Reza Hamedi 2 and Emmanuel Paspalakis 3,*

1 School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran P.O. Box 19395-5531, Iran
2 Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio 3, LT-10257 Vilnius, Lithuania
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Abstract: We propose a scheme to exchange optical vortices beyond electromagnetically induced
transparency (EIT) but based on four-wave mixing (FWM) in a five-level atomic system consisting
of two Λ subsystems linked via a weak driving field. When the laser fields are strong enough, the
quantum interference responsible for the EIT in each Λ subsystem is washed out, giving rise to the
Autler-Townes splitting (ATS). When only one of the control fields carries an optical vortex, it is shown
that the generated FWM field obtains the vorticity of the vortex control. We distinguish between
three different regimes, i.e., a pure EIT, a joint EIT-ATS, and a dual-ATS, where the optical angular
momentum (OAM) translation can take place. Elaborating on the distinction between three regimes
through numerical analysis, we find that the maximum energy conversion efficiency is obtained in the
joint EIT-ATS and dual-ATS regimes. The latter is more favorable as the absorption losses vanish as
the beam propagates into the atomic cloud. The results may find applications in the implementation
of high-efficient frequency and OAM conversion devices for quantum information processing.

Keywords: orbital angular momentum; electromagnetically induced transparency; autler-townes
splitting; four-wave mixing

1. Introduction

A basic quantum coherence and interference phenomenon is electromagnetically in-
duced transparency (EIT) [1–3], which appears for an optically thick three-level Λ-type
atomic medium through modifying the susceptibility of a weak probe field by the applica-
tion of another coupling field. Such a medium obtains transparency for the probe leg when
a stronger control field is applied on another leg of the Λ-type system. EIT has many notable
applications in quantum and nonlinear optics, such as the manifestation of slow, stored, or
fast light [4–7], enhanced four-wave-mixing (FWM) [8–13], lasing without inversion [14],
refractive index enhancement without absorption [15,16], giant Kerr nonlinearity [17–19],
light frequency change [20–22], and others.

For strong laser fields inducing a wide transparency window, the quantum interfer-
ence responsible for the EIT vanishes, resulting in the Autler-Townes splitting (ATS) [23].
Both EIT and ATS are found in common in a transparency feature. In EIT, a narrow trans-
parency window appears inside an absorption peak, while a wide band emerges between the
split-absorption peaks for ATS. It has been shown theoretically [24–26] and experimentally [27–32]
that one can distinguish the regimes where the ATS dominates EIT. While EIT and ATS
are similar, they have different characteristics. The former is due to the quantum inter-
ference between different transition channels, whereas the latter is characterized by the
AC-Stark effect.

Optical vortices [33,34] have been of substantial interest and provide many charm-
ing applications [35–44]. Such beams of light are characterized by a wave field whose
phase advances around the axis of the vortex and the corresponding wavefront contains
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an orbital angular momentum (OAM). The OAM of light brings possibilities in control-
ling the slow light [45], allowing implementations in quantum information storage and
quantum computation.

Earlier proposals on interplay of atoms and the OAM dealt with the basic Λ scheme in
which only the incident probe field was a vortex [46–50]. EIT will be destroyed if the control
beam is a vortex, resulting in absorption losses at the vortex center. Novel complicated level
schemes have been considered [39–42,51,52]. However, all these schemes for the transfer of
OAM states deal with EIT or coherent population trapping (CPT).

In this study, we consider a novel scheme of OAM transfer based on the ATS effect
in a five-level atomic structure. The atom–light interaction scheme is composed of two
Λ subsystems coupled via a weak driving field. When applying strong laser fields that
induce a wide transparency window for the weak probe fields in each subsystem, the EIT
vanishes while the ATS appears. A suitable choice of parameters can put subsystems either
in EIT or ATS, inducing three distinguished regimes for the five-level scheme, i.e., a pure
EIT, a joint EIT-ATS (EIT + ATS), and a dual-ATS. When one of control fields is an optical
vortex, the OAM of light can be exchanged to a generated FWM field. The efficiency of
energy conversion between different frequencies is the highest when the system works
in the dual-ATS or joint EIT-ATS. However, the energy losses always exist for the joint
EIT-ATS situation, while they disappear for long propagation distances when the system is
in the dual-ATS case.

