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Abstract: We suggest a flexible control of the diffraction grating by considering an optome-
chanical cavity system. The cavity is driven by an external control standing wave and realizes
the characteristics of the diffraction grating when the light beam interacts with the cavity, a
phenomenon which we name optomechanically induced grating (OMIG). A standing wave
consists of nodes and antinodes that lead to gratings or slits in the cavity system. The reflected
probe field from a moving mirror is diffracted through a standing wave and comes out through
a partially reflected mirror. Effective control of the diffraction grating is achieved with the
manipulation of the optomechanical strength gmc ( the so-called mirror-light interaction strength).
Fascinatingly, the first, second, and third-order diffraction gratings can be easily achieved via the
mirror-light interaction strength gmc. The diffraction grating is found to be influenced by the
cavity decay rate. For small values of the decay rate, the diffraction grating becomes maximum
and vice versa. The results of our model can bring potential applications in optomechanical
systems.

© 2021 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Quantum interference and coherence are physical mechanisms which have recently lead to many
interesting innovations in modern laser physics and quantum optics. One remarkable example
of those fascinating innovations is the effect of electromagnetically induced transparency (EIT)
which results in the elimination of the probe field absorption of an atomic medium at a resonance
transition frequency [1–3]. The EIT plays an important role in quantum information science [4]
and non-linear optics [5,6].

Interestingly, when a strong coupling field in an EIT scheme is replaced by a standing-wave
(SW), the so called Electromagnetically Induced Grating (EIG) is observed. The probe field
magnitude incident on an atomic grating changes in a periodic manner due to the spatial
modulation formed by the SW field. The periodic modulation of the probe field results in
the diffraction of light beam to higher orders just like classical grating. EIG was proposed
first theoretically in 1998 [7]. It has been shown that the application of a strong SW control
field interacting with a three-level atomic system diffracts a weak probe field into high-order
diffractions. Following this theoretical representation of the EIG phenomenon, the experimental
demonstration of EIG was also proposed in [8,9]. In another experiment, two counter-propagating
fields with the same phase but propagating in the opposite directions have been employed
to create an atomic grating within a medium [10]. Such a technique to generate EIG has
certain applications in nonlinear optical processes, localizing the standing wave as well as for
storage purposes in one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D)
optical pulses. Following this work, an experiment has been conducted to study the probe light
transmission and reflection properties [11]. In the experiment [11], they observed EIG formation
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in a vapor cell with a three-level atomic system which is dependent on laser frequency detunings.
Using the propoerties of EIG, a method has been suggested for achieving all-optical routing
and switching, which can be usefull in the quantum information process (QIP) and quantum
networking [11]. EIG has drawn a lot of interest in different fields of science because of its
possible applications such as all-optical switching and routing [11], switching of photonic band
gaps [12], storage of light [10,13], beam splitting and fanning [14]. Different structures have
been proposed theoretically to realize the EIG. For instance, a three-level ladder-type atom-light
coupling scheme has been utilized to generate the EIG [15]. An enhanced diffraction grating has
been observed by considering slightly off-resonant probe field detuning. It has been reported that
for a four-level atomic structure, the atomic phase grating exhibits a giant Kerr nonlinearity [16].

On the other hand, optomechanics, which is at the core of quantum optics, explains the
interaction between electromagnetic waves and nanomechanical motion. This form of interaction
is more imperative at the micro and nanoscales, where the actual mass of the mechanical motion can
be decreased substantially. Interaction of optical beams in the cavity with mechanically oscillating
mirror via radiation pressure is known as cavity optomechanics [17,18]. Cavity optomechanics
results in a variety of incredible further advances. Examples include, optomechanically induced
transparency (OMIT) [19–25], precision measurements [26,27], quantum knowledge [28,29],
modulation of light propagation [30,31], squeezing of light [32], and heavy coupling physics [33].
Note that, EIT [34], inverse EIT [35], Fano resonance [36,37], refractive index enhancement
[38], and nano-scale optical cavities [22] have been already investigated. The multiple EIT can
be obtained in atomic configurations by extending single EIT to different light-matter couplings,
such as V-type [39], Y-type [40], N-type [41], and K-type [42] atomic media. Analogously, in
charged optomechanical systems [43], coupled discs structures [44], coupled optomechanics [45],
and double resonators optomechanics [46,47], a double OMIT window has been investigated.

