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 A B S T R A C T

We present a method for manipulating the Photonic Spin Hall Effect (PSHE) by examining the characteristics 
of an atomic ensemble with two levels connected to a high-quality cavity. Although the cavity is initially 
in a vacuum state with no external excitation, a substantial change can be made to the atomic ensemble’s 
probe response. A coherent effect analogous to electromagnetically induced transparency (EIT) arises when 
the cavity decay rate is significantly lower than the atomic dissipation rate and the collective atom–cavity 
interaction is robust. This results in reduced absorption of the two-level atoms in the cavity, even in the absence 
of external stimulation, a phenomenon known as vacuum-induced transparency, which in turn amplifies the 
PSHE. Furthermore, we explore how varying the atomic number density enhances the PSHE without altering 
the cavity’s structure. These findings offer new prospects for applications in quantum electrodynamics within 
cavity systems.
1. Introduction

The Photonic Spin Hall Effect (PSHE) has become a cornerstone 
of spin photonics, facilitating the transverse spatial separation of light 
beams with opposite spin states through spin–orbit coupling [1,2]. 
Analogous to the electronic spin Hall effect, where spin-polarized elec-
trons respond to an electric potential gradient, the PSHE replaces 
electrons with spin-polarized photons and a refractive index gradient 
as the driving force [3,4]. First theorized by Onoda et al. in 2004 [1], 
the PSHE gained further theoretical depth with the contributions of 
Bliokh and Bliokh [2]. Its experimental confirmation came in 2008 
when Hosten and Kwiat employed weak measurement techniques to 
observe this phenomenon in optical systems.

The PSHE is now widely attributed to the spin–orbit coupling of 
photons, governed by the principle of angular momentum conserva-
tion in light [5,6]. In this effect, left- and right-circularly polarized 
photons experience distinct transverse shifts at the interface of a co-
herent medium due to spin–orbit interactions [7]. These shifts are 
influenced by the optical angular momentum and two distinct geo-
metric phases [8]. The first is the spin-redirection phase, or Rytov–
Vlasimirskii–Berry phase, associated with changes in the wave vector’s 
propagation direction. The second is the Pancharatnam–Berry phase, 
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which involves controlling photon polarization states to induce shifts 
in photon trajectories [8,9]. This technique is known for its robustness 
and ability to generate phase shifts that depend on the polarization ori-
entation, making it valuable in spin–orbit coupled systems. The advan-
tage of geometric phase manipulation is its relatively straightforward 
implementation and strong resilience to environmental disturbances.

However, the key limitation of geometric phase methods is that they 
often lack the ability to dynamically tune the PSHE across a wide range 
of conditions. While static geometric phase shifts can be controlled 
by varying polarization, achieving dynamic control over the spin–orbit 
coupling and spin-dependent displacement is more challenging.

A variety of mathematical and experimental methods have been 
developed to enhance the PSHE, including weak value amplification 
(WVA), which significantly magnifies the transverse spin-dependent 
displacement associated with the effect [10,11]. WVA has been widely 
explored to enhance the transverse spin-dependent displacement associ-
ated with the PSHE. In this approach, small shifts in photon trajectories 
are amplified through weak measurement, which can significantly 
magnify the effect [10,11]. This makes WVA highly sensitive to small 
variations in the spin–orbit interaction. However, WVA typically re-
quires precise experimental control to avoid errors in measurement, 
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and its applicability may be limited by the strength of the weak values 
in certain setups. Furthermore, WVA often operates in the regime 
of small, linear displacements, and may not provide the same level 
of flexibility in dynamic tuning as other methods. Recently, interest 
has grown in leveraging the PSHE to control spin-dependent photon 
behavior across various optical media, driven by its potential for spin-
level light manipulation in a wide range of applications [10,12–16]. 
Recently, researchers have examined in- and out-of-plane shifts in 
the PSHE into a single framework, revealing that both are governed 
by a momentum-dependent Pancharatnam–Berry phase and exploring 
the role of intrinsic and extrinsic orbital angular moment in spin 
separation [17].

Another notable example is to manipulate the lateral shift (shift 
parallel to the incident plane) known as the Goos–Hänchen (GH) effect 
of a light beam reflected or refracted from the interface of different 
media and structures [18]. In another study, it has been examined 
that a cross-anisotropic metasurface (CM) coating influences both spa-
tial and angular GH shifts under total internal reflection, offering a 
potential method for achieving larger GH shifts and expanding CM ap-
plications [19]. Moreover, researchers have examined GH and Imbert–
Fedorov shifts of rotational 2D finite energy Airy beams, exploring 
the impact of second-order reflection coefficient terms on their spatial 
shifts and revealing that both shifts are influenced by the beams’ axial 
symmetry and can be controlled by adjusting the rotation angle of the 
initial field [20]. Furthermore, in another study researchers theoreti-
cally examines the spatial and angular GH shifts for an Airy beam on 
a weakly absorbing medium coated with monolayer graphene, high-
lighting significant magnification of the GH shift and its dependence 
on various parameters [21].

In another study GH and Imbert–Fedorov shifts for high-order off-
axis Airy vortex beams has been calculated numerically, finding that 
both shifts increase with the vortex’s topological charge and are influ-
enced by the vortex’s position relative to the origin [22]. In another 
study expressions for the GH and Imbert–Fedorov shifts of the Airy 
beam in Dirac metamaterial are analyzed, demonstrating that large 
shifts occur near the Dirac and Brewster angles, with potential applica-
tions for light-tuned optical switches [23]. Additionally investigations 
of the GH shift in the epsilon-near-zero region, revealing how graphene 
conductivity and Fermi energy control the shift’s sign, and using this 
for a barcode encryption scheme based on GH shift variations [24]. 
However, tuning PSHE through vacuum induced transparency (VIT) in 
atomic cavity has not been explored in detail, which is the subject of 
present work.