2. Methods

We begin with the description of the proposed five-level quantum level scheme with
further details in methods and equations. As shown in Figure 1a, the scheme consists
of two EIT/ATS Λ subsystems. The left subsystem (Figure 1b) is built of a weak probe
light with Rabi frequency Ωp (with center frequency ωp) and a stronger control laser with
Rabi frequency Ωs (with center frequency ωs) acting on internal states |4〉, |1〉, |0〉, while
the right subsystem (Figure 1c) is made of the states |2〉, |3〉, |0〉, coupled by a weak laser
beam Ωf and a strong beam Ωc (with center frequencies ωf, ωc, respectively) coupling the
corresponding transitions. A weak beam Ωd (with center frequency ωd) then connects two
Λ subsystems.
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The atomic pathway |0〉
Ωp→ |1〉 Ωd→ |2〉 Ωc→ |3〉 Ωf→ |0〉 creates a closed-loop coher-

ent coupling light–matter interaction system, allowing for generation of a FWM field
(ωf = ωp + ωc + ωd). One can define the Rabi frequencies by Ωp = (ep.p01)Ep/},
Ωd = (ed.p12)Ed/}, Ωc = (ec.p23)Ec/}, Ωf = (ef.p03)Ef/}, and Ωs = (es.p41)Es/}. Here,
pij describes the electric dipole matrix element related to the transition from |i〉 to |j〉.

In the interaction picture, the Hamiltonian of such a system reads (} = 1)

H = ∆p|1〉〈1|+ ∆p|2〉〈2|+ ∆p|3〉〈3|+ (∆p − ∆s)|4〉〈4|
− 1

2 (Ωpei
→
kp.
→
r |1〉〈0|+ Ωsei

→
ks.
→
r |1〉〈4|+ Ωdei

→
kd.
→
r |2〉〈1|+ Ωcei

→
kc.
→
r |3〉〈2|

+Ωfei
→
kf.
→
r |3〉〈0|+ H.c),

(1)

where Equation (1) is also written under the rotating-wave approximation. We have defined
the detunings as ∆p = ω10 −ωp and ∆s = ω14 −ωs. The necessary equations for density
matrix elements describing the evolution of the quantum system influenced by laser fields
then read

.
σ10 = −(γ10 + i∆p)σ10 +

i
2 Ωp(σ00 − σ11) +

i
2 Ωsσ40

+ i
2 Ω∗dσ20 − i

2 Ωfσ13,
.
σ40 = −[γ40 + i(∆p − ∆s)]σ40 +

i
2 Ω∗s σ10 − i

2 Ωpσ41
− i

2 Ωfσ43,
.
σ20 = −(γ20 + i∆p)σ20 +

i
2 Ωdσ10 +

i
2 Ω∗c e−iδ

→
k .
→
r σ30 − i

2 Ωpσ21
− i

2 Ωfσ23,
.
σ30 = −(γ30 + i∆p)σ30 +

i
2 Ωf(σ00 − σ33) +

i
2 Ωceiδ

→
k .
→
r σ20

− i
2 Ωpσ31,

(2)

where γij is the damping rate. Here, δ
→
k =

→
k f− (

→
k p +

→
k d +

→
k c) shows the phase matching.

In this paper we consider the case with the phase matching condition δ
→
k = 0. Note that

the effect of phase matching on the OAM exchange has been discussed in detail in Ref. [39].
It has been shown that these terms modulate the phase patterns of generated OAM beam,
resulting only in the bending of patterns.

The perturbation expansion is applied, assuming a weak-field approximation
σij = σ

(0)
ij + σ

(1)
ij + . . ., where the constituting terms σ

(0)
ij , σ

(1)
ij , are of the zeroth and first

order in the weak fields. Assuming that the atom is initially in its ground state, the zeroth-
order solution is σ

(0)
00 ≈ 1, with other elements being zero (σ(0)

ij = 0). In the steady state,
one can drop the time derivatives in the equations and obtain the following linear elements
characterizing the first-order and third-order processes [10]

σ
(1)
10 = σ

(1a)
10 + σ

(1b)
10 =

iΓ40Ωp

2(Γ10Γ40 + |Ωs|2/4)
+

i3Γ40ΩfΩ∗c Ω∗d
8ζ

, (3)

