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4 Department of Physics, National Technical University of Athens, Zografou Street 80, 157 Athens, Greece
5 Materials Science Department, University of Patras, 26504 Patras, Greece

Received: 22 December 2022 / Accepted: 6 March 2023
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract We conduct theoretical and numerical studies of the performance of a 2D electromagnetically induced grating in a 4-level
quantum system, which is situated near a plasmonic nanostucture. The plasmonic nanostructure is built by metal-coated dielectric
nanospheres in a periodic 2D arrangement. The double V-type system is coupled by a weak probe laser, a spatially-dependent
standing wave field and a Laguerre–Gaussian field. The plasmonic metamaterial causes quantum interference in the spontaneous
emission from the two closely situated upper states, which makes the amplitude and phase modulations of the weak probe light
dependent on the azimuthal angle and the orbital angular momentum of the vortex coupling beam. In the absence of the plasmonic
nanostructure this behavior does not exist due to the lack of quantum interference. We demonstrate that by adjusting the parameters
of the vortex beam, as well as the distance to the plasmonic nanostructure, the amplitude and phase modulations of the probe laser,
and the Fraunhofer diffraction patterns of the grating can be controlled, directing the weak probe light energy to high-orders. The
spatially dependent coupling light causes the Fraunhofer diffraction to have an asymmetric patterns when a negative or a positive
value of the winding number is applied. Our work proposes a straightforward scheme for manipulation of the diffraction efficiency
of the grating by utilizing both the winding number of the Laguerre–Gaussian beam, and the distance between the quantum system
and the plasmonic nanostructure as control knobs.

1 Introduction

Plasmonic (metal) nanostructures (PNs) are defined by the so-called plasmon oscillations, i.e., collective oscillations of electrons
with a certain frequency caused by external radiation. Plasmons enable strong absorption of light, scattering, as well as near-field
amplification, thus rendering plasmonic nanostructures unique optical properties which have gathered extensive research interest in
last years. PNs have found a wide range of applications in photovoltaics and detection [1, 2], sensing and imaging [3, 4], and field-
enhanced spectroscopy [5]. Plasmon excitations have also been utilized to alter the energy and kinetics of chemical transformations
[6, 7].

Strong modifications of different coherent optical phenomena have also been shown in quantum systems nearby PNs, among
which optical transparency and slow light [8, 9], modified nonlinear optical switching and second harmonic generation [10, 11],
as well as control of population dynamics [12, 13]. Of special interest for our work are the phase-dependent effects in multilevel
quantum systems caused by the presence of PNs [14] that induce quantum interference in spontaneous emission and may potentially
lead to several phenomena, including slow light [15] and controlled absorption and dispersion [16, 17].

Electromagnetically Induced Grating (EIG) [18–20] occurs when a coupling field in the form of a standing-wave (SW) is used
in a typical Electromagnetically Induced Transparency scheme [21, 22]. In this case the traveling wave probe field absorption and
dispersion become periodic in space, leading to transfer of the energy of the probe field to higher orders of diffraction. The specific
EIG properties have given rise to novel applications in storing propagated light in atomic media [23], optical switching [24], all-
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optical beam fanning [25], as well as interdisciplinary applications such as optical bistabilities [26], electromagnetically induced
Talbot effect [27], multi-component vector solitons [28], and Ferris wheels for ultracold atoms [29, 30].

EIGs have also been studied in more complicated four-level configurations—tripods [31] or Y -type atomic systems [32], including
our recent studies [33] in an N-scheme, where the additional interaction with optical vortices carrying Orbital Angular Momentum
(OAM) [34] provides an easy tool for manipulation of the grating.

The abilities of optical vortex beams for control of atomic optical properties have been investigated in quantum information [35]
and communication [36], exchange of OAM modes in quantum systems with complicated level structure [37, 38], and slowing of
light using vortices [39, 40].

