
4204 Vol. 46, No. 17 / 1 September 2021 / Optics Letters Letter

Ferris wheel patterning of Rydberg atoms using
electromagnetically induced transparency with
optical vortex fields
Hamid R. Hamedi,1,* Viačeslav Kudriašov,1 Ning Jia,2 Jing Qian,3 AND
Gediminas Juzeliūnas1
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2The Public Experiment Center, University of Shanghai for Science and Technology, Shanghai 200093, China
3State Key Laboratory of Precision Spectroscopy, Quantum Institute for Light and Atoms, Department of Physics, School of Physics and
Electronic Science, East China Normal University, Shanghai 200062, China
*Corresponding author: hamid.hamedi@tfai.vu.lt

Received 9 April 2021; revised 5 July 2021; accepted 17 July 2021; posted 21 July 2021 (Doc. ID 427000); published 24 August 2021

We study the formation of spatially dependent electro-
magnetically induced transparency (EIT) patterns from
pairs of Laguerre–Gauss (LG) modes in an ensemble of
cold interacting Rydberg atoms. The EIT patterns can be
generated when two-photon detuning does not compensate
for the Rydberg level energy shift induced by van der Waals
interaction. Depending on the topological numbers of each
LG mode, we can pattern dark and bright Ferris-wheel-like
structures in the absorption profile with tunable barriers
between sites, providing confinement of Rydberg atoms in
transverse direction while rendering them transparent to
light at specific angular positions. We also show how the
atomic density may affect the azimuthal modulation of the
absorption profile. ©2021Optical Society of America

https://doi.org/10.1364/OL.427000

Coherent control of atom–light interaction has important
applications in quantum and nonlinear optics. Quantum coher-
ence induced by interaction of laser radiation and atoms results
in a number of appealing effects [1–7]. Electromagnetically
induced transparency (EIT) [6,7] is a quantum interference
effect where the destructive interference between probability
amplitudes of two optical transitions leads to the elimination
of absorption and an associated steep variation of the refractive
index around the resonant frequency [6]. In its simplest form,
EIT requires only three atomic levels and two light beams in a
suitable atomic medium with a3 configuration geometry.

Using Rydberg atoms, one can apply the EIT for nonlinear
quantum optics at low light intensities [8]. Because of their
extreme polarizability and long-range interactions, Rydberg
atoms with highly excited principal quantum numbers pro-
vide applications in precision electrometry [9] and quantum
information [10]. Since the van der Waals (vdWs) interaction
between the atoms is enhanced with the principal quantum
number, the interaction between Rydberg atoms is much larger
than the interaction between atoms in their ground states
[8,11].

Optical vortex beams with helical wavefronts carry an orbital
angular momentum (OAM) [12]. Apart from many other inter-
esting effects [13–17], the interaction of optical vortices with
atoms leads to narrowing of the EIT spectral width [18] and
allows one to azimuthally modulate the optical susceptibility of
a medium, and create spatially dependent EIT patterns [19–21];
the latter has potential applications in high capacity optical data
storage and continuous variable quantum technologies [19].

Previous scenarios for patterning spatially dependent EIT
structures required closed-loop atom–light coupling [19–21].
The spatially dependent EIT in [19–21] is due to the quantum
interference between the probe and control fields carrying a sin-
gle OAM component. In this paper, this is realized by coupling
the Rydberg atoms in a ladder configuration (non-closed loop)
by a control field that is the superposition of two Laguerre–
Gauss (LG) modes carrying arbitrary OAMs. Such a scheme
is not sensitive by itself to the phase of the control field in the
same way as the closed-loop scenarios proposed in [19–21];
rather, the OAM dependence originates from the dependence
of the susceptibility on the squared magnitude of the control
field. Note that when two vortex beams, each carrying an optical
vortex, are superimposed, the resulting beam develops new
vortices depending on the OAM of each vortex component
[16,22]. Such a light field has been employed for trapping cold
and quantum degenerate atomic samples [17,23,24]. Here we
are interested in the absorption of a plane wave representing
a probe beam coupling lower levels of the ladder scheme of
Rydberg atoms influenced by two LG control beams carrying
OAM. Due to the interference of the constituting LG field,
the probe absorption becomes dependent on the azimuthal
angle and the corresponding OAM, producing specific EIT
absorption and transparency patterns exhibiting spatial Ferris-
wheel-type structures with azimuthal symmetry. Such a model
effectively converts optical phase information into intensity
information and may find potential applications in storage
of high-dimensional optical information in phase dependent
quantum memories [19] as well as in creation of various ring
traps for quantum degenerate gasses [23]. We stress that such