An intriguing phenomenon in light-atom interaction systems is the 
quantum coherence effect, which plays a pivotal role in modulating 
the optical properties of a medium. A well-known example is elec-
tromagnetically induced transparency (EIT) [25,26], observed in a 
𝛬-type three-level atomic configuration. The arrangement involves an 
interaction between the ground and excited states with a weak probing 
beam, while a strong coherent control laser couples the excited state 
to a metastable state. Under specific conditions, destructive interfer-
ence between two absorption pathways renders the atomic medium 
transparent to the weak probe laser within a narrow frequency range. 
The few-photon regime in a high-quality cavity has been included in 
the most recent development of EIT [26]. Here, a single quantized 
cavity mode with a small number of photons substitutes in with the 
controlling laser. An extreme manifestation of this phenomenon, known 
as VIT [27,28], occurs when the controlling laser substituted through 
a vacuum-induced field in the cavity, enabled by strong atom–cavity 
coupling.

Furthermore, one may see coherence populations oscillating (CPO), 
a quantum coherence effect similar to the EIT phenomena, in two-
level atomic systems [29,30]. Two coherent driving lasers as well as 
a weak probing laser are involved in the two-level system where CPO 
takes place. At the beat frequencies of the two lasers, these interactions 
generate oscillations that influence the population of the ground energy 
2

state. The probing response of the atomic medium undergoes a signif-
icant shift, leading to a modest decrease in the absorption spectrum, 
when the driving field is sufficiently strong and the damping rate of 
the atomic coherence is significantly higher than the decay rate of 
the excited state population [31]. CPO has a similar effect as EIT, 
however, the absorption elimination does not approach zero. The VIT 
has been identified in a two-level system, expanding the CPO to the 
few-photon domain [32]. The absorption dip in such a VIT system can 
approach zero, providing a significant advantage over traditional CPO 
techniques [32].

In this paper, we investigate the PSHE phenomena in a vacuum-
induced atomic cavity, where a two-level atomic ensemble as well 
as the cavity field interact without external factors. Within the two-
level paradigm, VIT takes place when the atom–cavity coupling is 
strong enough and the decay rate of the cavity is much lower than the 
atomic decay rate. The coherent interactions in this model enable exact 
modulation of light polarization along with transverse shifts, providing 
considerable benefits for cavity QED investigations.

The vacuum-induced PSHE offers several advantages over geometric 
phase manipulation and WVA, primarily in terms of dynamic con-
trol, experimental simplicity, and versatility. Unlike geometric phase 
manipulation, which relies on precise polarization control and fixed 
geometric phases, vacuum-induced PSHE allows for real-time, contin-
uous modulation of the spin–orbit coupling through the optical index 
of transmission, providing greater adaptability in varying experimental 
conditions. Additionally, vacuum-induced PSHE does not depend on 
weak measurements, as in WVA, making it less sensitive to noise and 
requiring less precision in measurement setups. This makes vacuum-
induced PSHE more robust, easier to implement, and scalable across a 
broader range of applications, particularly in dynamic systems where 
rapid adjustments are crucial, such as in quantum communication, 
photonic quantum computing, and spin-based sensing.

The structure of this paper is as follows: In Section 2, we present 
our model for the two-level atomic system and compute the atomic 
susceptibility of the intracavity medium for PSHE. Section 3 details 
the theoretical calculation of PSHE. Section 4 discusses the results 
of manipulating PSHE within the vacuum-induced atomic cavity. Sec-
tion 5 details possible experimental realization of the proposed scheme. 
Finally, Section 6 summarizes our findings and conclusions.

2. Dynamics and optical response of vacuum induced atomic cav-
ity

Fig.  1(a) illustrates an atomic two-level ensemble coupled to a high-
quality optical cavity, interacting through a cavity field with a single 
mode without external driving, while Fig.  1(b) depicts the probing of 
the cavity-coupled atoms by a weak laser field.

The VIT for the probe beam arises from a vacuum-induced Raman 
process, where the incoming probe photon is absorbed, quickly emitted 
into the cavity, reabsorbed by the atomic ensemble, and collectively 
reemitted into the probe mode. This process leads to transparency via 
destructive interference in the excited state |2⟩, associated with the 
transition |1⟩ → |2⟩. When the collective coupling between atoms and 
cavity is strong enough as well as the decay rate of the cavity is signif-
icantly lower than the rate of atomic dissipation, VIT is prominently 
apparent. The enhancement of the PSHE using VIT is based on the 
ability of VIT to modify the medium’s optical properties, particularly 
absorption and dispersion, through quantum interference. PSHE refers 
to the spatial separation of photons with different polarizations due to 
the spin–orbit interaction of light, which becomes significant in sys-
tems where photon polarization (spin) interacts with transverse spatial 
degrees of freedom. By leveraging VIT to alter the optical response 
of the medium, the transverse spatial separation of different polar-
ization states can be controlled more effectively, enabling enhanced 
polarization-sensitive beam manipulation.
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Fig. 1. (a) Schematic of a three-layer cavity system with two mirrors 𝑀1 with 𝑀2, and coherent two-level atoms arranged between dielectric layers. When TM-polarized incoming 
light is reflected on the mirror surface 𝑀1, it splits spin-dependently. (b) Schematic of a two-level atomic system. The system consists of an atomic two-level ensemble coupled to 
a high-quality optical cavity and examined by a weak probing laser.
 

