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We show that for the two widely used configurations of the
double-3 atom–light coupling scheme, one where the con-
trol fields are applied in the same 3-subsystem and another
where they are applied in different 3-subsystems, the for-
ward propagation of the probe and signal fields is described
by the same set of equations. We then use optimal control
theory to find the spatially dependent optimal control fields
that maximize the conversion efficiency from the probe
to the signal field, for a given optical density. This work
can find application in the implementation of efficient fre-
quency and orbital angular momentum conversion devices
for quantum information processing, as well as to be useful
for many other applications using the double-3 atom–light
coupling scheme. © 2020 Optical Society of America

https://doi.org/10.1364/OL.404173

During the last few decades, the double-3 atom–light coupling
scheme [1] has received considerable attention among the quan-
tum optics community. This system is a four-state unbranched
loop where the labeling of the four applied laser fields can be
considered as two linked 3-subsystems, as shown in Fig. 1.
Usually, a pair of strong control fields �c , �d , which can be
spatially dependent, prepares atoms in a coherent superposition
state. This coherently prepared atomic cloud can be used to
manipulate the properties of the weak probe and signal fields
�p , �s propagating inside it. For example, when the signal field
is absent at the entrance to the medium, this setup can generate
it by converting the probe field.

The double-3 atom–light coupling scheme finds a wide
range of applications, including light storage [3,4], generation
of squeezed light states [5,6], phase-controlled light switch-
ing [7,8], frequency conversion [9–17], and orbital angular
momentum conversion [18–21] between light beams, as well
as many others [2,22–27]. In most of these works, two con-
figurations of the applied laser fields are usually encountered.
In the first, which we call the direct configuration and display
in Fig. 1(a), the probe and signal fields appear in the same
3-subsystem, while the control fields are applied in the other.
In the other configuration, shown in Fig. 1(b), the probe and

signal fields appear in different 3-subsystems; we call this the
mixed configuration.

In the present work, we show that, under some reasonable
approximations, the forward propagation of the probe and
signal fields in both configurations is described by the same set
of equations. Then, we use optimal control theory [28] to find
the optimal control fields �c , �d that maximize the conver-
sion efficiency from �p to �s for a given optical density. We
emphasize that we concentrate on the forward scheme, where
�p , �s propagate in the same direction, which suffers less from
phase mismatch than the backward propagation scheme [17].
Also, we consider the case where all fields are resonant with the
corresponding transitions, so the interaction strength between
atoms and photons is maximized.

We consider first the mixed configuration, shown in Fig. 1(b).
The Maxwell–Bloch equations governing the dynamics of the
fields�p , �s and the atomic coherencesρ21, ρ31, ρ41 are [17]

d
dt
ρ31 = i(�p +�cρ21)− 031ρ31, (1a)

d
dt
ρ41 = i(�s +�dρ21)− 041ρ41, (1b)

d
dt
ρ21 = i(�∗c ρ31 +�

∗

dρ41)− 021ρ21, (1c)

and

∂

∂z
�p +

1

c
∂

∂t
�p = i

αp031

2L
ρ31, (2a)

∂

∂z
�s +

1

c
∂

∂t
�s = i

αs041

2L
ρ41, (2b)

where 031, 041 are the spontaneous decay rates of the excited
states, 021 is the dephasing rate of the ground states, αp , αs
are, respectively, the optical densities of the probe and signal
transitions, and L is the length of the medium. To simplify the
model, we assume 031 = 041 = 0, 021 = 0, and αp = αs = α,
justified in Refs. [17,19,20]. Note also that in Eq. (1), we use
the approximation ρ11 ≈ 1, which is valid to first order for
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Fig. 1. (a) In the direct configuration, the probe and signal fields
�p , �s appear in the same 3-subsystem, while the control fields
�c , �d are applied in the other. (b) In the mixed configuration,
the probe and signal fields appear in different 3-subsystems. This
configuration can also be viewed as built by a3- and a V -system [2].

weak probe and signal fields. If we solve for the steady state of
system (1), we get to the first order (see Supplement 1):(

ρ31
ρ41

)
=

i
0

(
cos2 θ − sin θ cos θ

− sin θ cos θ sin2 θ

)(
�p
�s

)
, (3)

where θ is the mixing angle defined by the equation

�c =� sin θ, �d =� cos θ, (4)

� being the generalized Rabi frequency. Substituting Eq. (3)
into Eq. (2), we obtain in the steady state the following coupled
equations for the propagation of the probe and signal pulses:

∂

∂z

(
�p
�s

)
=−

α

2L

(
cos2 θ − sin θ cos θ

− sin θ cos θ sin2 θ

)(
�p
�s

)
.