σ
(1)
30 = σ

(1a)
30 + σ

(1b)
30 =

iΓ20Ωf

2(Γ20Γ30 + |Ωc|2/4)
+

i3Γ40ΩpΩdΩc

8ζ
. (4)

where Γ10 = γ10 + i∆p, Γ20 = γ20 + i∆p, Γ30 = γ30 + i∆p, Γ40 = γ40 + i(∆p − ∆s) and
ζ = (Γ10Γ40 + |Ωs|2/4)(Γ20Γ30 + |Ωc|2/4). The first terms in above Equations (3) and
(4) (featured by σ

(1a)
10 and σ

(1a)
30 ) describe the EIT/ATS linear absorptions of probe and

generated FWM beams, while the second terms (featured by σ
(1b)
10 and σ

(1b)
30 ) correspond to

the FWM sum-frequency generation and its backward nonlinear process [10].
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For the time-independent fields and based on the slowly varying envelope approxima-
tion [53], the Maxwell propagation equations for both weak beams Ωp and Ωf (propagating
in the z direction) are

∂Ωp

∂z
= iNk01[σ

(1)
10 ], (5)

∂Ωf
∂z

= iNk03[σ
(1)
30 ], (6)

where k01 = 2ωp
∣∣p01

∣∣2/c}, k03 = 2ωf
∣∣p03

∣∣2/c}, N denotes the atomic density. We
note that the diffraction terms containing the transverse derivatives (2kp)

−1∇2
⊥Ωp and

(2ks)
−1∇2

⊥Ωs have been neglected from the Maxwell Equation (4), where kp = ωp/c
and k f = ω f /c are the probe and generated beams central wave vectors. These terms
are considered to be ∇2

⊥Ωp(f) ≈ w−2Ωp(f), where w denotes a characteristic transverse
dimension of the lasers. It shows a width of the vortex core if the beam contains an OAM
(vortex beam waist) or a characteristic width of the beam for a beam with no OAM. One
can approximate the alteration of the phase of the probe beams due to the diffraction
term after passing the medium as L/2kw2, where L is the length of the atomic cloud, with
k ≈ kp( f ). The phase change L/2kw2 can be ignored when the atomic sample length is not
too large, Lλ/w2 << π, where λ = 2π/k describes an optical wavelength. As an example,
assuming the length of the sample as L = 100 µm, the wavelength to be λ = 1 µm, and the
characteristic transverse dimension of the beams as w = 20 µm, one obtains Lλ/w2 = 0.25.
The diffraction terms in such a condition can be neglected from Equation (4).

In what follows we consider a situation that Ωp(z = 0) = Ωp0 and Ωf(z = 0) = 0 at
the entrance of the medium (z = 0). Defining Z = k03z as the modified propagation distance
and solving the coupled Equations (5) and (6), one can obtain the following expressions
describing the propagation of the fields Ωf and Ωp

Ωf/Ωp0 =
Γ40ΩdΩc

4ζθ
sinh(θNZ/2) exp[(α + kβ)NZ/2], (7)

Ωp/Ωp0 = α−kβ+θ
2θ exp[(α + kβ− θ)NZ/2]

− α−kβ−θ
2θ exp[(α + kβ + θ)NZ/2],

(8)

with θ =
√
(kβ− α)2 + 4αc2, k = k01/k03, α = −Γ20/2(Γ10Γ40 + |Ωs|2/4),

β = −Γ40/2(Γ20Γ30 + |Ωc|2/4), and c = Γ40|Ωd||Ωc|/8ζ.

3. Results and Discussion

Thus far we have not considered the spatial dependence of strong laser beams. We
now consider a situation where the laser field Ωc has a vorticity defined by

Ωc = εc(
r
w
)
|lc|

e−
r2

w2 eilcφ, (9)

where r =
√

x2 + y2 describes the distance to the beam core, w stands for the waist of the
beam, εc denotes the strength of the beam, lc is the topological charge of the optical vortex,
and φ = tan−1(y/x) is the azimuthal angle. Obviously from Equation (6), in this way a new
field is generated with the same topological charge lc as the control field Ωc (see Figure 2).
It is indeed the signature of the quantum coherence term ΩpΩdΩc in Equations (4) and (6)
which results in exchange of vortices in this level scheme.