The system is governed by the following model Hamiltonian:

 =
ℏ𝜔𝑎
2

∑

𝑘
𝜏(𝑘)𝑧 + ℏ𝜔𝑐 𝑛̂𝑐 − ℏ𝑔

∑

𝑘

(

𝜏(𝑘)+ 𝑐 + 𝜏(𝑘)− 𝑐†
)

−ℏ𝛺
∑

𝑘

(

𝜏(𝑘)+ 𝑒−𝑖𝜔𝑝𝑡 + 𝜏(𝑘)− 𝑒𝑖𝜔𝑝𝑡
)

. (1)

Here 𝜏(𝑘)𝑧 = |2⟩𝑘𝑘⟨2|−|1⟩𝑘𝑘⟨1|, 𝜏(𝑘)+ = |2⟩𝑘𝑘⟨1|, and 𝜏(𝑗)− = |1⟩𝑘𝑘⟨2| are 
the Pauli matrices for the 𝑘th atom, with |1⟩𝑘 and |2⟩𝑘 representing 
ground and excited states. 𝜏(𝑘)𝑧 , 𝜏(𝑘)+ , and 𝜏(𝑘)−  are used to describe the 
internal state transitions of each atom in the ensemble. These matrices 
represent the quantum mechanical operators for the ground and excited 
states of the atom. The term 𝑛̂𝑐 = 𝑐†𝑐 refers to the number operator for 
the cavity field, with 𝑐† along with 𝑐 represent the bosonic creation 
as well as annihilation operators of the cavity field with single-mode. 
The parameters 𝜔𝑎, 𝜔𝑐 and 𝜔𝑝 correspond to the frequency of the 
atomic transition, the frequency of the cavity field, and the frequency 
of probe field. The expression 𝛺 = 𝜇12𝐸∕(2ℏ) denotes the strength of 
the coupling (Rabi frequency) among the atom as well as the probe 
laser, whereas 𝑔, which is associated with the vacuum Rabi frequency, 
gives the strength of coupling with regard to the atom along with the 
cavity. Here, 𝐸 is the probe field intensity, expressed as 𝐸 = 𝑒−𝑖𝜔𝑝𝑡∕2+
c.c., where the atomic transition dipole moment is 𝜇12 while the field 
amplitude is  . To ensure that the coupling coefficients 𝑔 along with 
𝛺 are the same for every atom, we use the rotating-wave approach as 
well as assume that the optical wavelength is much larger than the size 
of the atomic ensemble.

In order to simplify the Hamiltonian (1), we define the atomic 
ensemble’s collective operators as: 
 = 1

√



∑

𝑘
𝜏(𝑘)− , † = 1

√



∑

𝑘
𝜏(𝑘)+ , (2)

where   is the number of atoms in the ensemble.  and † describe 
the collective behavior of the atomic ensemble, treating all atoms as 
a single effective ‘‘mode’’ that behaves according to bosonic statistics. 
This simplification is crucial for reducing the complexity of the system 
when dealing with many atoms.

In the regime of large   and low excitation, the collective operators 
approximately satisfy bosonic commutation relation [,†] ≈ 1, and 
we further approximate ∑𝑘 𝜎

(𝑘)
𝑧 ≈ 2† −  . Using these collective 

bosonic operators, Hamiltonian (1) can be expressed as
 = ℏ𝜔 † + ℏ𝜔 𝑛̂ − ℏ𝑔

√


(

†𝑐 +𝑐†
)

3

𝑎 𝑐 𝑐
−ℏ𝛥𝑐

√


(

†𝑒−𝑖𝜔𝑝𝑡 +𝑒𝑖𝜔𝑝𝑡
)

. (3)

The factor 
√

  in the Hamiltonian indicates that the interaction 
strength between the atoms and the cavity field is enhanced due to 
the collective behavior of the atomic ensemble, making the system 
more responsive to external fields. This modified Hamiltonian given 
in Eq. (3), describes a system between two interacting bosonic modes, 
one representing the atomic ensemble and the other representing 
the cavity field, where the dynamics of the system can be explored 
using a single probe laser. This simplified description of the system 
offers clearer insight into the interaction between the cavity and the 
atomic ensemble, while maintaining the necessary detail for accurate 
predictions and further analysis.

The quantum Langevin equations, which include interactions with 
external reservoirs (such as ambient noise) and explain how the atomic 
along with cavity modes change over time, control the system’s dynam-
ics:

̇ = −𝑖𝜔𝑎 + 𝑖𝑔
√

 𝑐 + 𝑖𝛺
√

 𝑒−𝑖𝜔𝑝𝑡 − 𝛾 +
√

2𝛾𝑖𝑛,
̇̂𝑐 = −𝑖𝜔𝑐 + 𝑖𝑔

√

 − 𝜅 ̇̂𝑐 +
√

2𝜅𝑐𝑖𝑛, (4)

where  and 𝑐 represent the collective atomic and cavity modes, 
respectively. The atomic damping rate along with the cavity decay rate 
are indicated by the parameters 𝛾 as well as 𝜅. The terms 𝑖𝑛 and 𝑐𝑖𝑛
represent noise operators (with zero mean) that model the coupling 
to the environment. The assumption here is that atomic collisional 
dephasing is negligible, meaning that 𝛾 and 𝜅 are the dominant loss 
processes.

Next the system’s susceptibility, which quantifies the optical re-
sponse of the atomic ensemble, obtained by means of quantum Langevin
mathematical formulas (4). By calculating the mean values of the 
operators in the equations:
⟨̇⟩ = −𝑖𝜔𝑎⟨⟩ + 𝑖𝑔

√

 ⟨𝑐⟩ + 𝑖𝛺
√

 𝑒−𝑖𝜔𝑝𝑡 − 𝛾⟨⟩,

⟨

̇̂𝑐⟩ = −𝑖𝜔𝑐⟨⟩ + 𝑖𝑔
√

 ⟨⟩ − 𝜅⟨𝑐⟩, (5)

and considering ⟨̇⟩ combined with ⟨ ̇̂𝑐⟩ ∝ 𝑒−𝑖𝜔𝑝𝑡, we can easily deter-
mine the steady-state average value of the cumulative function  as 

⟨⟩ = 𝑖𝛺
√



𝛾 − 𝑖𝛿 +  𝑔2
, (6)
𝜅−𝑖(𝛿−𝛥𝑐 )
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where 𝛿 = 𝜔𝑝 − 𝜔𝑎 is the atomic transition and the probing field 
detuning, whereas 𝛥𝑐 = 𝜔𝑐 − 𝜔𝑎 symbolizes the atomic transition 
and cavity field detuning. The term 𝑃 = (1∕𝑉 )