Combining the strong modifications of coherent optical phenomena occurring nearby PNs, the additional degrees of freedom
provided by optical vortices, and the increased flexibility of multi-level atomic systems, we study 2D EIG in a four-level quantum
system near plasmonic metamaterials using spatially dependent coupling light which carries OAM.

We are interested in a double V -type atomic scheme, where the PN affects one of the V -type transitions, while the other transition
interacts only with the free space. We are able to derive analytically the linear and nonlinear susceptibility, due to our assumption
of week probe and coupling fields. We realize that because of the closed-loop double V -type quantum system the amplitude and
phase modulations of the probe light depend on the azimuthal angle and the OAM of the vortex coupling beam. Thus, we can
control the diffraction efficiency of the grating by adjusting the OAM parameter of the vortex field. In addition, we show that the
diffraction efficiency can be modified by varying the distance between the quantum system and the PN. The 2D EIG based on our
proposed model is advantageous compared to previous studies ( for example based on spontaneously generated coherence or relative
phase between the applied light), including to our recent investigations of EIGs near PNs [41, 42], by providing easily achievable
manipulation of the grating performance, where the control knobs are simply the azimuthal angle and the winding number the
vortex, as well as the distance between the quantum system and the PN. Such an atomic phase grating could find applications in
all-optical switching at the few photons level where a quantized signal field could be used to create a grating to diffract and switch a
quantized probe field. The low losses which the phase grating provides are paramount for such quantum all-optical switches, making
the proposed scheme advantageous in future applications.

Eventhough the control of Fraunhofer diffraction spectrum has been studied in different systems, where the energy transfer
of the probe field far above the diffraction is one of the important topics of investigation, there are some important points which
distinguish our present work. The first feature is the possibility of a much higher probe field energy distribution in different areas of
space by controlling the amount of vortex light for different distances between the atomic system and the plasmonic nanostructure.
This feature is reported for close distances between atomic system and plasmonic nanostructure for positive and negative values of
winding number. The second important novelty presented here is the use of vortex light, which provides a new degree of freedom
for the asymmetric distribution of the Fraunhofer diffraction.

The paper is organized as follows. In Sect. 2 we present the theoretical formalisms, where the decay rates entering the equations
of motion are modified by the presence of the PN. The further performed numerical calculations are presented in Sect. 3. There we
show the Fraunhofer diffraction and the amplitude and phase modulations, using various system parameters, and make conclusions
about the possible controllability of the EIG performance. Finally, in Sect. 4 we conclude our theoretical and numerical findings
and discuss possibilities for future directions.

2 Theoretical formalisms

We start our investigation by presenting in Fig. 1a the double V -type quantum system consisting of two ground levels | 1〉, | 2〉 and
two excited levels | 3〉 and | 4〉, similarly to previous studies [8, 14, 41, 42]. The states | 1〉 and | 2〉 are J � 0 levels while states | 3〉
and | 4〉 are J � 1, MJ � ±1 levels. The transition | 1〉 →| 3〉 is driven by a weak probe field with Rabi frequency �p , while the
transition | 1〉 →| 4〉 is mediated by a coherent field with standing-wave pattern with Rabi frequency �c and a vortex beam with
Rabi frequency �v .

The distance between the plasmonic nanostructure and the 4-level quantum system is denoted by d. The surface plasmon bands of
the PN affect the transitions in one of the V -type quantum systems, such that the spontaneous decay of the excited states | 3〉 and | 4〉
to level | 2〉 becomes 2γ . At the same time, the free-space vacuum modes interact with the other V -type quantum system such that
the spontaneous decay rate of the excited states | 3〉 and | 4〉 to level | 1〉 is 2γ ′. As a plasmonic nanostructure we have considered
a 2D array of metal-coated dielectric nanospheres, represented in Fig. 1b. In this case the relevant decay rates are calculated by a
rigorous electromagnetic Green-tensor technique [43–45].

