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Abstract We demonstrate quantum entanglement between a single hole spin confined to a positively charged semiconductor
quantum dot (QD) and a photon spontaneously emitted from the matter’s excited state. The QD system is in the Voigt geometry
with two ground hole spin states and two excited trion states. We consider the light-matter coupling initially prepared in one of the
ground hole spin states. For very weak Rabi frequencies, the spin-flip process transfers most of the population to another hole spin
state, leading to the disentanglement between the single photon and single QD hole spin. A maximum entanglement is achieved
by increasing the intensity of Rabi frequencies. In this case, the population almost equally distributes among all the bare quantum
states. Our results may pave the way toward creating a scalable QD quantum computing architecture relying on the photon as flying
qubits to mediate entanglement between distant nodes of a QD network.

1 Introduction

Quantum entanglement offers unique insights into the fundamental principles of our physical world, while it provides the basis of
novel quantum information processing (QIP) protocols, such as quantum teleportation [1], quantum cryptography [2, 3], quantum
metrology, sensing, imaging [4] and quantum computing [5–7]. Various host media have been utilized to implement such QIP
protocols, including trapped ions and cold atoms [8, 9], superconducting circuits [10, 11], and diamonds [12] .

The spin of an individual charge carrier in a semiconductor quantum dot has been identified as a single quantum storage device
with fast information processing suitable for different QIP architectures [13–15]. During recent years, there has been a growing
interest in demonstration of the spin–photon quantum entanglement based on a single electron spin confined to a negatively charged
quantum dot (QD) [16–19]. The spin of a single electron in a QD is a natural two-level system that can effectively serve as a qubit for
quantum information processing [20, 21]. However, the electrons interact with their environment and quickly lose their coherence
properties. As a result, the electron spin represents rather small coherence times, because of the strong hyperfine interaction with
the nuclear spin bath in the QD [22, 23]. The conduction band wave-function consists of atomic S-orbitals and therefore exhibits
large amplitude at each individual nucleus [24].

A single heavy-hole (HH) spin provides a practicable alternative to avoid decoherence by extending the coherence properties [25,
26]. A main reason for such a long lived coherence of the holes compared to the electrons is due to the difference in the hyperfine
interaction [27, 28]. The valence band is constructed from atomic P-orbitals. The hole spin wave functions have a vanishing amplitude
at the location of each nucleus of QD, making the hyperfine interaction for the HH much weaker than the electron [29].

One can introduce a relation for the decoherence time as 1
T2

� 1
2T1

+ 1
T ∗

2
[30], in which T1, T2 and T ∗

2 represent the spin relaxation

time, decoherence time and the dephasing time, respectively. It should be pointed out that the spin relaxation time T1 indicates the
time of a spin-flip (|↑〉 → |↓〉) process due to spin interactions with the environment. The decoherence time T2 describes the lifetime
of quantum superposition of spin up and spin down states (|↑〉 + |↓〉). For the electron and the hole, this time has been reported to be
about T2 � 3 μs [31, 32] and T2 � 0.4 ± 0.2 μs [33], respectively. Finally, the dephasing time T ∗

2 represents the decoherence time
for an ensemble measurement (the time average coherence). Dephasing time plays an important role in studying the spin-photon
entanglement. The longer is this time, the stronger is the entanglement in the system. For the electron spin states, this time is of the
order of few nanometers 1–10 ns [34], while for the hole spin states, it is equal to 100 ns [29, 35]. This indicates that as compared
to an electron spin, a HH spin improves the coherence of the system, enabling the study of quantum entanglement generation in a
deterministic regime.