∑

𝑘 𝜇12(⟨𝜎(𝑘)− ⟩ + ⟨𝜎(𝑘)+ ⟩)
correlates to the atomic ensemble’s polarization, where 𝑉  is the ensem-
ble’s volume. The positive frequency component of the polarization is 
given by 𝑃+ =

∑

𝑘 𝜇12⟨𝜏
(𝑘)
− ⟩∕𝑉 , which can be expressed in terms of the 

collective operators  as 𝑃+ = 𝜇12
√

 ⟨⟩∕𝑉 .
To connect the polarization to the probe field intensity, we use 

the relationship 𝑃+ = 𝜒𝜖0𝐸+, where 𝐸+ = 𝑒−𝑖𝜔𝑝𝑡∕2 is the positive 
frequency component of the probe field intensity. Solving for the 
susceptibility 𝜒 , we find 

𝜒 = 𝐷 𝑖

𝛾 − 𝑖𝛿 +  𝑔2
𝜅−𝑖(𝛿−𝛥𝑐 )

, (7)

where 𝐷 = (𝜇2
12∕ℏ𝜖0)(∕𝑉 ) is a constant that depends on the atomic 

dipole moment and the density of the atoms. The term 𝑔2, which 
is the denominator of Eq. (7), represents coupling strength between 
the atom along with cavity, and the factor   shows that collective 
enhancement of coupling is possible for a large ensemble. Hence, the 
collective atom–cavity coupling strength is denoted by  𝑔2. When 
𝑔 = 0, Eq. (7) simplifies for the outcome of bare atoms, demonstrating 
that the cavity’s presence significantly modifies the optical behavior 
of the atoms, even if the cavity is initially in the vacuum state. The 
phenomenon known as the VIT is essential for many quantum optical 
applications.

3. Modeling the photonic spin Hall effect

We now examine the behavior of a probe light beam, illustrated 
in Fig.  1(a), which is a combination of TE and TM polarizations. This 
beam, originating in a vacuum, strikes the cavity mirror 𝑀1 at an angle 
of incidence 𝜃𝑖, as depicted in Fig.  1(b). The probe beam is modeled as 
a monochromatic Gaussian beam, which can either transmit through 
the atomic system or reflect off its surface. Upon reflection, the right- 
and left-circular polarization components diverge spatially along the 
axis perpendicular to the plane of incidence (the y-axis), as illustrated 
in Fig.  1(b). The PSHE arises due to the spin–orbit interaction of 
light, leading to a polarization-dependent separation of photons with 
opposite helicities. For the three-layer structure considered here, the 
reflection coefficients for TM-polarized light, 𝑅𝑀 , and TE-polarized 
light, 𝑅𝑠, can be derived using the Transfer Matrix Method, giving 

𝑅𝑝,𝑠 =
𝑅12,𝑝,𝑠 + 𝑅23,𝑝,𝑠 𝑒2𝑖𝑘2𝑧𝑞

1 + 𝑅12,𝑝,𝑠𝑅23,𝑝,𝑠 𝑒2𝑖𝑘2𝑧𝑞
. (8)

Let 𝑞 in above equation represents the thickness of the intracavity 
medium, while 𝑅12,𝑝,𝑠 and 𝑅23,𝑝,𝑠 denote the reflection coefficients 
for the interfaces between mirror one and the intracavity two-level 
atoms, and between the atoms and mirror two, respectively. For a two-
layer system, the reflection coefficient at the top mirror-medium-lower 
mirror interface for TM polarization is given by: 

𝑅𝑖𝑗,𝑝 =
𝜖𝑗𝑘𝑖𝑧 − 𝜖𝑖𝑘𝑗𝑧
𝜖𝑗𝑘𝑖𝑧 + 𝜖𝑖𝑘𝑗𝑧

, (9)

whereas for TE polarization, the reflection coefficient is expressed as: 

𝑅𝑖𝑗,𝑠 =
𝑘𝑖𝑧 − 𝑘𝑗𝑧
𝑘𝑖𝑧 + 𝑘𝑗𝑧

. (10)

In this context, the normal wave vector for each layer is given by 
𝑘𝑖𝑧 =

√

𝑘20𝜖𝑖 − 𝑘2𝑥, where 𝑘𝑥 =
√

𝜖1𝑘0 sin(𝜃𝑖) represents the wave vector 
component along the 𝑥-axis. Here, 𝑘0 = 2𝜋∕𝜆 is the free-space wave 
number, with 𝜆 being the wavelength of light. From the expression in 
Eq. (8), we observe that the reflection coefficients are influenced by the 
permittivity of the two-level atomic medium, 𝜖2. This permittivity can 
be effectively controlled by varying the susceptibility 𝜒 , which in turn 
enables the manipulation of the PSHE of light.
4

When a TM-polarized Gaussian beam reflects off the interface be-
tween two surfaces, the field amplitudes for the two circular polariza-
tion components of the reflected light are distributed in the following 
way within the reflection system:

±
𝑟 (𝑥𝑟, 𝑦𝑟, 𝑧𝑟) =

𝜔0
𝜔
exp[−

𝑥2𝑟 + 𝑦2𝑟
𝜔

] ×

[𝑅𝑝 −
2𝑖𝑥𝑟
𝑘𝜔

𝜕𝑅𝑝

𝜕𝜃
∓

2𝑦𝑟cot[𝜃]
𝑘𝜔

×

(𝑅𝑠 + 𝑅𝑝)], (11)

where 𝜔 = 𝜔0[1 + (2𝑧𝑟∕𝑘1𝜔2
0)

2]1∕2, 𝑧𝑟 = 𝑘1𝜔2
0∕2 shows the Rayleigh 

length, 𝜔0 denotes the radius of the waist of the incident beam, 
(𝑥𝑟, 𝑦𝑟, 𝑧𝑟) is the coordinate system for reflected light and ± represents 
the different spin states. The transverse shift of the reflected light can 
then be written as: 

