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Spatially Structured Optical Effects in a Four-Level Quantum
System Near a Plasmonic Nanostructure

Hamid R. Hamedi,* Vassilios Yannopapas, and Emmanuel Paspalakis

The light–matter interaction for a four-level double-V-type quantum system
interacting with a pair of weak probe fields while located near a 2D array of
metal-coated dielectric nanospheres is studied. A situation is considered in
which one of the probe field carries an optical vortex, that is, an
electromagnetic field with optical angular momentum, and the other probe
field has no vortex. It is demonstrated that due to the phase sensitivity of the
closed-loop double V-type quantum system, the linear and nonlinear
susceptibility of the non-vortex probe beam depends on the azimuthal angle
and orbital angular momentum (OAM) of the vortex probe beam. This feature
is missing in an open four-level double V-type quantum system interacting
with free-space vacuum, as no quantum interference occurs in this case. The
azimuthal dependence of optical susceptibility of the quantum system is used
to determine the regions of spatially structured transparency.

1. Introduction

Growing attention has recently emerged in the generation of
twisted light beams due to their potential application in quantum
information processing,[1,2] optical micromanipulation,[3] bio-
sciences, [4] and microtrapping and alignment.[5] Such beams of
light (the so-called optical vortices) carry orbital angular momen-
tum (OAM) with helical wavefronts focusing to rings, rather than
points. The interaction of such structured light beams with cold
atoms results in a plethora of interesting effects, including light-
induced-torque,[6] atom vortex beams,[7] entanglement of OAM
states of photon pairs,[8] OAM-based four-wave mixing,[9,10] spa-
tially dependent electromagnetically induced transparency (EIT)
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and its applications,[11–17] as well as vortex
slow light and transfer of optical vortices
between light fields.[18–29]

Another area of research in pho-
tonics that has attracted significant
attention in current years studies the
modification of the optical properties
of quantum systems that are placed
near metallic or metal-dielectric (plas-
monic) nanostructures. The coherent
interaction of light with the quantum
systems near plasmonic nanostructures
may lead to several quantum coher-
ence and interference phenomena with
updated properties compared to the
isolated quantum systems. Some of
these effects are optical transparency
and slow light,[30–32] gain without

inversion,[33–36] control of spontaneous emission,[37–41] Fano
effects in energy absorption,[42–44] controlled quantum
entanglement,[45,46] electromagnetically induced grating,[47–50]

existence and manipulation of optical bistability,[51,52] en-
hanced second-harmonic generation,[53] modified four-wave
mixing,[54,55] and enhanced Kerr nonlinearity.[56–63]

An interesting topic is the interplay of quantum systems near
plasmonic nanostructures and optical vortices. The usage of the
optical vortex beam together with a plasmonic nanostructuremay
result in a significant modification of optical response for the
quantum system when compared to the case where the quantum
system is just in free space. To the best of our knowledge, a sim-
ilar analysis on interaction of quantum systems near plasmonic
nanostructures with structured light has not been reported.Here,
we present a study in this area. Specifically, we study the inter-
action of a four-level, double-V-type quantum system with two
electromagnetic fields, an electromagnetic field with OAM, and
another regular field (without OAM), when the quantum system
is located near a 2D array of metal-coated dielectric nanospheres.
The double-V-type quantum system displays effects of quan-
tum interference in spontaneous emission when placed near the
periodic plasmonic nanostructure[38] and its optical properties
have been analyzed in various studies exhibiting very interest-
ing effects.[30,31,36,41,46–48,50,56,63] In this work, we study the angu-
lar dependence of optical susceptibility of the quantum system.
We show that the azimuthally varying linear and nonlinear pat-
terns can be controlled though different external parameters such
as the distance of the quantum system from the surface of plas-
monic nanostructure and the vorticity of twisted probe beam.We
also demonstrate that such a scheme can be used to distinguish
the OAM state of a weak vortex beam by mapping the absorption
of nonvortex probe field in the transverse spatial profile.
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Figure 1. Schematic diagram of the four-level double-V-type quantum system (a). A metal-coated dielectric nanosphere (b) and a 2D array of such
spheres (c).