The two coherent fields with a standing wave pattern and a vortex beam are given by:

�c � �[sin(πx/�x ) + sin(πy/�y)],

�v � �e−r2/w2
(r/w)|l|eilφ. (1)
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Fig. 1 a Double V -type atomic system interacting with a coupling light with Rabi frequency �c , a vortex beam with Rabi frequency �v and a probe light
with Rabi frequency �p ; b PN arranged in a 2D array at a distance d from the 4-level quantum system. More details are given in the text

In the above, � shows the amplitude of the fields, while �x and �y denote the space frequencies of the standing wave field. The
parameter r � √

x2 + y2 represents the radial distance from the axis of the vortex, φ � arctan (y/x) is the azimuthal angle, l
(integer) shows the vorticity, and w stands for the beam waist of the optical vortex.

The wave function of the system | �(t)〉 � ∑
i�1,4 ai (t)e

−iωi t | i〉 can be decomposed in the basis set {| 1〉, | 2〉, | 3〉, | 4〉} with
the time-dependent coefficients ai (t) and the atomic energy �ωi of level | i〉. The equations of motion for the ai (t) coefficients are
then derived upon applying the Weisskopf-Wigner theory of spontaneous emission, as well as the electric-dipole and rotating-wave
approximations:

ȧ1 � i�pa3 + i(�c + �v)a4,

ȧ2 � iδ2a2,

ȧ3 � i(δ2 + i(γ + γ ′))a3 + i�pa1 + κa4,

ȧ4 � i(δ1 + i(γ + γ ′))a4 + i(�c + �v)a1 + κa3. (2)

Here, we have introduced the detunings δ1 � δ − ω43/2 and δ2 � δ + ω43/2. The condition δc � δv � δ needs to be fulfilled at
all times in order for the EIG to be created [46]. The coefficient κ describes the quantum interference effects in the system via the
coupling between levels | 3〉 and | 4〉.

According to Ref. [13], the parameters κ and γ occur due to closeness of the PN and their values are:

γ � 1

2
(�⊥ + �‖),

κ � 1

2
(�⊥ − �‖). (3)

The same reference gives the parameters �⊥ and �‖ depending on the distance between the PN and the quantum system. Thus, a
dynamic control of the optical properties of the medium can be achieved via varying the parameter d, which in turn changes the
magnitudes of γ and κ . The susceptibility of the medium can be derived by the equations:

χp � Nμ2
13

ε0�
χ, (4)

χ � a3a∗
0

�p
� −

(A4 + iκ (�c+�v )
�p

eiφ)(A∗
3A

∗
4 + κ2)

B
. (5)

Here B � (A3A4 + κ2)(A∗
3A

∗
4 + κ2) + �2

p(A4A∗
4 + κ2) + (�c + �v)2(A3A∗

3 + κ2) + 2(�c + �v)�p(γ + γ ′), N represents the atomic
density, ε0 is the dielectric constant in vacuum, while A3 � δ2 + i(γ + γ ′) and A4 � δ1 + i(γ + γ ′).

Following Eq. 1 we can write:

�c + �v � �[sin(πx/�x ) + sin(πy/�y) + e−r2/w2
(r/w)|l|eilφ]. (6)

We can simplify things by setting �c + �v � � � α�p , which is valid when both the probe and the coupling fields are weak. The
self-Kerr nonlinearity can be obtained after the following expansion of the probe susceptibility χp:

χp � Nμ2
13

ε0�
[χ (1) + �2

pχ
(3)]. (7)
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In the above, χ (1) and χ (3) are the first-order linear and the third-order self-Kerr nonlinear susceptibilities:

χ (1) � χ |(�p�0) � − A4 + iακ

A3A4 + κ2 ,

χ (3) � d2χ

d�2
p
|(�p�0) � [| A4 |2 +α2 | A3 |2 +κ2(1 + α2) + 2α(γ + γ ′)][A4 + iακ]

| (A3A4 + κ2) |3 . (8)