𝛿𝑝± =
∫ 𝑦|±

𝑟 (𝑥𝑟, 𝑦𝑟, 𝑧𝑟)|
2𝑑𝑥𝑟𝑑𝑦𝑟

∫ |±
𝑟 (𝑥𝑟, 𝑦𝑟, 𝑧𝑟)|

2𝑑𝑥𝑟𝑑𝑦𝑟
. (12)

Using Eqs.  (11) and (12), the transverse spin displacement components, 
𝛿𝑝+ and 𝛿𝑝−, can be formulated in terms of the refractive coefficients of 
the three-layer cavity system [14,33] 

𝛿𝑝± = ∓
𝑘1𝜔2

0Re[1 +
𝑅𝑠
𝑅𝑝

]cot𝜃𝑖

𝑘21𝜔
2
0 + |

𝜕𝑙𝑛𝑅𝑝
𝜕𝜃𝑖

|

2
+ |(1 + 𝑅𝑠

𝑅𝑝
)cot𝜃𝑖|

2
. (13)

In the above equation, 𝛿𝑝± represents the transverse displacement be-
tween the left and right circularly polarized components of the incident 
light, where 𝑘1 =

√

𝜖1𝑘. For the purposes of this discussion, we focus 
on the transverse shift 𝛿𝑝+ of the left circularly polarized component. 
Since the magnitudes of the two spin components are identical but their 
directions are opposite, the shift of the right circularly polarized com-
ponent can be adjusted in parallel. Furthermore, the permittivities of 
the cavity walls, 𝜖1 and 𝜖3, are considered fixed, while the permittivity 
of the intracavity medium, 𝜖2, is related to the susceptibility of the 
two-level atomic system through the following equation: 
𝜖2 = 1 + 𝜒. (14)

where 𝜒 is featured in Eq. (7).

4. Results

In Fig.  2(a), the susceptibility is represented by both its real and 
imaginary components. The real part (shown by the orange dashed line) 
corresponds to the dispersion, while the imaginary part (depicted by 
the red solid line) illustrates the absorption characteristics. Regarding 
bare atoms, where no cavity is present (i.e., 𝑔 = 0), the imaginary 
component, Im[𝜒], shows an absorption-indicating Lorentzian curve 
with a peak at the atomic resonance frequency. On the other hand, the 
real component, Re[𝜒], exhibits anomalous dispersion behavior near 
the resonance frequency.

Fig.  2(b) illustrates the magnitudes of the reflection coefficients 
for both TE-polarized (𝑅𝑠) and TM-polarized (𝑅𝑝) light. The data 
reveals a clear distinction in the behavior of the two polarizations. For 
TM-polarized light (represented by the red solid line), the reflection co-
efficient initially decreases as the angle of incidence increases, reaching 
zero at the Brewster angle (𝜃𝐵 ≈ 33.8797◦). After this critical angle, 
the coefficient begins to rise again as the angle continues to increase. 
Conversely, for TE-polarized light, shown by the orange dashed line, 
the reflection coefficient consistently increases with the angle of inci-
dence. These opposing trends for TE and TM polarizations underscore 
the dependence of light reflection on the angle of incidence and the 
polarization state.

The transverse shift 𝛿𝑝±, as expressed in Eq. (13), depends on the 
ratio of the reflection coefficients for TE- and TM-polarized light, de-
noted as 𝑅  and 𝑅 , respectively, at a given incident angle. A significant 
𝑠 𝑝
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Fig. 2. (a) The absorption (solid curve) along with dispersion (dashed curve) features of an atom’s cavity susceptibility as a consequence of probing field detuning 𝛿∕𝛾 for  𝑔2 = 0. 
The other parameters are 𝜅 = 0.01𝛾, 𝛾 = 1 MHz, 𝛥𝑐 = 0, ∕𝑉 = 1012 cm−3 and 𝝁12 = 1.269 × 10−29 cm. (b) The Fresnel coefficients |𝑅𝑠| and |𝑅𝑝| vary with incidence angle 𝜃𝑖 while 
(c) ratio |𝑅𝑠|∕|𝑅𝑝| depends on incidence angle 𝜃𝑖. (d) Plot the PSHE 𝛿𝑝+ as a function of incidence angle 𝜃𝑖, which changes sign from positive to negative near the angle at which 
the ratio |𝑅𝑠|∕|𝑅𝑝| is highest. In Fig.  2(b,c,d), we consider 𝛿 = 0. Other parameters include 𝜖1 = 𝜖2 = 2.22, 𝜆 = 852 nm, 𝑞 = 0.1 μm, and beam waist 𝜔0 = 60𝜆.
Fig. 3. (a) The absorption (solid curve) along with dispersion (dashed curve) features of an atom’s cavity susceptibility as a consequence of probe field detuning 𝛿∕𝛾 for  𝑔2 = 30𝜅𝛾, 
𝜅 = 0.01𝛾, along with 𝛥𝑐 = 0, 𝛾 = 1 MHz, ∕𝑉 = 1012 cm−3, as well as 𝝁12 = 1.269 × 10−29 cm. (b) The Fresnel coefficients |𝑅𝑠| along with |𝑅𝑝| vary with incidence angle 𝜃𝑖 and 
(c) the ratio |𝑅𝑠|∕|𝑅𝑝| as a function of incidence angle 𝜃𝑖. (d) Plot of PSHE 𝛿𝑝+ versus incident angle 𝜃𝑖 changes sign from positive to negative about the angle where the ratio 
|𝑅𝑠|∕|𝑅𝑝| is highest. In Fig.  3(b,c,d), we consider 𝛿 = 0. Other parameters include 𝜖1 = 𝜖2 = 2.22, 𝜆 = 852 nm, 𝑞 = 0.1 μm, along with beam waist 𝜔0 = 60𝜆.
transverse shift is observed when this ratio exceeds unity. To investigate 
this dependence in more detail, Fig.  2(c) shows the ratio |𝑅𝑠|∕|𝑅𝑝| as 
a function of the incident angle 𝜃𝑖, with 𝛿 = 0, corresponding to the 
frequency detuning where absorption is maximized, as illustrated in 
Fig.  2(a). The maximum value of the ratio |𝑅𝑠|∕|𝑅𝑝| occurs at 𝛿 = 0, 
as this frequency corresponds to the peak of the absorption profile. 
The ratio increases sharply near the Brewster angle, 𝜃𝐵 ≈ 33.8797◦. 
As shown in Fig.  2(b), the red curve for 𝛿 = 0 reveals that |𝑅𝑝| tends 
toward zero at the Brewster angle, causing a rapid rise in the ratio. 
In contrast, the orange dashed curve for |𝑅 | remains nonzero, leading 
5