The paper is organized as follows: In Section 2 we present the
basic equations, based on the density matrix formulation, where
the decay rates entering in the density matrix equations are cal-
culated by electromagnetic calculations and are modified by the
presence of the plasmonic nanostructure. We also use the den-
sity matrix equations and calculate the linear and the third-order
susceptibility of the non-vortex field in the presence of the vor-
tex field. Then, we use the derived susceptibilities in Section 3 to
study the azimuthally varying linear and nonlinear patterns and
present their control. Finally, in Section 4 we conclude our find-
ings.

2. Theoretical Model and Formulation

In this section, we present in detail the theory of the light–matter
interaction of the four-level quantum system near the plasmonic
nanostructure. The theory has been presented earlier in other
works, for example, ref. [63], but for completeness of the present
work and for giving the opportunity to the interested reader to
repeat the calculations, we also present it here.
We consider a four-level quantum system involving two closely

lying upper states |2⟩ and |3⟩, and two lower states |0⟩ and |1⟩,
building a double-V level configuration (Figure 1a). Such a quan-
tum system is placed in vacuum at distance d from the surface
of the plasmonic nanostructure. It is located right opposite the
center of a nanosphere, that is, at the center of the 2D unit cell
of the periodic plasmonic nanostructure. The resulting quantum
interference p can be maximized at this lateral placement of the
quantum system. The upper states |2⟩ and |3⟩ indicate two Zee-
man sublevels (J = 1, MJ = ±1), while the two lower states |0⟩
and |1⟩ are corresponding levels with J = 0. The dipole moment
operator is defined by

⃖⃗𝜇 = 𝜇′(|2⟩⟨0|�̂�− + |3⟩⟨0|�̂�+) + 𝜇(|2⟩⟨1|�̂�− + |3⟩⟨1|�̂�+) +H.c., (1)

where �̂�± = (ez + iex)∕
√
2 show the right-rotating (�̂�+) and left-

rotating (�̂�−) unit vectors, whereas 𝜇 and 𝜇′ are real.
We consider the case that the quantum system interacts with

two circularly polarized continuous-wave electromagnetic laser
fields with total electric field

⃖⃗E(t) = �̂�+Ea cos(𝜔at + 𝜙a) + �̂�−Eb cos(𝜔bt + 𝜙b) (2)

where Ea(Eb), 𝜔a(𝜔b), and 𝜙a(𝜙b) characterize the electric-field
amplitude, the angular frequency, and the individual phase for
the field a(b), respectively. The first laser field a couples the lower
level |0⟩ and the upper state |2⟩, while the second laser field b
acts between the lower level |0⟩ and the upper state |3⟩. The tran-
sition |0⟩ ↔ |1⟩ is dipole forbidden. We also assume both fields
with equal frequencies 𝜔a = 𝜔b = 𝜔L.
We further assume that the upper V-type subsystem involv-

ing |2⟩, |3⟩ and |1⟩ lies within the surface-plasmon bands
of the plasmonic nanostructure, while the lower V-type sub-
system containing |2⟩, |3⟩ and |0⟩ is spectrally away from
the surface-plasmon bands, hence it is not influenced by the
plasmonic nanostructure.[30,31,36,38,40,41,46–48,50,56,63] This leads the
spontaneous decay in lower V subsystem due to the interaction
of the quantum system with the free-space vacuum electromag-
netic modes. The quantum configuration considered here can be
realized in hyperfine sublevels of D lines in alkali-metal atomic
systems, such as 85Rb and 87Rb,[31,32,40] as well as in quantum
dots, like in dual CdSe/ZnS/CdSe quantum dots.[31,32]

TheHamiltonian describing the interaction of laser beams and
the quantum scheme reads

He = ℏ

[
(−𝛿 −

𝜔32

2
)|2⟩⟨2| + (−𝛿 +

𝜔32

2
)|3⟩⟨3|

−
(Ωae

i𝜙a

2
|0⟩⟨2| + Ωbe

i𝜙b

2
|0⟩⟨3| +H.c.