0146-9592/21/174204-04 Journal © 2021Optical Society of America

https://orcid.org/0000-0003-4370-4158
mailto:hamid.hamedi@tfai.vu.lt
https://doi.org/10.1364/OL.427000
https://crossmark.crossref.org/dialog/?doi=10.1364/OL.427000&amp;domain=pdf&amp;date_stamp=2021-08-23


Letter Vol. 46, No. 17 / 1 September 2021 /Optics Letters 4205

Fig. 1. Schematic representation of an atomic ensemble composed
of blocked Rydberg superatoms coupled by a superposition beam of
two optical vortices �s (r , φ)=�s 1(r , φ)+�s 2(r , φ) and a weak
nonvortex probe field �p . Here 1p and 1s denote detunings of the
probe and coupling field from the corresponding atomic transition
frequencies, respectively; Rb is the blockade radius within which only a
single atom can be excited to the uppermost Rydberg state.

a scheme can be realized with non-Rydberg atoms. However,
the strong interatomic interaction makes the compensation for
two-photon detuning easier at wider specific angular positions,
allowing one to obtain sharper spatially dependent EIT pat-
terns for Rydberg atoms at other places where the two-photon
detuning is not compensated for by the Rydberg interaction.

We consider an ensemble of Rydberg atoms character-
ized by a typical three-level ladder configuration of energy
levels as illustrated in Fig. 1. For each atom, the ground,
excited, and highly excited Rydberg states are characterized
by state-vectors {|g 〉, |e 〉, |r 〉}, respectively. A weak probe
field with the Rabi frequency �p acts on the lower transition
|g 〉 − |e 〉 of the ladder, while the upper transition |e 〉 − |r 〉
is coupled by a stronger control field that is a superposition
of two equally polarized co-propagating LG vortex fields
�s (r , φ)=�s 1(r , φ)+�s 2(r , φ) [23], with their Rabi
frequencies �s k(r , φ)= |�s k(r )|e ilkφ (k = 1, 2), where lk
denotes OAM (topological charge). Corresponding ampli-
tudes for the case of a doughnut LG beam with the waist
w and strength εk read |�s k(r )| = εk(

r
w
)|lk |e−r 2/w2

. The
probe field is considered a plane wave with the Rabi frequency
�p = |�p | = εp independent of the transverse coordinates.

Here we assume a cloud of dense frozen Rydberg gas
where the center-of-mass motion of the atoms is neg-
ligible on the time scale of the experiment [25]. The
Hamiltonian of the system under the rotating wave and
electric dipole approximations is then given by (~= 1) H=
Ha + Va f + Vvd Ws , with the unperturbed atomic Hamiltonian
Ha =−

∑N
j [1pσ

j
e e + (1s +1p)σ

j
r r ], atom–field interac-

tion Va f =−
∑N

j [�pσ
j

e g +�s σ
j

r e +H.c.], and inter-nuclear

vdWs type interaction Vvd Ws =
∑N

j<m
C6

|r j−rm |6
σ

j
r r ⊗ σ

m
r r .

Here σ j
αβ = |α〉〈β| j shows the transition operator (α 6= β)

or projection operator (α = β), and C6 characterizes the
vdWs coefficient, which depends on |r 〉. When the size of the
atom is of the same order as the wavelength of light, dipole
approximation may not be sufficient. However, if the beam
waist is much larger than the size of the Rydberg atom, this
approximation may be still valid. Otherwise, we would have
a large field gradient across the Rydberg atom, and dipole
approximation will not be valid. We also note that the dipole

approximation may hold good for Rydberg atoms in the case
of photoionization occurring in the vicinity of the nucleus
[26]. One can adopt a superatom strategy to replace Vvd Ws

with
∑N

j σ
j

r r
∑

m 6= j
C6

|r j−rm |6
σm

r r under the mean-field treat-

ment [27], by which the many-body interacting system is
replaced by a model of one atom j affected by the accumu-
lated level shifts from other nearby excited atoms. For short
excitation times, this method yields good agreement with
experiments [28]. For the j th atom, the time evolution of the
operator σ j

αβ(t) is governed by the Heisenberg equations of
motion that have the same form as in [29]. In the equations,
s =

∑
m 6= j

C6
|r j−rm |6

σm
r r characterizes vdWs-induced energy

shift for the atom j created by the adjacent Rydberg-state atoms
m, and γαβ = (0α + 0β)/2 denotes the dephasing rate, with
α, β ∈ (g , e , r ). The dominant contribution to the dephas-
ing is coming from the interaction among Rydberg atoms,
i.e., γer , which is much larger than other dephasings. The decay
rates obey the condition 0e � 0r , 0g ≈ 0, so γ = γer = γg e ,
0e = 2γ , and γg r = 0r ≈ 0. Hereafter superscript j will be
ignored for the sake of simplicity.