𝑠

to an enhanced and positive ratio |𝑅𝑠|∕|𝑅𝑝| at the Brewster angle. To 
better understand the effects around this critical angle, we narrow our 
focus to a small range of incident angles, 𝜃𝑖.

Next, we concentrate on the transverse shift resulting from the 
PSHE. To streamline our analysis, we specifically examine the shift 
associated with the right circularly polarized photon spin-dependent 
component, denoted as 𝛿𝑝+. This selection is based on the inherent 
symmetry between the two circular polarization states, where the 
magnitudes of the transverse shifts are identical but their directions are 
opposite. Consequently, by focusing on the right circular polarization 
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Fig. 4. (a) PSHE 𝛿𝑝+ density plot as a function of detuning 𝛿∕𝛾 whereas incidence angle 𝜃𝑖 when ∕𝑉 = 1012 cm−3, along with (b) PSHE 𝛿𝑝+ density diagram illustrating a decrease 
in number density by one order of magnitude, which is ∕𝑉 = 1011 cm−3. The collective cavity coupling strength  𝑔2 = 0 is taken into consideration here. Beam waist 𝜔0 = 60𝜆, 
𝜖1 = 𝜖2 = 2.22, 𝜆 = 852 nm, 𝑞 = 0.1 μm, alongside 𝜅 = 0.01𝛾 are the remaining parameters.
component, we can deduce that the left circular polarization compo-
nent will exhibit similar behavior, with the only difference being the 
reversed direction of the transverse shift.

We examine the PSHE shift, 𝛿𝑝+, as a function of the incident angle, 
𝜃𝑖, shown in Fig.  2(d). For the purpose of comparison, we keep all other 
parameters fixed. Our analysis indicates an enhancement of the PSHE 
at 𝛿 = 0. In particular, the transverse PSHE is positive for incident 
angles 𝜃𝑖 < 33.8797◦, and it switches to negative for 𝜃𝑖 > 33.8797◦. 
This reversal of sign is attributed to the 𝜋-phase difference between 
the phases of the Fresnel reflection coefficients, 𝑅𝑠 and 𝑅𝑝, which 
governs the polarization-dependent reflection behavior and leads to the 
observed direction change in the transverse shift.

In Fig.  3(a), we observe a coherent phenomenon resembling EIT, 
which arises due to the influence of the cavity vacuum field. This effect 
manifests when the condition 𝜅 ≪ 𝛾 is satisfied, accompanied by a 
strong collectively enhanced coupling,  𝑔2 ≥ 𝜅𝛾. For simplicity, we 
initially focus on the case where 𝛥𝑐 = 0. As illustrated in Fig.  3(a), the 
imaginary part of the susceptibility, 𝐼𝑚[𝜒], shows a dip, while the real 
part, 𝑅𝑒[𝜒], exhibits normal dispersion near the resonance frequency.

Fig.  3(b) presents the magnitudes of the reflection coefficients for 
both TE-polarized (𝑅𝑠) and TM-polarized (𝑅𝑝) light, with the EIT-like 
phenomenon induced by the cavity vacuum field. The data reveals 
distinct behaviors between the two types of polarization. The reflection 
coefficient for TM-polarized light, indicated by the red solid line, shows 
a decrease as the angle of incidence increases, reaching zero at the 
Brewster angle, 𝜃𝐵 ≈ 33.8797◦, before increasing again as the angle 
continues to rise. Conversely, the TE-polarized light’s reflection coeffi-
cient, represented by the orange dashed line, increases monotonically 
with the incident angle. This contrasting behavior between the TE and 
TM reflection coefficients underscores the angle-dependent interactions 
between light and the surface, which are influenced by both the po-
larization state of the incident light and the material properties of the 
system.

Fig.  3(c) illustrates the ratio |𝑅𝑠|∕|𝑅𝑝| with respect to the incidence 
angle 𝜃𝑖, where 𝛿 = 0 corresponds to the frequency detuning observed 
at the EIT window in Fig.  3(a). The highest value of this ratio occurs 
at 𝛿 = 0, associated with the transparency window. A sharp increase 
in the ratio is observed near the Brewster angle, 𝜃𝐵 ≈ 33.8797◦, with 
this enhancement being considerably stronger than the absorptive case 
shown in Fig.  2(c). As seen in the red curve of Fig.  3(b) for 𝛿 = 0, 
|𝑅𝑝| approaches zero at the Brewster angle, which leads to a rapid 
increase in the ratio. In contrast, the orange dashed curve representing 
|𝑅𝑠| remains finite, resulting in a significant and positive ratio |𝑅𝑠|∕|𝑅𝑝|

at this critical angle.
Next, Fig.  3(d) shows the PSHE shift, 𝛿𝑝+, as a function of the 

incident angle 𝜃  at resonance, where 𝛿 = 0. For clarity and ease 
6

𝑖

of comparison, we keep all parameters unchanged. We observe that 
the PSHE is enhanced at 𝛿 = 0. The transverse PSHE is positive for 
𝜃𝑖 < 33.8797◦ and negative for 𝜃𝑖 > 33.8797◦. This sign reversal can be 
attributed to the phase shift induced by the light–matter interaction at 
the surface, which changes with the incident angle. Below the Brewster 
angle (approximately 33.8797◦), the system exhibits a positive giant 
transverse shift, while beyond this angle, the shift reverses direction. 
This transition is due to the symmetry of polarization-dependent in-
teractions, reflecting the physics of light–matter interaction, where 
different polarization states contribute to the transverse shift in distinct 
ways.