(5)

The above system, which describes pulse propagation for the
mixed configuration, is exactly the same as the corresponding
system for the direct configuration, derived in Refs. [19,20].
If we normalize the propagation distance z with the absorp-
tion length L abs = L/α and use the dimensionless variable
ζ = z/L abs, we get(

�̇p

�̇s

)
=−

1

2

(
cos2 θ − sin θ cos θ

− sin θ cos θ sin2 θ

)(
�p
�s

)
,

(6)
where the dot denotes the derivative ∂/∂ζ . Under this transfor-
mation, the propagation takes place from ζ = 0 to ζ = α.

In order to study pulse propagation under a position-
dependent mixing angle θ(ζ ), i.e., spatially varying control
fields �c (ζ ), �d (ζ ), it is more convenient to work in the
adiabatic frame. The eigenstates of the propagation matrix in
Eq. (6) are

ψ0 =

(
sin θ
cos θ

)
, ψ−1/2 =

(
cos θ
− sin θ

)
, (7)

with corresponding eigenvalues zero and −1/2, respectively.
The transformation to the adiabatic basis is(

y
x

)
=

(
sin θ cos θ
cos θ − sin θ

)(
�p
�s

)
. (8)

Using Eqs. (6) and (8), we find(
ẏ
ẋ

)
=

(
0 −u
u − 1

2

)(
y
x

)
, (9)

where the control function u(ζ ) is defined as

θ̇ =−u. (10)

For�p(0)=�0, �s (0)= 0 and the boundary conditions

θ(0)=
π

2
, θ(α)= 0, (11)

we get

x (0)= 0, y (0)=�p(0)=�0, (12)

and

x (α)=�p(α), y (α)=�s (α). (13)

It is worth pointing out that for large α, if θ varies slowly
between the values in Eq. (11), with rate u = |θ̇ | � 1,
then y (ζ ) remains constant during the evolution, and thus
�s (α)= y (α)≈ y (0)=�p(0)=�0. The slow conver-
sion from the initial �p to the final �s takes place along the
eigenstateψ0 of the original system (6).

We next move to find the optimal control u(ζ ), 0≤ ζ ≤ α,
for given finite optical density α, which maximizes the final
value�s (α)= y (α). The control Hamiltonian is [28]

Hc = λx ẋ + λy ẏ +µu = (λx y − λy x +µ)u −
1

2
λx x ,

(14)

where λx , λy , µ are the Lagrange multipliers corresponding to
x , y , θ . They satisfy the adjoint equations

λ̇y =−
∂Hc

∂ y
=−uλx , (15a)

λ̇x =−
∂Hc

∂x
= uλy +

1

2
λx , (15b)

while µ is constant since θ is a cyclic variable. The optimal
control u(ζ ) is chosen to maximize the control Hamiltonian Hc
[28], which is a mathematical construction, so its maximization
does not correspond to maximizing the energy of some system
but the target quantity y (α). Note that we have not imposed any
bound on u, so Eqs. (9) and (10) are fully equivalent to the origi-
nal system (6). Even infinite values are allowed momentarily,
corresponding to instantaneous jumps in the angle θ . Since Hc
is a linear function of u with coefficient φ = λx y − λy x +µ,
if φ 6= 0 for a finite interval, then the corresponding optimal
control should be±∞ for the whole interval, which is obviously
unphysical. We conclude that φ = 0 almost everywhere, except
some isolated points where jumps in the angle θ can occur. The
optimal control that maintains this condition is called singular
[28]. Such controls have been exploited in nuclear magnetic
resonance to minimize the effect of relaxation [29]. In order
to find the singular optimal control u s , we additionally use the
conditions φ̇ = φ̈ = 0 and obtain the following equations:

λy x − λx y =µ, (16a)

λy x + λx y = 0, (16b)

2(λy y − λx x )u s =
1

2
(λy x − λx y ). (16c)
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Solving forλx , λy , u s , we find

λx =−
µ

2y
, λy =

µ

2x
, (17)

u s =
x y

2(x 2 + y 2)
. (18)

According to optimal control theory [28], the control
Hamiltonian for a system without explicit dependence on the
running variable ζ , as in our case, is constant. Using φ = 0 and
Eq. (17) for λx in Eq. (14), we conclude that the singular arc is a
straight line passing through the origin of x y plane:

y
x
= const.= tan θ0. (19)

This implies that the singular control u s , given in Eq. (18) in
terms of a feedback law, is also constant. Now we can describe
the optimal pulse sequence. There is a delta pulse at ζ = 0,
resulting in a jump from θ(0−)= π/2 to θ(0+)= θ0, where the
initial angle is to be determined. The system is brought on the
singular arc and remains there for 0< ζ < α. During this inter-
val, the angle decreases linearly with slope u s , θ(ζ )= θ0 − u s ζ .
At the final distance ζ = α, another delta pulse changes the
angle from θ(α−)= θ0 − u s α to θ(α+)= 0. The optimal
control has the form bang-singular-bang :

u(ζ )=

{
(π/2− θ0)δ(ζ ), ζ = 0

u s , 0< ζ < α
(θ0 − u s α)δ(ζ − α), ζ = a

. (20)

Observe from the original system (6) that jumps in the angle θ
do not change �p , �s . In the adiabatic basis, these jumps are
accompanied by sudden rotations of the (x , y )T vector such
that�p , �s remain unchanged [see transformation (8)]. Thus,
in order to implement the optimal protocol, one simply needs
to vary linearly the angle from θ0 to θ0 − u s α with the slope
u s <π/(2α).

We now find the optimal θ0 corresponding to a given optical
densityα. After the application of the pulse sequence (20) to sys-
tem (9), we get

|�s (α)|
2

|�0|
2
= e−2γα sin2(u s α), (21)

where

u s =
tan θ0

2(1+ tan2 θ0)
=

1

4
sin(2θ0) (22)

from Eqs. (18) and (19), and

γ =
1

2(1+ tan2 θ0)
.

Optimizing Eq. (21) with respect to θ0, we get

tan(u s α)=
du s

dθ0
/

dγ
dθ0
=

tan2 θ0 − 1

2 tan θ0
= tan

(
2θ0 −

π

2

)
.

(23)
Since 0< u s α < π/2 and π/4< θ0 <π/2, where the lower
bound in the latter relation comes from the third term in
Eq. (23), from the monotonicity of the tan function in (0, π/2),
we conclude that

α

4
sin(2θ0)= 2θ0 −

π

2
, (24)

where we have also used Eq. (22). For a given optical density α,
this is a transcendental equation for θ0. It can be easily proved
that it has a unique solution in the interval π/4< θ0 <π/2.
Note that for α→ 0, it is θ0→ π/4, while for α→∞, it
is θ0→ π/2. The limiting values of the optimal conversion
efficiency are

|�s (α)|
2

|�0|
2
=

{ 1
16α

2, α� 1
1− π2

α
, α� 1

, (25)

and thus for sufficiently large optical density, the conversion effi-
ciency approaches unity. In Fig. 2, we plot the optimal conver-
sion efficiency (red solid line) as a function of the optical density,
for 0≤ α ≤ 100.

As we pointed out above, for large α, we have θ0→ π/2, and
thus the boundary jumps become smaller. In this limit, the opti-
mal solution tends to a linear decrease of the angle θ fromπ/2 to
zero:

u(ζ )= const.=
π

2α
, θ(ζ )=

π

2
− uζ . (26)

Under this constant control protocol, ensuring that
�c (0)=�d (α)=�0 and �c (α)=�d (0)= 0, Eq. (9)
can be easily integrated, and at the final distance ζ = α, one
finds [15,17]

|�s (α)|
2

|�0|
2
= e−ηα

[
cosh(κα)+

η

2κ
sinh(κα)

]2
, (27)

where

η=
1

2
, κ =

√(η
2

)2
− u2.