In Eq. 8 we perform the transformation α → β[sin(πx/�x ) + sin(πy/�y) + e−r2/w2
(r/w)|l|eilφ] with α � |�|

|�p | .
The theoretical model outlined in this section will serve as a basis for our studies of the azimuthal modulation of the optical

properties of the quantum system under investigation.
Due to spatial position dependence of the coupling light, the quantum system acts as a two-dimensional grating and therefore the

probe light diffracts into high-order directions. The diffraction pattern of the probe light can be obtained by using similar methods
to those of Ref. [18], which we have followed also in our recent EIG studies [33, 47]. By using the polarization of the medium
Pp � ε0χEp, we get the transmission function of the quantum system with interaction length L in the z direction:

T (x, y) � e−Im(χ )Lei Re(χ )L . (9)

Further, by considering χ (1) and χ (3) in Eq. 8, we arrive at:

T (x, y) � e−Im(χ (1)+�2
pχ

(3))Lei Re(χ (1)+�2
pχ

(3))L , (10)

where the first and the second terms represent the amplitude and the phase grating, respectively. The Fourier transformation of the
transmission function T (x, y) gives the probe field Fraunhofer diffraction:

Kp(θx , θy) �| H (θx , θy) |2 sin2(MπRx sin θx ) sin2(NπRy sin θy)

M2N 2 sin2(πRx sin θx ) sin2(πRy sin θy)
. (11)

In the above we have used the integral expressions:

H (θx , θy) �
∫ 1

0
exp(−i2πx Rx sin θx )dx

∫ 1

0
T (x, y)

×
∫ 1

0
exp(−i2πyRy sin θy)dy. (12)

The angles of diffraction relative to the z direction are given by θx and θy , while M(N) show the number of space periods of the
grating along the x(y) axis. In this case, we have M � Rx sin θx and N � Rx sin θx , respectively.

The PN used in our work consists of spherical dielectric nanoparticles arranged in two-dimensions and coated with a metal. The
radius of each sphere is S � c/ωp , the core radius is Sc � 0.7c/ωp and the lattice constant of the square lattice is a � 2c/ωp . The
relative permittivity of the shell is a Drude-form function written as:

ε(ω) � 1 − ω2
p

ω(ω + i/τ )
, (13)

where ωp represents the bulk plasma frequency and τ describes the relaxation time of the electrons in the metal τ−1 � 0.05ωp . We
also take the relative permittivity of the dielectric (SiO2) as ε � 2.1.

3 Results and discussion

In this section we study the vortex induced phase grating via controlling the vortex field azimuthal angle for various distances d
between the PN and the quantum system. We assume two different conditions for the distances. In the first one, we consider the close
distances between the PN and the quantum system (when d � 0.1ωp/c � 2.2nm) and in the second we consider the far distances
(when d � ωp/c � 22nm).

For the purposes of our studies we choose the condition ω43 � 0, e.g., a small energy gap between states | 3〉 and | 4〉. Table 1
shows the dependence of the spontaneous decay rates �⊥ and �‖ on the parameter d at transition frequency ω̄ � 0.632ωp as based
on Ref. [14], where the spontaneous decay rate in vacuum �0 is used as a unit.

3.1 Amplitude and phase modulations

Figure 2 shows the amplitude modulation of the transmission function vs x and y for various distances between the PN and the
quantum system when the OAM number of the vortex light equals to zero, i.e., l � 0. We realize that when the PN is close to
the quantum system (d � 2.2 nm), the amplitude modulation is weak, while when the system is far (d � 22 nm) the amplitude
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Table 1 Dependence of the
spontaneous decay rates �⊥ and
�‖ on the distance d between the
PN and the quantum system

Distance d (in nm) �⊥ (in units �0) �‖ (in units �0)

2.2 35.668 0.086

6.6 8.080 0.015

19.8 0.277 0.0008965

22 0.183 0.0044

Fig. 2 Amplitude modulation vs x and y for: a d � 2.2 nm; b d � 6.6 nm; c d � 19.8 nm, and d d � 22 nm. The selected parameters are γ ′ � 0.3, δ � 0,
ω43 � 0, α � 15, ω � 1, and l � 0

modulation becomes stronger. In this case, the transmission function phase modulation is zero for different distances d. A significant
part of the probe energy gathers in the diffraction patters of the zero order, while by altering d the intensity of the zero order increases.