A fascinating idea of nonlinearity can be introduced to an optomechanical cavity when it
is excited by a strong field. This nonlinearity can be generated via the interaction between
the mechanical mirror and the cavity field. This can lead to the manipulation of the refractive
index of the cavity. It is now more interesting to study the manipulation of the diffraction
grating in an optomechanical system instead of considering any medium. In the current article,
we consider an optomechanical cavity and study the diffraction grating in the presence of a
strong SW field. It is very exciting to show the dependence of the diffraction grating on the
mirror-light interaction strength gmc on the diffraction grating in an optomechanical cavity.
Flexible control of the diffraction grating can be expected in the optomechanical cavity via
mirror-light interaction strength gmc. Our proposed model delivers an accessible technique to
determine the optomechanical coupling strength by the amplification of diffraction grating that
can be investigated in practical experiments.

2. Model

2.1. Dynamics of optomechanical cavity

We consider a hybrid optomechanical system, composed of a high Q Fabry-Perot cavity of length
L, as shown in Fig. 1(a). The cavity is simultaneously driven by a standing wave (SW) beam of
frequency ωl and a weak probe field of frequency ωp along the cavity axis. We also consider that
both fields, the weak probe light beam and another position-dependent SW field interact with the
cavity modes with the interaction length L. The energy-level diagram for an optomechanical
system is shown in Fig. 1(b). The SW field pumps the cavity and couples the mechanical mode
3 to the cavity mode 2. The probe field couples the optical bath (1) to the cavity mode 2. In
Fig. 1(c), the interaction of SW with the probe field is shown. The SW (nodes and antinodes) can
be generated in the transverse (y) direction while the probe field is propagating in the longitudinal
(x) direction. The Hamiltonian of the system can be expressed as [19]
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Fig. 1. (a) Schematic of the optomechanical cavity where two fields (probe and pump) are
applied from the left to the cavity. (b) The energy-level configuration of the optomechanical
cavity (c) Schematic of the diffraction grating when a probe field diffracts through a standing
wave (like slits).

H = ℏ∆ca†a + [
p2

2m
+

mω2
mx2

2
] − ℏgmca†ax

+ iℏEl(a† − a) + iℏ(Epe−iδta† − E∗
peiδta),

(1)

where ∆c = ωc − ωl represents the detuning of the cavity field frequency while δ = ωp − ωl
denotes the difference in probe detuning and driving field. In Eq. (1) the first term shows the
Hamiltonian for cavity mode with the creation (a†) and annihilation (a) operators. The second
part of the Hamiltonian describes the unperturbed part for the moving mirror, where x and p are
the position and momentum operators of vibrational mirror with the mass m and frequency ωm.
The parameter gmc =

ωc
L

√︁
ℏ/(2mωm) shows the coupling strength between the cavity and moving

mirror. The last two parts of the Hamiltonian in Eq. (1) refer to the probe and control fields. The
probe field amplitude is |Ep | =

√︂
2κPp
ℏωp

and the pump field generates a SW field having frequency

El = Emsin[πy/Λy] whereas the pump field amplitude is |Em | =
√︂

2κPl
ℏωl

. We use the Heisenberg
equation of motion to explain the behavior of the optomechanical system. For a variable D, one
can write the general equation as [48]

dD
dt
= −

i
ℏ
[D, H] − ΓD +M, (2)

where Γ is the decay rate of a cavity photon and mechanical mirror whereas M accounts for the
Brownian noise operator and input vacuum noise. After taking into account the corresponding
fluctuation and dissipation terms and using Eq. (1), the Heisenberg equations of motion can be
expressed as

ẋ =
p
m

, (3)

ṗ = −mω2
mx + Γmp + gmca†a + ζ(t), (4)

ȧ = −(κ + i∆c)a + igmcax + El + Epe−iδt +
√

2κain(t), (5)
where κ, is the cavity decay rate and Γm shows the decay rate of mechanical mode. It is
also emphasized that the Langevin noise operator (Hermitian Brownian noise operator) affects
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the system which have zero mean value ⟨ζ(t)⟩ = 0, and satisfies the temperature dependent
correlation function ⟨ζ(t)ζ†(t′)⟩ =

∫
ωe−iω(t−t′ )P(ω)dω. Here, P(ω) = Γm

2πωm
[1 + coth( ℏω

2kBT )],
kB is the Boltzmann constant, and T is the temperature of the mechanical oscillator reservoir.
We also incorporate the input vacuum noise into the cavity field ain(t) where the mean value of
ain(t) goes to zero such as ⟨ain(t)⟩ = 0. In order to explain the effect of the mechanical cavity on
the probe field transmission, we write the steady-state solutions of the corresponding operators
which enables to study the output spectrum. Using the mean-field approximation [19], i.e.,
⟨xa⟩ ≈ ⟨x⟩⟨a⟩, the mean value equations read