As one can observe from the patterns of intensity and phase profiles in Figure 2, when
lc = 1, a ring intensity diagram is formed with a zero-intensity dark center (Figure 2c).
When the topological charge number lc increases, the zero-intensity area is increased in size,
as shown in Figure 2e,g. The phase changes from 0 to nπ around the point of singularity
(Figure 2b,d,f,h).
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Figure 2. Intensity distributions in arbitrary units (a,c,e,g) and the corresponding phase patterns
(b,d,f,h) of generated FWM light for different OAM numbers lc = 0, 1, 2, 3. The selected parameters
are given by Ωd = 0.10γ30, ∆p = ∆s = 0, γ10 = γ30, γ20 = 0.02γ30, γ40 = 0.001γ30, k = 0.29,
Ωs = 2.5γ30, and εc = 4γ30.
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The EIT relies on the quantum interference between two legs of each Λ subsystem.
However, ATS appears when the quantum interference is destroyed due to the application
of strong control fields that can create a spectrally wide transparency band. It has been
recently shown that–for instance by manipulating the first-order response of the right Λ
scheme to the generated beam–the coherence term σ

(1)
30 can be rewritten by the sum of two

Lorentzians, with two spectral poles at [10]

∆± =
1
2
[i(γ20 + γ30)±

√
|Ωc|2 − (γ30 − γ20)

2]. (10)

Clearly, there is a threshold γ30 − γ20 to distinguish between EIT and ATS. While the
EIT takes place for the right Λ subsystem if |Ωc| < γ30 − γ20, the ATS regime shows up
when |Ωc| > (γ30 − γ20). A similar situation holds for the left Λ subsystem.

In respect to the question of whether it is possible to transfer OAM of light between
different frequencies with a maximum FWM efficiency while there are less absorption
losses via ATS, in what follows we compare the energy efficiency for EIT and ATS cases
when the coupling light Ωc carries an optical vortex. We choose γ30 as the unit for all the
decay rates, frequency detunings, and Rabi frequencies.

Figure 3 displays the intensity of coupling vortex field |Ωc| vs. r/w and εc when
γ20 = 0.02γ30 and for the azimuthal index (a) lc = 1 and (b) lc = 4. Similar behaviors of
the results have been observed for other OAM numbers. From Figure 3a (lc = 1), one can
estimate that in the cylindrical radius zone 0.8 ≤ r/w ≤ 1.8 and for εc ≥ 3 the intensity
of coupling light is larger than the threshold factor (|Ωc| > γ30 − γ20). This indicates that
we are in the ATS regime. Out of the cylindrical radius zone 0.8 ≤ r/w ≤ 1.8 or for very
small εc values, the EIT takes place (|Ωc| < γ30 − γ20). For the case of lc = 4 (Figure 3b),
the approximate radius zone for the ATS regime is 1 ≤ r/w ≤ 2 when εc ≥ 1.5. Otherwise,
the EIT regime is established.
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Figure 4 shows the behavior of the linear absorption Im(σ
(1)
30 ) vs. the probe detuning

∆p for two different values of the strengths of the control field εc, at the position where
the control vortex beam is the largest, i.e., r/w = 1.5 for the OAM number (a) lc = 1 and
(b) lc = 4. A control field in the limit |Ωc| < γ30 − γ20 (e.g., εc = 0.98γ30, i.e., the EIT
regime) induces a narrow transparency window, while for stronger laser beam intensities
(e.g., εc = 4γ30 which is the ATS regime) creates a wide spectral region between the split-
absorption peaks. Obviously, the choice of OAM number plays a crucial role in setting the
width of the transparency window.
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dashed line corresponds to ATS (εc = 4γ30). The selected parameters are r/w = 1.5, γ20 = 0.02γ30.