Figure 3 represents the amplitude modulation vs x and y for a value l � 1 of the OAM number, while the distance between
the PN and the quantum system is varied again. Here we observe that the intensity of the amplitude modulation increases with d,
however this intensity is weaker than in the previous case when the winding number assumed the value l � 0. Further, we turn
our attention to the behavior of the phase modulations of the transmission function. Figure 4 displays the phase modulation of the
transmission function vs x and y for the same parametric conditions of the system as in Fig. 3. As can be seen, the phase modulation
reveals certain changes depending on the distance between the PN and the quantum system. The phase modulation has a maximum
value for d � 22 nm (Fig. 4d), while it exhibits a minimum for the small distance d � 2.2 nm. The latter demonstrates that part
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Fig. 3 Amplitude modulation vs x and y for: a d � 2.2 nm; b d � 6.6 nm; c d � 19.8 nm, and d d � 22 nm. The selected parameters are γ ′ � 0.3, δ � 0,
ω43 � 0, α � 15, ω � 1, and l � 1

of the energy of the probe field is transferred to the higher orders of the grating from the zero order. Physically, for l � 0 we have
a Gaussian light beam which leads to modulations only in the absorption spectrum of the probe light by changing the parameter
d. However, for the case l � 1 the Laguerre–Gaussian (LG) light beam can impact both the probe field absorption and dispersion
when the PN is situated at different distances from the quantum system. In other words, for a Gaussian light beam the dispersion of
the quantum system becomes zero for any d, while the LG light beam causes nonzero dispersion for different distances. Thus, for
l � 0 most of the probe energy should stay in the zero order for any value of d, while when using light with OAM the probe energy
may be transferred to the higher orders of diffraction.

3.2 Fraunhofer diffraction

As a next step, in this subsection we focus on investigating the behavior of the Fraunhofer diffraction under different parameters of
the system. Figure 5 shows the Fraunhofer diffraction pattern for OAM number l � 0 when the PN is located at different values of
d from the quantum system. We find that for any d all of the probe energy gathers in the zero order and the intensities of the high
orders have completely vanished. Only the intensity of the zero order increases when the parameter d is altered. We can conclude
that in this case only an amplitude grating is observed and only the zero order intensity is enhanced due to presence of the PN.

Further, in Fig. 6 we study the role of altering the OAM number of the structured field on the Fraunhofer diffraction patterns when
the quantum system is at d � 2.2nm from the PN. We observe that for case (a), part of the energy of the probe beam is transferred from
the zero order to higher orders, while some energy still stays in the zero order. The latter indicates that we have created an asymmetric
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Fig. 4 Phase modulation vs x and y for: a d � 2.2 nm; b d � 6.6 nm; c d � 19.8 nm, and d d � 22 nm. The selected parameters are γ ′ � 0.3, δ � 0,
ω43 � 0, α � 15, ω � 1, and l � 1

grating, where most of the energy of the probe converges in the region −0.5 ≤ sin θx ≤ 0; 0 ≤ sin θy ≤ 0.5. For l � −1 we have the
same behavior, however this time the main part of the probe energy is gathered in the region 0 ≤ sin θx ≤ 0.5; −0.5 ≤ sin θy ≤ 0.
Similar results are obtained for the rest of the winding number values l � ±2,±3,±4.

Finally, Fig. 7 displays the pattern of the Fraunhofer diffraction for a distance d � 19.8nm while varying the OAM number of
the LG field. In this case more of the probe filed energy converges to the zero order, while just a slight portion transfers to the first
order by changing l. As a result, again we have created an asymmetric grating for the different values of l.

Here we find that for both positive and negative values of the OAM number, the diffracted field could be switched from one
region to another. The regions for positive value of the OAM number are in reverse with the regions for a negative value of the
OAM number. In another words, by altering the OAM number, the distribution of the energy of the probe may be created in different
regions with different intensities at positive or negative angles. The latter gives us the opportunity to create an asymmetric phase
grating by controlling the winding number of the optical vortex light when the quantum system is located near the PN.