⟨ẋ⟩ =
⟨p⟩
m

, (6)

⟨ṗ⟩ = −mω2
m⟨x⟩ − Γm⟨p⟩ + gmc⟨c†⟩⟨c⟩, (7)

⟨ȧ⟩ = −(κ + i∆c)⟨a⟩ + igmc⟨a⟩⟨x⟩ + El + Epe−iδt. (8)

Using the ansatz [49]
⟨x⟩ = xs + x−e−iδt + x+eiδt (9)

⟨p⟩ = ps + p−e−iδt + p+eiδt (10)

⟨a⟩ = as + a−e−iδt + a+eiδt, (11)

The steady state solution can be obtained as

as =
El

κ + i(∆c −
gmc
ℏ xs)

, (12)

where
xs =

ℏgmc |a|2

mωm
.

Finally, the expression for a− can be found in the following form

a− = −
A
B

, (13)

where

A = −imΓmδ
2ℏ − mδ3ℏ + mΓmδκℏ − imδ2κℏ

+ mδω2
mℏ + imκω2

mℏ − imγδ∆cℏ − mδ2∆cℏ

+ mω2
m∆cℏ − |as |

2 g2
mc,

and

B = (mΓmδ
3ℏ − imδ4ℏ + 2imΓmδ

2κℏ + 2mδ3κℏ
−mΓmδκ

2ℏ + imδ2κ2ℏ + imδ2ω2
mℏ − 2mδκω2ℏ

−imκ2ω2ℏ − imκ2ω2
mℏ − mΓmδ∆

2
cℏ + imδ2∆2

cℏ

−imω2
m∆

2
cℏ + 2ig2

mc∆c |as |
2).

One may write the input-output relation of the cavity as [50]

Eout(t) + Epe−iδt + El =
√

2κa, (14)

where
Eout(t) = E0

out + E+outEpe−iδt + E−
outEpeiδt. (15)
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Solving Eqs. (14) and (15), one gets

E+out =

√
2κa−
Ep

− 1, (16)

which can be measured by using the homodyne technique [50]. For convenience, we define

E+out + 1 =
√

2κa−
Ep

= ET. (17)

The quadratures of the field ET can be defined as ET = Re[ET] + iIm[ET]. Here, Re[ET] and
Im[ET] are the out-of-phase and in-phase quadratures of the output probe field, respectively.

The phenomenon of OMIT has been previously studied [19–25] which depends on the phase
dispersion in the OMIT window. The phase dispersion of the output probe field can be expressed
as

ϕ1(ωp) = arg[tp(ωp)], (18)

where tp(ωp) is the probe field transmission and can be defined as

tp(ωp) = 1 −

√
2κa−
Ep

. (19)

2.2. Dynamics of OMIG

Using the Maxwell’s equation, one arrives at the following equation for the propagation of probe
light beam (Ep) [7]

∂Ep

∂x
= [α(y) + iβ(y)]Ep, (20)

where α(y) = ( 2π
λ )Re[ET] and β(y) = ( 2π

λ )Im[ET] are the absorption and dispersion coefficients
of the probe field having wavelength λ, respectively.

For simplification, we focus on the characteristics of the OMIG by ignoring the transverse
part in Eq. (20) [7]. The transmission function of the probe light beam at y = L can be easily
calculated using Eq. (20), yielding

T(y) = e−α(y)L+iβ(y)L, (21)

where the terms |T(y)| = eα(y)L and ϕ2(y) = β(y)L are associated with the amplitude and phase
modulation of the cavity, respectively. Assuming that the input probe field is a plane wave, the
diffraction intensity distribution can be expressed as [7,51,52]

I(θ) = |E(θ)|2 ×
sin2(NπΛy sin(θ)/λ)

N2 sin2(πΛy sin(θ)/λ)
, (22)

where N is the number of spatial periods of optomechanically induced grating, θ stands for the
diffraction angle along the y-direction, and the parameterΛy =

π
ky

denotes the spatial period in the
y direction, whereas the term E(θ) is the Fourier transform of T(y) and describes the Fraunhofer
diffraction for a single period as