In this work, we investigate the spin-photon entanglement of a four-level hole spin state light-matter coupling in the presence
of an in-plane magnetic field at a positively charged self-assembled QD. In order to investigate the spin-photon entanglement, we
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use the Von Neumann entropy to determine the degree of entanglement (DEM) [36–38]. The concept of entropy plays a key role in
statistical mechanics and information theory. To describe the state of a physical system in quantum mechanics, there is uncertainty in
its details, which is measured by the entropy. In quantum mechanics, the Von Neumann entropy provides a good measurement over
the information. Quantum information can be described based on quantum statistics. Entropy measures the uncertainty associated
with a probability distribution (classical and quantum). In quantum entanglement, information can be shared between entangled
systems. During this process, we will lose some information as we do not have access to the exact information in each system. Such
uncertainty in the information of the subsystems is in common between entanglement and entropy. This indicates that calculating the
entropy for one of the subsystems provides a good measure of entanglement. We investigate the spin-photon entanglement behaviors
by applying laser fields to the quantum dot system. In this case, the hole spin states, as well as the spontaneous emission (photons),
are the two main subsystems. There is no interaction initially between the field and the matter; hence, the total entropy, as well as the
entropy of each subsystem, is zero. As a result, the system will remain in a pure state. After applying laser fields to the system, the
entropy of the whole system will remain zero, yet the reduced entropy of each subsystem (spin and photon) will be modified due to
the interaction between them. As the reduced entropy increases, the information is lost from each of the subsystems, implying that
the two subsystems act as a single system (the so-called entangled system). In other words, the entanglement of subsystems increases
with the increase in entropy. Therefore, any change in the entropy can provide a good measure over the degree of entanglement
between quantum subsystems. The light emitted after interacting with the quantum dot contains its information as it is entangled
with the spin states of the quantum system.

2 Model and equations

Let us consider a single-charged InAs/GaAs self-assembled QD with a Z-axis growth direction which is charged by a single hole.
Figure 1a shows the allowed optical transitions in a positively charged QD in the absence of a magnetic field. The ground hole spin
states are labeled as |1〉 ≡ |⇓〉z and |2〉 ≡ |⇑〉z , while the two excited trion states are determined by |3〉 ≡ |⇑⇓,↑〉z and |4〉 ≡
|⇑⇓,↓〉z . Here,⇑ (⇓) and ↑ (↓) denote a HH and an electron with spins parallel (antiparallel) to the z-axis, respectively. The trion
spin state |J, Jz〉 consists of two heavy-holes with spins in opposite directions and an unpaired electron, in particular for heavy-hole
states in trion, one has

∣
∣J � 3

2 , Jz � ± 3
2

〉

[29]. Due to optical selection rules, only |2〉 ↔ |3〉 and |1〉 ↔ |4〉 transitions can be driven
by the circularly polarized laser field

(

σ +, σ−)

and the diagonal transitions |1〉 ↔ |3〉 and |2〉 ↔ |4〉 are not permitted. When an
external magnetic field is applied along the x-axis or perpendicular to the growth direction (the so-called Voigt geometry), more
suitable states are created, as in this case, the ‘cross’ transitions are allowed (Fig. 1b). The magnetic field (Bx ) has now mixed the
hole and trion states, and the Zeeman effect separates the resulting eigenstates by �h � gh,xμB Bx and �e � ge,xμB Bx . Note that,
here, μB shows the Bohr magneton and gh,x(e,x) stands for the Lande factor of the hole (electron). Therefore, the new eigenstates
of the system (x-basis states) are (after transformation from circular basis to the linear superposition):

|1〉 ≡ |⇓〉x � 1√
2

(|⇑〉z − |⇓〉z
) |2〉 ≡ |⇑〉x � 1√

2

(|⇑〉z + |⇓〉z
)

|3〉 ≡ |⇑⇓,↑〉x � 1√
2

(|⇑⇓,↑〉z + |⇑⇓,↓〉z
) |4〉 ≡ |⇑⇓,↓〉x � 1√

2

(|⇑⇓,↑〉z − |⇑⇓,↓〉z
)

(1)