The probe absorption σ I
g e = Im(σg e ) can be derived by

solving the system of motion equations under the steady limit
(σ̇αβ(t)= 0). In what follows, we assume 1p ≈ 0. Then 1s
actually stands for two-photon detuning, and the absorption
simplifies to [29]

σ I
g e =

γg e (1s − s )2�p

(Ip + Is )
2
+ (1s − s )2(γ 2

g e + 2Ip)
. (1)

In this case, one has a relation of the energy shifts to the
Rydberg state s (magnitude of the approximated vdWs inter-
action) [5] s ≈ ω

ξ
σr r =

ω
ξ

Ip (Ip+Is )

(Ip+Is )
2+(1s−s )2(γ 2

g e+2Ip )
. Here

Ip,s = |�p,s |
2 represent intensities of the probe and control

fields, γg e is the dephasing rate of a |g 〉-|e 〉 transition, and ξ
is an adjustable parameter controlled by the atomic density.
The latter is expressed as ξ = (R/Rb)

3, where R is the inter-
atomic distance, and Rb is Rydberg blockade radius, which
can be found as Rb =

6
√

C6/ω, where C6 is the vdWs inter-
action constant, and ω is the half-linewidth of a line shape of
s . As can be seen from Eq. (1), in the case of 1s = s (perfect
anti-blockade), the absorption is always zero due to the EIT.
To study the absorption characteristics unaffected by the anti-
blockade regime, we will restrict our study to the case of1s 6= s ,
specifically taking s �1s .

In our simulations, we take the characteristic param-
eters of the atomic 87Rb gas: spontaneous decay rate
0e = 2π · 6.1 MHz, transition dephasing rate γg e = 0e/2,
vdWs constant C6 = 2π · 1.4 · 1011 µm6/s. We use corre-
sponding detunings1s = 20e and1p = 0. The typical atomic
density is ρ = 5 · 1010 cm−3. We also assume the strengths of
the both vortex control fields to be equal, i.e., ε1 = ε2 = εs . As
typical control and probe Rabi frequencies, we take εs = 0e and
εp = 0.10e , respectively. Note that the latter parameters will
be subject to variation in the course of our analysis. The steady-
state limit is reasonable here because the time for steady state
τ ∼ 5 µs is much longer than the intermediate state’s lifetime
0−1

e under condition εs /εp = 10 [5]. During the steady-state
period τ , a rough estimation for the thermal motion of atoms
gives a distance of 1R = vτ ≈ 200 nm if the most probable
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velocity is v ∼ 4 cm/s at T = 20 µK. Since the average inter-
atomic distance R = (3/4πρ)1/3 ∼ 2 µm�1R , it is then safe
to ignore the atomic center-of-mass motion.

In what follows, we are interested in the spatial depend-
ence of the absorption profile σ I

g e (r , φ), which comes from
Is = Is (r , φ) and s = s (r , φ) spatial dependencies and
is based on the transversely inhomogeneous control field
�s (r , φ). Expanding Is = |�s 1 +�s 2|

2
= (|�s 1| cos(l1φ)+

|�s 2| cos(l2φ))
2
+ (|�s 1| sin(l1φ)+ |�s 2| sin(l2φ))

2, one can
see a direct dependence of Eq. (1) on OAM numbers l1 and l2.
This indicates that the absorption of the probe field depends on
the OAM numbers of the individual LG beams.

We start with a general analysis of Eq. (1) by discussing the
nonlinear absorption properties of the Rydberg EIT system.
First, we do so by studying absorption σ I

g e dependence on
the control field amplitudes εs (Fig. 2) without taking into
account any transverse dependence of the control fields’ driv-
ing upper |e 〉-|r 〉 transition. One can see a strong nonlinear
dependence of σ I

g e against εs in the figure. In the given probe
strength range εp . 0.10e , the absorption is monotonically
decreasing with increasing the control strength, indicating a
decrease in medium’s absorption (increase of transparency).
The absorption is less significant at smaller values of the probe
field strength εp . The strengths εp . 0.1εs are used to meet the
EIT conditions, which would be violated when the strengths εp
and εs become of comparable values.

Next, by taking into consideration the spatial structure of the
control fields, we model the characteristic distributions of the
absorption profiles in the case of non-equal |l2| 6= |l1| and equal
opposite l2 =−l1 topological charges (Figs. 3 and 4). (The case
of equal l2 = l1 is trivial and thus not presented here.) In these
figures, the bright points in the absorption profiles represent
low light transmission (high absorption), while the dark points
correspond to regions of optical transparency (low absorption).