To explore how atomic density influences the PSHE shift, we present 
the density plot of the PSHE in Fig.  4(a), which shows the relationship 
between incident angle and probe field detuning 𝛿 for an atomic density 
fixed at ∕𝑉 = 1012 cm−3. In this scenario we consider collective 
atom cavity coupling strength  𝑔2 = 0. At resonance (𝛿 = 0), 
where absorption is at its peak, a relatively small PSHE shift of 0.6𝜆
is observed. A pronounced enhancement in the PSHE, reaching values 
up to ≤ 10𝜆, is observed at detuning values of 𝛿 = ±4𝛾, where nonzero 
absorption contributes to the shift.

In Fig.  4(b), we examine the effect of a lower atomic density, 
specifically ∕𝑉 = 1011 cm−3 in the absence of collective atom–cavity 
coupling strength. At this reduced density, the PSHE shift at 𝛿 = ±4𝛾
increases to 25𝜆, while the PSHE at resonance (𝛿 = 0) remains almost 
unchanged at approximately ±0.6𝜆. Comparing the results from Figs. 
4(a) and 4(b), we observe that the PSHE remains almost constant at 
resonance regardless of atomic density, where absorption is maximal 
and no cavity–atom coupling is considered. This is because, at reso-
nance, the probe field experiences strong absorption, which in turn 
weakens the spin–orbit coupling responsible for the PSHE shift. At 
resonance, the PSHE shift is largely independent of atomic density, 
as the absorption maximizes the interaction between the probe field 
and the atomic medium, pushing the system toward a saturation point. 
This means that increasing atomic density beyond a certain threshold 
does not notably alter the PSHE shift. However, for detuning values of 
𝛿 = ±4𝛾, the reduction in atomic density results in diminished absorp-
tion of the probe field, which, in turn, amplifies the PSHE. At these 
detuned frequencies, the reduced atomic density lowers the coupling 
strength between the field and the atomic medium, allowing the spin–
orbit interaction to become more pronounced. Consequently, the PSHE 
shift increases significantly, reaching as high as 25𝜆 at lower atomic 
densities. This increase can be attributed to the lessened field-atom 
interaction at detuned frequencies, allowing the spin–orbit coupling to 
exert a stronger influence on the transverse shift.

In Fig.  5, displays the PSHE’s density plot in relation to the incidence 
angle 𝜃  and detuning of probing field 𝛿, which illustrates the influence 
𝑖
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Fig. 5. (a) PSHE 𝛿𝑝+ density graph as a function of detuning 𝛿∕𝛾 whereas incidence angle 𝜃𝑖 when ∕𝑉 = 1012 cm−3, while (b) PSHE 𝛿𝑝+ density diagram illustrating a decrease 
in number density by one order of magnitude, which is ∕𝑉 = 1011 cm−3. The collective cavity coupling strength  𝑔2 = 30𝜅𝛾 that results in VIT at resonance is taken into 
consideration here. 𝜅 = 0.01𝛾, 𝛾 = 1 MHz, 𝜖1 = 𝜖2 = 2.22, 𝜆 = 852 nm, 𝑞 = 0.1 μm, as well as beam waist 𝜔0 = 60𝜆 are the additional parameters listed.
Fig. 6. The density plot of PSHE 𝛿𝑝+ with respect to the incidence angle 𝜃𝑖 as well as atoms cavity coupling strength  𝑔2 is shown in (a) when ∕𝑉 = 1012 cm−3, alongside (b) 
when number density decreases by one order of magnitude, that is, when ∕𝑉 = 1011 cm−3. With 𝛿∕𝛾 = 0 as the other parameter, the beam waist 𝜔0 = 60𝜆, 𝜅 = 0.01𝛾, 𝛾 = 1 MHz, 
𝜖1 = 𝜖2 = 2.22, 𝜆 = 852 nm, as well as 𝑞 = 0.1 μm.
of atomic density in the presence of collective atom–cavity coupling 
strength  𝑔2. Fig.  5(a) shows the PSHE for a fixed atomic density 
of ∕𝑉 = 1012 cm−3. At resonance (𝛿 = 0), where EIT occurs due 
to VIT in the presence of atom–cavity coupling, a maximum PSHE of 
30𝜆 is observed. Smaller PSHE peaks, around ≤ 5𝜆, are observed at 
detunings of 𝛿 = ±4𝛾, resulting from some nonzero absorption at these 
frequencies. In contrast, Fig.  5(b) shows a similar density plot for a 
reduced atomic density of ∕𝑉 = 1011 cm−3. At this lower density, 
the PSHE at 𝛿 = ±4𝛾 increases to 30𝜆, while the PSHE at resonance 
(𝛿 = 0) remains nearly constant at approximately ±30𝜆. These results 
suggest that atomic density plays a significant role in determining the 
degree of absorption, which consequently influences the strength of the 
spin–orbit coupling. When the atomic density is reduced, absorption 
decreases, making the spin–orbit coupling the dominant interaction 
between the probe field and the atomic medium. This leads to an 
enhancement of the PSHE shift, as observed at the detuned frequencies.