Figure 1b illustrates the energy-level diagram of such a four-level light-matter coupling. A linear y-polarized laser acts on the
“cross” transitions of the new level diagram, while an x-polarized laser couples the “vertical” transitions. Because the transitions
are linearly polarized, one can easily describe the electric field as

E(t) � 1

2

(

Ex (t)x̂ + Ey(t)ŷ
)

e−iωt +
1

2

(

E∗
x (t)x̂ + E∗

y (t)ŷ
)

eiωt . (2)

The Hamiltonian including the effect of the magnetic field of the system reads

H � H0 + VZeeman, (3)

whereH0 is the free energy of the QD, i.e., in the absence of magnetic and optical fields, while [39]

VZeeman � geμB BŜe,x − ghμB BŜh,x , (4)

denotes the interaction Hamiltonian of the electron and hole with the magnetic field aligned in the x-direction. Note that, here,Ŝe,x
and Ŝh,x are the spin operators for the electron and hole, respectively.

In order to calculate the optically allowed transitions in the proposed configuration, we need to write the Hamiltonian for optical
interactions (Hoptical) as

〈

i |Hoptical| j
〉 � 〈i |H0| j〉 +

〈

i |Voptical| j
〉 � 〈

Eiδi, j
〉

+
〈

i |Voptical| j
〉

. (5)

In the dipole approximation, one has Voptical � −µ.E � er.E, where e is a positive number giving the magnitude of an electron’s
charge. SinceE does not operate upon the state vectors, it is sufficient to evaluate e〈i |r| j〉 to determine the optically allowed
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Fig. 1 a The four z-basis
eigenstates and allowed transition
of a positively charged QD in the
absence of a magnetic field. σ+
(σ−) is the right (left)-handed
optical polarization that satisfies
the optical selection rule.
b Energy-level structure and
allowed optical transitions for a
charged QD in presence of the
magnetic field which is oriented in
the x-direction (Voigt geometry).
c Schematic of the decay rate in
four spin levels of singly charged
QD
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transitions and their polarization selection rules. By considering the irreducible spherical tensors (r � −r−1ε+1 − r+1ε−1 + r0ε0

where ε±1 � ∓ (x̂±i ŷ)√
2

, ε0 � ẑ), the selection rules for optical transitions can be expressed as [39]

e〈4|r|1〉 ≡ − ℘√
2
x̂, e〈3|r|2〉 ≡ − ℘√

2
x̂,

e〈3|r|1〉 ≡ − ℘√
2
i ŷ, e〈4|r|2〉 ≡ − ℘√

2
i ŷ. (6)

The Hamiltonian for the system in the Voigt geometry becomes

H �

⎛

⎜
⎜
⎝

�

2 (ω0 − �h) V12 V13 V14

V21
�

2 (ω0 + �h) V23 V24

V31 V32
�

2 (−ω0 − �e) V34

V41 V42 V43
�

2 (−ω0 + �e)

⎞

⎟
⎟
⎠

. (7)

Based on the interaction of the electric and magnetic fields given in Eqs. (2)–(4) with quantum dot featured in Fig. 1b, in a proper
rotating frame, Eq. (7) can be written as

HF �

⎛

⎜
⎜
⎝

�

2 (δ − �h) V12 V13e−iωt V14e−iωt

V21
�

2 (δ + �h) V23e−iωt V24e−iωt

V31eiωt V32eiωt −�

2 (δ + �e) V34

V41eiωt V42eiωt V43
�

2 (−δ + �e)

⎞

⎟
⎟
⎠

, (8)

where δ � ω0 − ω. Note that, ω0 represents the average transition frequency of two levels |i〉 and | j〉 and is about 5.7±0.2 μev
[26].

Using rotating wave approximation (RWA), Eq. (8) can be expressed as (see Appendix).