E(θ) =
∫ 1

0
T(y)e−2πiΛyy sin(θ/λ)dy. (23)
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3. Results and discussion

To start the discussion first we show the behavior of the output probe field in the absence and the
presence of mirror-light interaction strength gmc. We display in Fig. 2(a) the spectrum of OMIT
(Re[ET]) versus the normalized δ/ωm for different values of gmc. In the absence of gmc, we find
a Lorentzian shape with high absorption of the probe field in the cavity, as shown by the solid
green curve. In the presence of a small value of gmc/2π = 0.4MHz, there is a hole bored into the
spectrum of the output probe field as illustrated by the dashed blue curve, resulting in a narrow
transparency window. The larger the value of gmc, the broader the transparency window, see the
dotted red curve in Fig. 2(a). We also depict in Fig. 2(b) the phase (ϕ1(ωp)) of the output probe
field representing the dispersive properties of the optomechanical cavity for certain values of
gmc. The slope may alter with changing the value of gmc as shown by dashed blue and dotted red
curves. In particular, for gmc = 0, the slope is negative corresponding to a negative group index
of the cavity. For non-zero values of gmc, the slope changes to positive, suggesting the slow light
condition.

Fig. 2. (a) The real part of Eout (absorption) versus δ/ωm. (b) The phase ϕ1(ωp) versus
δ/ωm. The solid green curve is shown for gmc = 0, the dotted-dashed blue curve is for
gmc/2π = 0.4MHz and dashed red curve is for gmc/2π = 1MHz. The parameters are,
Em/2π = 1MHz, ωm/2π = 10MHz, κ = ωm/10, ∆c/2π = 10MHz, and Γm/2π = 140Hz

Before discussing the grating, it is necessary to discuss the amplitude T(y) and phase ϕ2(y)
modulation of the transmission functions. In Fig. 3 we plot T(y) and ϕ2(y) versus y for different
values of mirror-light interaction strength gmc. We get nodes and antinodes in the period while
the antinodes increase with increasing the value of gmc as can be seen in Fig. 3(a). When gmc = 0,
|Ty| approaches to zero as shown by the solid red curve in Fig. 3(a). It means that when the pump
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field is zero then gmc = 0, this shows that all the probe light will be absorbed in the cavity system.
The transmission of probe light becomes zero when there is high absorption in the cavity system.
It is now difficult to realize the diffraction grating for gmc = 0. It is obvious that by increasing
the mirror-light interaction strength, the probe field enhances while it depends on the transverse
coordinate y. For the non-zero values of gmc, we find that the amplitude becomes maximum
for higher values. Similarly, we show in Fig. 3(b) the phase modulation of the transmission
function for different values of gmc. It is seen that the phase modulation is also dependent on the
mirror-light interaction strength and can be modified with changing the value of gmc.

Fig. 3. (a) The Amplitude |T | and (b) phase ϕ2(y) of the transmission versus y. The solid red
curve is shown for gmc/2π = 0, the dashed blue curve is shown for gmc/2π = 0.4MHz and
dotted black curve is shown for gmc/2π = 0.5MHz. The parameters are, Em/2π = 0.5MHz,
ωm/2π = 10MHz, κ = ωm/10, ∆c/2π = 10MHz, δ/2π = 10MHz, and Γm/2π = 140Hz

As noted, the diffraction grating in ordinary media such as in atomic systems has been explored
earlier (the EIG effect) [15,16]. On the other hand, the concept of OMIT has been widely studied
by utilizing different techniques [19–25]. In what follows, we develop the theory to realize the
diffraction grating through the optomechanical cavity by combining the EIG and OMIT effects.
We consider a simple optomechanical cavity and characterize the OMIG in the presence of a
strong SW field by simply tuning the knob of the mirror-light interaction strength gmc. To study
the OMIG, we use Eq. (22) and plot first the intensity of diffraction grating distribution as a
function of sinθ for the case that the mirror-light interaction strength gmc is absent (see Fig. 4(a)).
One can observe no OMIG in the spectrum for gmc = 0. This is the case for which no OMIT
occurs in the system, as all the probe light is absorbed in the absence of gmc. It is emphysized that
the SW field interacts with the movable mirror and can generate the radiation pressure inside the
cavity. The generation of radiation pressure inside the cavity leads to generate the mirror-light
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interaction strength gmc. It means that gmc is dependent on the SW field in the cavity system.
Therefore, no OMIG can be observed when gmc = 0 and vice versa. Further, the nodes and
antinodes or slits can only be generated when SW field is switch on and in this situation the value
of gmc ≠ 0.