Considering future experimental implementations of the proposed scheme, here we suggest some realistic atomic systems with
level structures exhibiting the properties required for observing the predicted effects. As the transitions from | 3〉 to | 2〉 ( or | 1〉)
and | 4〉 to | 2〉 ( or | 1〉) have orthogonal dipole matrix elements, the quantum system can be realized in several atomic systems,
having, for example, two J � 0 states for the lower states, | 1〉 and | 2〉, and M � ±1 sublevels of a J � 1 state for excited states
| 3〉 and | 4〉. In addition, the quantum system may be realized in hyperfine sublevels of D-lines in alkali-metal atoms such as 85Rb
and 87Rb [48, 49] or in dual CdSe/ZnS/CdSe quantum dots [9].
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Fig. 5 Fraunhofer diffraction pattern versus vs sin �x and sin �y for: a d � 2.2 nm; b d � 6.6 nm; c d � 19.8 nm, and d d � 22 nm. The selected
parameters are γ ′ � 0.3, δ � 0, ω43 � 0, α � 15, ω � 1, and l � 0

4 Conclusion

In summary, we have investigated the behavior of an Electromagnetically Induced Grating in a four-level quantum system located
close to a plasmonic nanostructure. The system interacts with a weak probe laser field and two position-dependent standing waves
and vortex lights, as a result of which a two-dimensional Electromagnetically Induced Grating is created. Our theoretical studies
show that in the presence of the plasmonic nanostructure the medium is influenced by the OAM of the vortex light since it becomes
phase dependent. The presented numerical simulations reveal that by varying the distance between the plasmonic nanostructure
and the quantum system, the amplitude and phase modulations of the transmission function can be modified when we also alter
the winding number of the vortex light. Simultaneously, we prove that when the quantum system is placed close to the plasmonic
nanostructure, by adjusting the OAM of the vortex light we can transfer most of the energy of the probe to the high order, while
at larger distances most of this energy is converged in the zero order. Thus, our work demonstrates a simple scheme for double
control over the diffraction efficiency of the two-dimensional grating by utilizing both the winding number of the vortex field and
the distance between the plasmonic nanostructure and the quantum system as control knobs. Combining the strong modifications
of coherent optical phenomena occurring near plasmonic nanostructures with the additional degrees of freedom yielded by optical
vortex fields, the proposed scheme is advantageous by providing easily achievable manipulation of the grating performance, while it
can be realized in typical quantum optics experimental settings. For example, the accurate positioning of the quantum system and the
plasmonic nanostructure can be easily controlled by adding a buffer layer/ film between the quantum system and the nanostructure,
i.e., by placing the quantum system on top of this layer which is adjacent to the plasmonic nanostructure. This layer can be made
of a low-index (n ≈ 1) polymer [50], so that it does not affect the optical response of the setup of the quantum system/ plasmonic

123



Eur. Phys. J. Plus         (2023) 138:246 Page 9 of 12   246 

Fig. 6 Fraunhofer diffraction pattern versus vs sin �x and sin �y for d � 2.2 nm: a l � 1; b l � −1; c l � 2; d l � −2; e l � 3; f l � −3; g l � 4;
h l � −4. The selected parameters are γ ′ � 0.3, δ � 0, ω43 � 0, α � 15, M � N � 4, L � 15, and ω � 1
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Fig. 7 Fraunhofer diffraction pattern versus vs sin �x and sin �y for d � 19.8 nm: a l � 1; b l � −1; c l � 2; d l � −2; e l � 3; f l � −3; g l � 4;
h l � −4. The selected parameters are γ ′ � 0.3, δ � 0, ω43 � 0, α � 15, M � N � 4, L � 15, and ω � 1
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nanostructure. In addition, such an atomic phase grating could be crucial for future applications in all-optical quantum switching at
the few photons level, providing paramount low losses.
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