HF,RW A � �

2

⎛

⎜
⎜
⎝

−δ − �h 0 �∗
y �∗

x
0 −δ + �h �∗

x �∗
y

�y �x δ − �e 0
�x �y 0 δ + �e

⎞

⎟
⎟
⎠

. (9)

Next, we are interested in the time evolution of the system using the Lindblad equation

ρ̇ � −i

�

[

HF,RW A, ρ
]

+ L(ρ) (10)

where ρ denotes the density matrix elements. Here, L(ρ) is the Liouvillian operator describing the total relaxation processes. Using
Hamiltonian HF,RW A featured in Eqs. (9) and (10), the density matrix elements describing the evolution of quantum system can be
obtained as

ρ̇11 � i

2

(

ρ14�x + ρ13�y − ρ31�
∗
y − ρ41�

∗
x

)

+

t

2
(ρ44 + ρ33) + 
h(ρ22 − ρ11),

ρ̇22 � i

2

(

(ρ23 + ρ24)�x − ρ42�
∗
y − ρ32�

∗
x

)

+

t

2
(ρ44 + ρ33) + 
h(ρ11 − ρ22),

ρ̇33 � − i

2

(

ρ13�y + ρ23�x − ρ31�
∗
y − ρ32�

∗
x

)

− 
tρ33 + 
e(ρ44 − ρ33),

ρ̇44 � − i

2

(

(ρ14 + ρ24)�x − ρ42�
∗
y − ρ41�

∗
x

)

− 
tρ44 + 
e(ρ33 − ρ44),

ρ̇12 � i

2

(

2�hρ12 + (ρ13 + ρ14)�x − ρ32�
∗
y − ρ42�

∗
x

)

− γhρ12,

ρ̇13 � i

2

(

(2δ + �h − �e)ρ13 + (ρ11 − ρ33)�
∗
y + (ρ12 − ρ43)�∗

x

)

− γtρ13,

ρ̇14 � i

2

(

(2δ + �e + �h)ρ14 + (ρ12 − ρ34)�
∗
y + (ρ11 − ρ44)�∗

x

)

− γtρ14,

ρ̇23 � i

2

(

(2δ − �e − �h)ρ23 + (ρ21 − ρ43)�
∗
y + (ρ22 − ρ33)�∗

x

)

− γtρ23,

ρ̇24 � i

2

(

(2δ − �h + �e)ρ24 + (ρ22 − ρ44)�
∗
y + (ρ21 − ρ34)�∗

x

)

− γtρ24,

ρ̇34 � i

2

(

2�eρ34 − ρ14�x − ρ24�y + ρ32�
∗
x + ρ31�

∗
y

)

− γeρ34. (11)

Here, 
t is the decay rate of trion states (in fact 
t represents recombination of electron–hole), 
h (
e) denotes the spin-flip
rate for the hole (electron) and γi indicates decoherence rate (Fig. 1c). The corresponding detuning between the laser pulse and
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the QD transitions is denoted by δ. Consider the QD and its spontaneous emission photon as a bipartite system with S (spin of the
QD system) and P (photon) as subsystems. Assume the density operator ρSP that describes this two-part (spin-photon) system.
The system is entangled if ρSP cannot be written as a tensor product of two systems (ρSP �� ρS ⊗ ρP ). To measure the degree of
entanglement (DEM) between the QD and photon, we use the Von Neumann entropy

S � −Tr(ρlnρ). (12)

Araki and Lieb proposed an inequality that links the entropy of the subsystems [40]

|SS(t) − SP (t)| ≤ SSP (t) ≤ |SS(t) + SP (t)|, (13)

where SSP (t) � −Tr(ρSPlnρSP ) is the total entropy of the spin-photon system. We assume that the spin-photon system is initially
in a pure state, therefore, to determine the degree of entanglement, we just need to calculate the QD entropy ρS(t).