For |l2| 6= |l1|, the absorption profiles shown in Fig. 3 have
different types of angular rotation symmetry with the angle
1φ = 2π/|1l | determined by the OAM number difference
1l = l2 − l1. This type of symmetry corresponds well to the
intensity profile of a two-OAM-component control beam where
interference between vortices forms central and peripheral
singularities (not shown here) [16]. These singularities lead to
high absorption areas seen as bright spots in the plots (bright

Fig. 2. Optical absorption σ I
g e as a function of control field strength

εs for different probe field strengths εp .

Fig. 3. Normalized absorption [Eq. (1)] distributions for the
increasing control field strengths εs = 10e , εs = 30e , and εs = 70e

(from top to bottom row) and different OAM number combinations
denoted by pairs of numbers (l1, l2) (from left to right columns). Other
parameters are εp = 0.10e and1s = 20e .

Fig. 4. Normalized absorption [Eq. (1)] distributions for increasing
control field strengths εs = 10e , εs = 30e , and εs = 70e (from top
to bottom row) and different OAM number combinations denoted
by pairs of numbers (l1, l2). Other parameters are εp = 0.10e and
1s = 20e .

Ferris wheels). Notably, we can see that the increase in control
field strength also leads to shrinking of the absorption zones and
development of sharp distinct absorption sites on the transpar-
ent background. Overall, the transparency area due to the EIT
expands as the control field intensity increases.

In the case of Fig. 4 where l1 =−l2 = |l |, the absorption pat-
tern develops a rather different structure that has an azimuthal
dependence governed by 2 cos(|l |φ). A sort of dark Ferris wheels
structure with a 2|l | symmetry is formed (flower-like “petals”
pattern of dark color). As in the previous case, the control
strength increase leads to shrinking of the absorption areas
between petals; however, as the composite beam interference
pattern contains no peripheral singularities, it does not form
distinct low-light transmission sites in the absorption structure,
but rather leads to an extended and merged absorption area on
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Fig. 5. Normalized absorption [Eq. (1)] distributions for increasing
values of the atomic density ρ (from left to right): 0.05, 0.15, and
0.25 µm−3 and different values of field strengths: εs = 30e (top row),
εs = 70e (bottom row). Other parameters used: εp = 0.10e and
1s = 20e .

which the petal-type EIT transparency structure is visible (dark
Ferris wheels).

Finally, we consider the dependence of absorption on the
atomic density for fixed amplitudes of probe and control fields.
The absorption dependence on density comes from parameter s
depending on ξ(ρ). The increase in ρ reduces interatomic sep-
aration R , which in turn leads to the decrease in ξ and increase
in s , which becomes comparable to 1s resulting in σ I

g e → 0.
Parameter s has linear dependence on density: s (ρ)∼ ξ−1

∼ ρ.
In our case, the working point is at the value of ρ = 0.05 µm−3,
and we consider a regime where s �1s , as at higher values
of atomic density, the anti-blockade regime is approached. As
presented in Fig. 5, in the given density range (ρ ≤ 0.25), for
the case of unequal OAMs, there is a weak increase in sharpness
of absorption sites with density. The effect is barely visible, and
higher density values may lead to sharper spatially dependent
EIT patterns; however, in that case, the assumption of s �1s

becomes no longer valid.
In summary, we have studied the azimuthal dependence of

EIT in a Rydberg atomic scheme subjected to a weak probe
beam as well as control fields of larger intensity with OAMs.
When two-photon detuning is not compensated for by the
Rydberg level energy shift induced by the vdWs interaction, the
probe absorption depends on the azimuthal angle and the OAM
of the control vortex beams. We have considered different cases
of absorption with different OAM number combinations of the
control field components, leading to formation of bright and
dark Ferris wheels, and also investigated the absorption depend-
ence on atomic density ρ. The proposal allows for patterning
Rydberg atoms at specific positions in azimuthal space, enabling
single-site addressability of trapped arrays of atoms. In this way,
optical ring lattice structures with strong confinement at each
lattice point may be obtained [4].
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Rev. A 99, 033812 (2019).
17. V. E. Lembessis, A. Lyras, andO.M. Aldossary, J. Opt. Soc. Am. B 38,

233 (2021).
18. V. S. Chauhan, R. Kumar, D. Manchaiah, P. Kumar, and R. K.

Easwaran, Laser Phys. 30, 065203 (2020).
19. N. Radwell, T. W. Clark, B. Piccirillo, S. M. Barnett, and S.

Franke-Arnold, Phys. Rev. Lett. 114, 123603 (2015).
20. S. Sharma and T. N. Dey, Phys. Rev. A 96, 033811 (2017).
21. H. R. Hamedi, V. Kudriašov, J. Ruseckas, and G. Juzeliūnas, Opt.
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