Fig. 4. The diffraction intensity distribution I(θ) versus sinθ for different values of gmc
(a) gmc = 0 (b) gmc/2π = 0.2MHz (c) gmc/2π = 0.35MHz (d) gmc/2π = 0.4MHz,(e)
gmc/2π = 0.45MHz and (f) gmc/2π = 0.49MHz . The other parameters are Em/2π =
0.5MHz, ωm/2π = 10MHz, κ = ωm/10, N = 5, L = 50µm, Λy = 4λ, ∆c/2π = 10MHz,
δ/2π = 10MHz, and Γm/2π = 140Hz

As shown in Fig. 2(a), the OMIT can be only achieved when gmc ≠ 0. Let us next consider a
situation where the mirror-light interaction strength plays a role i.e., gmc ≠ 0, and study thoroughly
the behaviors of OMIG for different values of gmc. Setting gmc/2π = 0.2MHz, the first order
OMIG is generated as illustrated in Fig. 4(b), with a little energy being transferred to the first
order. For further increment in gmc/2π from 0.2MHz to 0.35MHz, the first-order diffraction
increases along with the generation of second-order diffraction grating, as can be observed in
Fig. 4(c). Interestingly, the maximum energy of the probe field transfers to the first-order of
diffraction grating, see Figs. 4(c, d, e). It will be more interesting to transfer the probe energy
to the second-order diffraction grating. To get this, we set gmc/2π = 0.49MHz and plot I(θ)
versus sinθ, see Fig. 4(f). It is clearly demonstrated that the probe energy transfers to the first and
second-order diffraction gratings. One can also see from Fig. 4(f) that the energy of the probe
field is also transferred to the third-order diffraction which is very constructive. It is now clear
that the optomechanical cavity system diffracts the probe light into different directions and also
enhances the amplitude of probe light, indicating that our model acts as a phase and amplitude
grating. The physical picture of the diffraction grating in our optomechanical system is presented
in Fig. 1(c). The external control and a weak probe fields are applied from left to the cavity
system and exert pressure on the movable mirror. A SW is generated in the cavity that consists of
nodes and antinodes that leads to gratings in the system. The probe field is reflected from the
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movable mirror and interact with the gratings that can be diffracted in different directions. In this
way diffraction grating is generated in our proposed system.

A 3D plot of the diffraction intensity distribution spectra versus sinθ and gmc can provide
a better perspective of this phenomenon, as shown in Fig. 5. For very small values of gmc
(gmc → 0), the central intensity (the zeroth order) is maximum and no grating takes place in
different directions. The probe energy starts to transfer to the first-order when gmc/2π ≈ 0.2MHz.
For larger values of gmc, the probe energy increases in first-order while little energy is being also
transferred to the second-order. When gmc/2π ≈ 0.45MHz, the probe energy can be transferred
to the first, second and third-orders, while the central intensity goes to zero.

Fig. 5. The 3D plot of diffraction intensity distribution I(θ) versus sinθ and gmc/2π. The
parameters are gmc/2π = 0.49MHz, Em/2π = 0.5MHz, ωm/2π = 10MHz, κ = ωm/10,
N = 5, L = 50µm, Λy = 4λ, ∆c/2π = 10MHz, δ/2π = 10MHz and Γm/2π = 140Hz

To elucidate better the influence of gmc on the first, second, and third-order diffraction gratings
separately, we display them in Fig. 6 for different diffracted angles. For the first-order diffraction
grating (dashed blue curve), we take θ = 0.25 radian and plot it versus gmc for δ/ωm = 10MHz.
The probe energy is seen to transfer to the first-order while increases with increasing the value of
gmc. For the same parameters but θ = 0.52 radian and 0.84 radian, the second (dotted red curve)
and third-order (solid green curve) diffraction gratings are shown versus gmc, respectively. It is
apparent that the second and third-order diffraction gratings are also increasing by increasing
the value of gmc. One notices that the maximum probe energy transfers to the first-order
diffracting grating while little energy is sent to the third-order, with an intermediate transfer to
the second-order of diffraction grating. The inset in Fig. 6 shows the variation of diffraction
grating versus gmc for small ranges.