From Eq. (27), we find the limiting cases

|�s (α)|
2

|�0|
2
=

{ 1
4π2α

2, α� 1

1− π2

α
, α� 1

. (28)

Compared to the corresponding values (25) of the optimal
protocol, the constant control protocol (26) behaves worse for
smaller values of α, while both strategies behave similarly for
large α. This is also evident in Fig. 2, where the conversion effi-
ciency of protocol (26) is displayed as a function of the optical
distance (blue dashed line).

As a specific example, we consider the case where α = 100.
Solving numerically transcendental Eq. (24), we obtain for the
optimal protocol θ0 ≈ 1.540568 rad. We subsequently use this

Fig. 2. Conversion efficiency for optimal protocol (red solid line)
and constant control protocol of Eq. (26) (blue dashed line).
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value in Eq. (22) and find u s ≈ 0.015105. The corresponding
dimensionless spatially dependent control fields are displayed
in Fig. 3(a) (red solid lines), as functions of the dimensionless
distance ζ = z/L abs. In general, control field�c precedes�d in
space, in order to prepare the necessary atomic coherences for
the conversion�p to�s , but note that for the optimal protocol,
�d (0+) and �c (α

−) have nonzero values, associated with the
jumps in the mixing angle at ζ = 0 and ζ = α, respectively. The
corresponding dimensionless intensities of the probe and signal
fields are plotted in Fig. 3(b), with red solid lines when using
the approximate propagation Eq. (6) and with green circles
for the full Maxwell–Bloch set of equations (without the weak
loss assumption ρ11 ≈ 1). Observe the very good agreement
between the two results. For comparison, we consider a pair of
adiabatic controls that we have used in Refs. [19,20,30],

�c =�0

[
1+ e (ζ−ζ0)/ζ̄

]−1/2
, �d =�0

[
1+ e−(ζ−ζ0)/ζ̄

]−1/2
.

(29)

Here, we take ζ0 = α/2= 50 and ζ̄ = 5, where the lat-
ter value is selected such that the adiabaticity condition
|θ̇ | � 1/2⇒ ζ̄ � 1/2 is satisfied. The dimensionless con-
trol fields are plotted in Fig. 3(a) (blue dashed lines) as functions
of the dimensionless distance ζ = z/L abs, and the correspond-
ing dimensionless probe and signal pulses in Fig. 3(b), with blue
dashed lines for the approximate propagation Eq. (6) and with
yellow squares for the full Maxwell–Bloch equations. As before,
a very good agreement is observed between the two results. The
conversion efficiency at the final distance ζ = α = 100 for the
adiabatic protocol (29) is 0.8197, much lower than the value
0.9094 obtained with the optimal protocol. The corresponding
efficiency of the constant control protocol (26) is 0.9077, close
to the optimal one, as shown in Fig. 2. For efficiency values
close to one, we have to use larger values of α, a few hundred for
the optimal protocol and about 1500–2000 for the adiabatic
protocol. Note that in our recent work [19,20], using adiabatic
controls in the direct configuration, we have reported a con-
version efficiency close to unity for optical densities as small as
α = 40, but recently discovered that this result was overstated
due to a scaling error.

In summary, we showed that for two frequently encoun-
tered configurations of the double-3 atom–light coupling
scheme, with the control fields applied in the same and different
3-subsystems, the forward propagation of the probe and signal
fields obeys the same set of equations. We also used optimal
control theory to find the optimal spatially dependent control

Fig. 3. (a) Dimensionless control fields for the optimal protocol
(red solid lines) and the adiabatic protocol (29) (blue dashed lines), as
functions of the normalized distance ζ = z/L abs, for optical density
α = 100. (b) Propagation of the corresponding probe and signal pulses
using the approximate Eq. (6) (red solid and blue dashed lines) and the
full Maxwell–Bloch equations (green circles and yellow squares).

fields that maximize the conversion efficiency from the probe to
the signal field, for a single-pass scheme and a specified optical
density. Aside from this “optimal protocol” (20), we also consid-
ered two others, called the “constant control protocol” (26) and
the “adiabatic protocol” (29).
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