Finally, the DEM can be presented in terms of eigenvalues (λS(P)) of the reduced density matrix as

DEM � SS(t) � SP (t) � −
4

∑

i�1

λi ln λi (t). (14)

3 Results and discussion

In order to study the entanglement numerically in this section, we solve simultaneously the density matrix equations of the motion
given in Eqs. (11) and (14). The maximum degree of entanglement can be obtained by means of the relation Max(DEM) � log2
[min(dS, dP )], in which dS and dP are the dimensions of Hilbert space related to the subsystems. According to the number of spin
states available, the maximum entanglement rate for this system is (DEM � 2).

Figure 2(a) shows how the entanglement changes when the Rabi frequency varies in the steady-state condition. For the steady-state
response of Eqs. (11), we set �x � 1.75�y , δ � 2 μeV and plot the DEM and population distributions against �x . Other parameters
are 
e � 0.0009 μeV, 
h � 0.000671 μeV,
t � 0.5 μeV,�e � 5 μeV, and �h � 9 μeV. In all simulations, we have assumed
the case in absence of the pure dephasing, i.e.,γt � 
t

2 ,γe � 
e and γh � 
h . One can see that an increase in the Rabi frequency
results in an increase in the entanglement of the system. The DEM is quite small at very low frequencies when most of the population
is distributed in the state |1〉. The situation improves for larger Rabi frequencies as the population starts to be distributed in all four
states. However, a dip appears in the entanglement profile around �x � 10 μeV. The population distribution also experiences a
divergence at the same Rabi frequency range, i.e., around �x � 10 μeV. The entanglement increases and becomes stable for larger
frequencies �x > 10 μeV. In this case, the population is equally distributed in all levels, each containing almost a quarter of the
total population. (Fig. 2b).

(a) (b)
Fig. 2 Plots of the a DEM and b population distribution versus the Robi frequency (�x � 1.75�y ). The selected parameters are 
e � 0.0009 μeV, 
h �
0.000671 μeV, 
t � 0.5 μeV,δ � 2 μeV, �e � 5 μeV,�h � 9 μeV. We have assumed a case in the absence of pure dephasing, i.e.,γt � 
t

2 ,γe � 
e ,
and γh � 
h [26]
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(a) (b)

(c) (d) 
Fig. 3 Temporal behavior of a, c DEM and population distribution b, d for different values of Robi frequencies a, b �x � �y � 0.5 μeV and c,
d �x � 5 μeV,�y � 3 μeV. Other parameters are the same as Fig. 2

As we mentioned for the maximally entangled state, the DEM is given by DEM � log2[min(dS, dP )]. Four QD eigenvalues
lead to DEM � 2 as it is depicted in Fig. 2a. If this DEM describes a (maximally) mixed subsystem, then the whole pure state is
(maximally) entangled. To distinguish pure, mixed and maximally mixed states, a real and positive parameter known as purity of
the state χ is introduced as μ(χ) � Tr(χ 2). In the case of an n-dimensional state, we find 1

n ≤μ(χ)≤1. For μ(χ) � 1, 1
n <μ(χ) < 1

and μ(χ) � 1
n , the state is pure, mixed and maximally mixed, respectively. We observe that by increasing the Rabi frequency, the

population distribution of all the states becomes almost equal. In this case, all the coherence terms are zero, and the ρS will be
diagonal that can be written as ρS � 1

4 Î , where 1
4 and Î are the population of each level and the identity matrix, respectively. Here,

μ(χ) � 1
4 , then ρS describes a maximally mixed state. Thus, the whole system is in the maximally entangled state. However, for

�x � 10 μeV, the population distribution of four presented levels is not equal, and the off-diagonal terms are not zero leading to
reduction in the entanglement.

Next, we assume that the QD system is prepared in its ground state (ρ11(0) � 1). This assures that the system has been initially
populated in a pure state. In such a situation, the entropy of the spin states (SS(t)) provides a sufficient tool to calculate the degree
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(a)  (b) 

(c) (d)
Fig. 4 Temporal behavior of a, c DEM and population distribution b, d for different values of the detuning a, b δ � 0, and c, d δ � 1 μeV. Here,
�x � 3 μeV, �y � 1 μeV and the other parameters are the same as Fig. 2

of entanglement of the bipartite (hole spin + photon) system. We assume the non-resonance condition δ � 2 μeV and illustrate in
Fig. 3a the time evolution of spin-photon entanglement for different values of Rabi frequencies.