The optomechanical cavity is a lossy system as one of its mirrors is partially reflecting. The
pump and probe fields propagate in and become out of the cavity. Consequently, the photons
of the cavity have a limited lifetime and decay at a rate known as the decay rate of the cavity
(κ). The decay rate of the cavity depends upon the Q-factor of the cavity. The cavity decay rate
follows κ ∝ 1/τc, where τc is the lifetime of the cavity photons. Therefore, the decay rate κ may
affect the output probe field. The change in the output probe field then leads to manipulating the
OMIT, and this results in the diffraction grating in the optomechanical system (when applying a
control SW field). In the following, we study the influence of κ on the diffraction grating when
δ/ωm = 10MHz. A 3D plot of the intensity distribution versus sinθ and κ/ωm is shown in Fig. 7.
The diffraction grating is zero (or very close to zero) for larger values of κ/ωm. This means that
there will be no diffraction if the cavity decays very strong. The diffraction grating enhances
with the decrease of cavity decay κ/ωm as shown in Fig. 7.

The decay rate of the mechanical mode can also influence the behavior of the output probe
field. The absorption in the optomechanical cavity increases with increasing the decay rate of



Research Article Vol. 29, No. 25 / 6 Dec 2021 / Optics Express 42315

Fig. 6. The first (blue dashed for θ = 0.25 radian), second (red dotted for θ = 0.52
radian) and third-order (solid green for θ = 0.84 radian) diffraction intensity distribution
I(θ) versus gmc/2π. The other parameters are gmc/2π = 0.49MHz, Em/2π = 0.5MHz,
ωm/2π = 10MHz, N = 5, L = 50µm, Λy = 4λ, ∆c/2π = 10MHz, δ/2π = 10MHz and
Γm/2π = 140Hz

Fig. 7. The 3D plot of diffraction intensity distribution I(θ) versus sinθ and κ/ωm. The
other parameters are gmc/2π = 0.49MHz, Em/2π = 0.5MHz, ωm/2π = 10MHz, N = 5,
L = 50µm, Λy = 4λ, ∆c/2π = 10MHz, δ/2π = 10MHz and Γm/2π = 140Hz

mechanical mode Γm. The absorption in the system can influence the diffraction grating in the
system. Now it will be more attractive to study the influence of the decay rate of mechanical mode
Γm on the OMIG. We consider two values of Γm and plot the diffraction intensity distribution
versus sinθ as depicted in Fig. 8. The first, second, and third orders diffraction grating reduces by
considering a large value of Γm such as Γm/2π = 14kHz, see Fig. 8(a). The diffraction grating
disappears when a large value such as Γm/2π = 140kHz is considered as shown in Fig. 8(b).

3.1. Experimental realization of OMIG

The possible experimental realization of the proposed model is presented. The potential dimension
of the optomechanical cavity system can be in the order of micrometers [33]. The experimental
realization of OMIT in an optomechanical cavity system has been reported [20,24]. Similarly,
the strong coupling of a micromechanical cavity with an optical cavity has also been revealed
experimentally [33]. Our proposed system is based on the experimental realization [20,24,33]. In
the experiments [20,24,33], the intensity of the output probe field is recorded for the observation
of OMIT. Now the nodes and antinodes can be generated in the optomechanical system by
considering the strong pump field is a SW field. Here, the nodes block the probe field where the
antinodes scatter the probe field. The scattered intensity can be recorded on the screen and one can
get the diffraction grating. In our theoretical study, we used the experimental setup and possible
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Fig. 8. The diffraction intensity distribution I(θ) versus sinθ for different values of Γm
(a) Γm/2π = 14kHz (b) Γm/2π = 140kHz . The other parameters are Em/2π = 0.5MHz,
ωm/2π = 10MHz, κ = ωm/10, N = 5, L = 50µm, Λy = 4λ, ∆c/2π = 10MHz, δ/2π =
10MHz.

experimental parameters [33]. In Ref. [33], the mechanical frequency is set to ωm ≈ 1MHz.
However, it is also mentioned in this reference that the typical mechanical frequency could be
ωm = 10MHz indicating that in an experiment, one may consider the mechanical frequency in
the range from 1 MHz to 10 MHz. Therefore, we safely conclude that the phenomenon of OMIG
can be observed experimentally in our proposed optomechanical cavity in the future.

4. Summary

We have theoretically studied the OMIG effect in an optomechanical cavity system. An external
control field is considered as a standing wave, enabling to realize the characteristics of the
diffraction grating via the mirror-light interaction strength gmc. It has been demonstrated that
the first, second and third-order diffraction gratings are all possible to achieve by tuning the
mirror-light interaction strength. We have shown that the decay rate of the cavity also affects the
diffraction grating patterns. In particular, one obtains a maximum OMIG for small values of
the decay rate. Our model paves the way toward further theoretical and experimental studies to
explore the OMIG as well as new stimulating phenomena in optomechanical cavity systems.
Disclosures. The authors declare no conflicts of interest.
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