Fig.  6(a) illustrates the impact of atomic density on the PSHE by 
fixing the incident angle 𝜃𝑖 ≈ 33.8797◦ and varying both the atom–
cavity coupling strength  𝑔2 and the detuning 𝛿∕𝛾. The density plot of 
the PSHE, represented by 𝛿𝑝+, reveals the relationship between atomic 
number density ∕𝑉 , coupling strength, and detuning conditions. At 
a high atomic number density of ∕𝑉 = 1012 cm−3, the system 
shows a prominent PSHE peak at resonance (𝛿 = 0), with a maximum 
amplitude of approximately 25𝜆. This is due to the strong atom–cavity 
coupling, which leads to VIT, thereby enhancing the PSHE at resonance. 
When the atomic density is reduced to ∕𝑉 = 1011 cm−3, the atom–
cavity coupling weakens, see Fig.  6(b). As a result, the PSHE exhibits 
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its maximum value over a broader range of detuning, suggesting a 
more uniform distribution of the effect across detuning values. This 
shift occurs because the weaker interaction between the atoms and the 
cavity mode diminishes the sharp resonance effects, making the PSHE 
less sensitive to specific detuning and more broadly spread out.

The collective atom–cavity coupling strength, denoted as  𝑔2, is a 
critical factor in determining the strength of the PSHE. As the atomic 
density increases, more atoms are coupled to the cavity field, which 
enhances the collective interaction and leads to a stronger spin–orbit 
coupling, thus resulting in a more significant PSHE shift. However, 
the relationship between atomic density and coupling strength is not 
always linear. At very high atomic densities, atomic interactions may 
become saturated, causing a diminishing return on coupling strength 
and reducing the effectiveness of the PSHE. Therefore, there exists an 
optimal atomic density range that balances strong collective coupling 
with minimal absorption, allowing for the maximum PSHE shift. This 
optimal density depends on factors such as detuning, cavity decay rate, 
and the atomic transition dipole moment, all of which influence the 
overall interaction strength between the probe field and the atomic 
medium.

In practical applications such as quantum memory and quantum 
sensing, understanding the optimal atomic density for maximizing 
PSHE is crucial. For quantum memory, an ideal atomic density ensures 
effective storage and retrieval of quantum states, as too high a density 
can lead to excessive absorption, while too low a density may not 
provide sufficient coupling. In quantum sensing, tuning the atomic 
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density can enhance the system’s sensitivity to external perturbations 
by adjusting the PSHE shift at detuned frequencies. However, varying 
atomic density can introduce challenges such as thermal effects and 
decoherence, particularly at high densities where atomic interactions 
may lead to heating and performance degradation. Balancing these 
factors is necessary to optimize the PSHE for practical use in quantum 
technologies.

Here we would like to mention that PSHE through VIT in an 
atomic cavity represents a versatile mechanism that can be extended 
to various spin-dependent phenomena beyond its current application. 
These include optical spin–orbit torque, spin-controlled photonic cir-
cuits, and more complex systems such as multi-level atoms and coupled 
cavity arrays. By exploring these extensions in future, novel quantum 
devices that leverage the spin–orbit interaction to control light–matter 
interactions in highly tunable and efficient ways can be achieved. 
The proposed mechanism could provide new insights and tools for 
designing quantum memory, quantum communication systems, and 
spintronic devices, ultimately advancing the field of quantum photonics 
and spin-based technologies.

5. Experimental realization of the proposed model

We describe a potential experimental implementation of our pro-
posed model, supported by relevant experimental references to comple-
ment the theoretical analysis. Our system can be realized by replacing 
the control field in a two-level atomic system with a vacuum field inside 
a strongly coupled cavity. In this setup, both the probe beam and the 
cavity mode are tuned to the |1⟩ → |2⟩ transition. A high-Q optical 
cavity, capable of trapping cold atoms (e.g., 133Cs), can accommodate 
up to 105 atoms in a far-off-resonance optical lattice trap at 937 nm 
inside the cavity [27]. The two-level system is defined by the states 
|1⟩ = |6𝑆1∕2, 𝐹 = 4, 𝑚𝐹 = 4⟩ and |2⟩ = |6𝑃3∕2, 𝐹 = 4, 𝑚𝐹 = 4⟩. This 
configuration has been experimentally realized using evaporatively 
cooled atoms in cavities with small mode volumes [34,35]. Achieving 
a sufficiently strong coupling between the atomic ensemble and the 
cavity modes is crucial for both VIT and PSHE. Strong coupling is estab-
lished when the interaction rate 𝑔 exceeds both the atomic decay rate 𝛾
and the cavity decay rate 𝜅. In practice, this requires designing cavities 
with extremely low decay rates, typically in the range of 𝜅 ≈ 10−3 to 
10−5 for high-Q cavities. Fabricating such cavities, particularly at the 
micro- or nanoscale, presents significant challenges. However, recent 
advancements in cavity quantum electrodynamics have demonstrated 
that such conditions can be achieved, especially in optomechanical 
or superconducting cavity setups [36,37]. Additionally, decoherence 
effects arising from environmental interactions such as thermal fluctu-
ations, atomic collisions, and impurities pose challenges to maintaining 
coherence in the system. Imperfect isolation of the atom–cavity system 
can further contribute to decoherence. These issues can be mitigated by 
employing ultra-low-temperature cooling techniques and using high-Q 
cavities to minimize losses. Moreover, precise control over experi-
mental parameters, including atomic population, cavity detuning, and 
interaction strength, is essential for observing both VIT and PSHE. This 
requires advanced cooling techniques, such as laser cooling and evap-
orative cooling, along with meticulous fine-tuning of the atom–cavity 
interactions [27,34,35].

6. Conclusions

In conclusion, this paper presents a detailed analysis of how
polarization-dependent reflection coefficients, atomic density, and de-
tuning influence the PSHE. Key findings highlight the significant role 
of the Brewster angle in modulating the reflection coefficient ratio, 
which in turn enhances the transverse shift of the PSHE, particularly 
at resonance frequencies. The study also demonstrates how atomic 
density affects the PSHE, with lower densities promoting stronger spin–
orbit interactions due to reduced absorption, while higher densities 
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suppress the effect due to increased absorption. Additionally, the 
introduction of cavity effects gives rise to an EIT-like phenomenon, 
providing a versatile mechanism for controlling spin-dependent light–
matter interactions. These insights deepen our understanding of the 
factors governing the PSHE and offer potential pathways for tuning this 
effect in practical cavity QED setups.
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