For the four-level QD system initially prepared in its ground state |1〉 and for the weak Rabi frequencies �x � �y � 0.5 μeV,
one can see from Fig. 3a that an initially zero DEM slowly rises to a maximum value and then starts to decline. No steady-state DEM
value is obtained in this case. Such a reduction in the DEM causes the subsystems to lose the entanglement. As can be observed in
Fig. 3b, as time increases, the system initially prepared in its ground level |1〉 transfers most of the population to the lower spin level
|2〉. In this case, the population of level |4〉 is strongly suppressed. This is due to the weak optical pumping (�x � �y � 0.5 μeV)
which cannot excite most of the population from the ground state |1〉 to the trion states |3〉 and |4〉. On the other hand, trion states
decay with a rate 
t to both lower levels |1〉 and |2〉 with an equal probability. Once the dot decays to the spin state |1〉, it cannot be
trapped in this state, as the spin-flip occurs transferring the population to the lower level |2〉. As a result, most of the population will
be distributed in the spin state |2〉. This reduces the entropy and makes the subsystems disentangled.
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Setting �x � 5 μeV and �y � 3 μeV improves the situation as illustrated in Fig. 3c. One can see that at the early time, the DEM
is zero indicating no entanglement between the light and matter. As time increases, entanglement oscillates and rises to its maximum
steady-state value. This implies a strong entanglement between the single hole spin confined to the single-charged semiconductor
quantum dot and the photon spontaneously emitted from the quantum dot’s excited state. In order to elucidate the physics behind
such a strong spin-photon entanglement, we plot in Fig. 3d the temporal distribution of population. Clearly, the population is now
more uniformly distributed in all spin states due to the contribution of strong optical pumping, as well as the spin-flip effect. This
causes an increase in the entropy of the system, leading to a remarkable growth of the steady-state DEM.

Figure 4 illustrates the effect of detuning on DEM and population. For the resonance condition δ � 0, most of the population
remains in the first lower level (Fig. 4b, yielding a low entanglement (Fig. 4a). Setting δ � 1 μeV, the entanglement increases
significantly, as can be seen in (Fig. 4c). In this case, the population is relatively distributed between all four levels.

4 Conclusions

In summary, we investigate the generation of entanglement between the spin states of a single hole in a self-assembled quantum dot
and its spontaneous emission. The quantum dot, which is charged with a hole, is excited by a linearly polarized laser field in the
presence of a magnetic field in the Voigt geometry. It has been shown that a strong entanglement can be generated between the spin
and photon. Such a high degree of entanglement suggests an attractive platform for creating a powerful quantum interface [41].

Data Availability Statement This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analyzed
during the current study are available from the corresponding author on reasonable request.]

Appendix

As an example, we calculate the term H14 in Eq. (9). From Eqs. (2), (6) and (7), one can evaluate the Hamiltonian term

V14 � −1|µ|4.E(t) � − ℘

2
√

2

(

Ex (t)e
−iωt + E∗

x (t)e
iωt

)

� �

2

(

�x (t)e
−iωt + �∗

x (t)e
iωt

)

,

where �x ≡ ℘Ex
�
√

2 and �y ≡ i℘Ey

�
√

2 are the Rabi frequencies along the x- and y-axis.
Thus,

H14 � V14e
−iωt � �

2

(

�x (t)e
−2iωt + �∗

x (t)
)

. (A1)

According to the RWA, we can neglect terms that oscillate at 2ω, as they will average out to zero, while the other terms remain
unchanged. Therefore,H14 � �

2 �∗
x (t). Similarly, the other terms of Eq. (9) can be obtained.
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