Identifying the intensity limits for the creation of EIT and ATS, in Figure 5 we display
the FWM conversion efficiency in three different regimes: joint EIT-ATS, dual ATS, and
pure EIT when (a) lc = 1 and (b) lc = 4. We fix r/w = 1.5 and choose εc = 0.1 for the pure
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EIT regime and εc ≥ 3 for the ATS regime, respectively. It is found that for both values of
OAM numbers lc = 1 and lc = 4, the efficiency for the pure EIT case is quite low. For the
join EIT-ATS mechanism, the efficiency increases initially and reaches a maximal value for
a density-length product NZ/γ30 = 250, and then starts to decrease due to energy losses.
The efficiency of FWM in the dual ATS regime is very dependent on the OAM number of
vortex light. For the case lc = 1, the efficiency starts to increase initially until it reaches
a maximal value at NZ/γ30 = 300, and then decreases. While for lc = 4, the losses go
away as the probe propagates more profoundly inside the medium. The FWM efficiency
in this case becomes dominant during the propagation and for a density-length product
of about NZ/γ30 = 450, where the efficiency of FWM becomes larger by several orders of
magnitude than pure EIT and synergetic EIT and ATS mechanisms.
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Figure 5. FWM efficiency as a function of NZ/γ30 for (a) lc = 1 and (b) lc = 4. The solid line
corresponds to synergetic EIT and ATS mechanisms (Ωs = 0.9γ30, εc = 3.1γ30), dashed line corre-
sponds to dual ATS regime (Ωs = 2.5γ30, εc = 4γ30), and dashed-dot line corresponds to pure EIT
mechanism (Ωs = 0.8γ30, εc = 0.1γ30). The selected parameters are Ωd = 0.10γ30, ∆p = −0.035γ30,
∆s = 0.025γ30, γ10 = γ30, γ20 = 0.02γ30, γ40 = 0.001γ30, k = 0.29, and r/w = 1.5.
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Figure 6 displays the FWM conversion efficiency field against r/w for (a) joint EIT-ATS,
(b) dual-ATS, and (c) pure EIT mechanisms for lc = 1 (solid line) and lc = 4 (dashed line).
When the scheme lies in the EIT+ATS case (Figure 6a), the efficiency reaches its maximum
at r/w ≈ 0.6 (r/w ≈ 1.5) for lc = 1 (lc = 4). The maximum efficiency in this case is as
high as 0.022 (0.028). Shown in Figure 6b, the efficiency in dual-ATS regime reaches two
maximal values, each as high as 0.3. The efficiency drops down to the order of 10−4 when
the quantum system is placed in the pure EIT situation, as one can see in Figure 6c.
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line). Part (a) corresponds to synergetic EIT and ATS mechanism (Ωs = 0.9γ30, εc = 3.1γ30),
part (b) corresponds to dual ATS regime (Ωs = 2.5γ30, εc = 4γ30) and part (c) pure EIT mechanism
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In Figure 7, we plot the conversion efficiency of the FWM beam for the OAM number
lc = 1 (solid line) and lc = 4 (dashed line) vs. the coupling coefficient k (k = k01/k03) when
the system is in the (a) joint EIT-ATS regime, (b) dual ATS regime, and (c) pure EIT regime,
respectively. We notice that the efficiency conversion for all three regimes is quite sensitive
to the coupling factor k. However, increasing the coupling factor k reduces the efficiency of
energy conversion.
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Figure 5.

4. Conclusions

In conclusion, we have studied the exchange of vortices beyond the pure electromag-
netically induced transparency in a five-level atomic system composed of two Λ subsystems
coupled via a weak driving field. If one of control fields carries the orbital angular mo-
mentum, a FWM field is generated with the same vorticity of the vortex control. There are
three different regimes, i.e., a pure EIT, a joint EIT-ATS, and a dual-ATS, where the OAM
translation can take place. A high-efficiency OAM transfer can be achieved via dual-ATS,
or a joint effect of EIT and ATS with the maximum energy conversion efficiency. On the
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other hand, the efficiency of energy conversion becomes quite low when the pure EIT is
dominant. The results may find applications in the implementation of high-efficient fre-
quency and OAM conversion devices for quantum information processing. Such an OAM
conversion-based FWM setup can be implemented experimentally, for example using the
cold alkaline atoms confined in a magneto optical trap. A relevant 85Rb energy levels could
be |5S1/2, F = 2〉 for the ground level |0〉, |5S1/2, F = 3〉 for |4〉, |5P1/2〉 for |1〉, |5D3/2〉 for
|2〉, and |nP3/2〉 for |3〉 with n > 10 [10]. The results may provide a comprehensive tool for
future experiments in the topic.
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40. Hamedi, H.R.; Ruseckas, J.; Paspalakis, E.; Juzeliūnas, G. Transfer of optical vortices in coherently prepared media. Phys. Rev. A

2019, 99, 033812. [CrossRef]
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