)]
(3)

where Ωa = 𝜇′Ea∕
√
2ℏ and Ωb = 𝜇′Eb∕

√
2ℏ denote the Rabi fre-

quencies for the two fields. Here 𝛿 = 𝜔L − �̃� is the detuning
from resonance with the average transition energy of states |2⟩
and |3⟩ from state |0⟩ [�̃� = (𝜔2 + 𝜔3)∕2 − 𝜔0] and 𝜔32 = (𝜔3 −
𝜔2)∕2, where ℏ𝜔j = ℏ𝜔j, j = 0 − 3 is the energy of state |j⟩.
Note that the transitions |1⟩, |2⟩, |3⟩ are spectrally far from
the transitions |0⟩, |2⟩, |3⟩, so they are not driven by the laser
fields.
The quantum dynamics of the system is then characterized by

the master equation

�̇�s = − i
ℏ
[He, 𝜌s] + 𝜌s (4)
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where

𝜌s = 𝛾 ′(|0⟩⟨2|2𝜌s|2⟩⟨0| − |2⟩⟨2|𝜌s − 𝜌s|2⟩⟨2|)
+ 𝛾 ′(|0⟩⟨3|2𝜌s|3⟩⟨0| − |3⟩⟨3|𝜌s − 𝜌s|3⟩⟨3|)
+ 𝛾(|1⟩⟨2|2𝜌s|2⟩⟨1| − |2⟩⟨2|𝜌s − 𝜌s|2⟩⟨2|)
+ 𝛾(|1⟩⟨3|2𝜌s|3⟩⟨1| − |3⟩⟨3|𝜌s − 𝜌s|3⟩⟨3|)
+ 𝜅(|1⟩⟨3|2𝜌s|2⟩⟨1| − |2⟩⟨3|𝜌s − 𝜌s|2⟩⟨3|)
+ 𝜅(|1⟩⟨2|2𝜌s|3⟩⟨1| − |3⟩⟨2|𝜌s − 𝜌s|3⟩⟨2|)
+ 𝛾 ′′(|0⟩⟨1|2𝜌s|1⟩⟨0| − |1⟩⟨1|𝜌s − 𝜌s|1⟩⟨1|) (5)

represents the dissipation processes. We assume that the decay
rates from the two upper levels to the lower level are the same.
The difference in energy of states |2⟩ and |3⟩ is rather small, that
is, 𝜔32 is only a few Γ0 (Γ0 is the decay rate in free space[38]).
The term containing 𝛾 ′′ is very small (𝛾 ′′ ≪ 𝛾 , 𝛾 ′) as it arises
from a dipole forbidden transition, hence we neglect it by taking
𝛾 ′′ = 0.
Using Equation (4), one arrives at the following equations for

the density matrix elements which describe the dynamics of the
light–matter coupling

�̇�20 =
(
i𝛿 + i

𝜔32

2
− 𝛾 − 𝛾 ′

)
𝜌20 − 𝜅𝜌30 + i

Ωa

2
(𝜌00 − 𝜌22)

− i
Ωb

2
e−i𝜙𝜌23 (6)

�̇�30 =
(
i𝛿 − i

𝜔32

2
− 𝛾 − 𝛾 ′

)
𝜌30 − 𝜅𝜌20 + i

Ωb

2
e−i𝜙(𝜌00 − 𝜌33)

− i
Ωa

2
𝜌32 (7)

�̇�23 = (i𝜔32 − 2𝛾 − 2𝛾 ′)𝜌23 + i
Ωa

2
𝜌03 − i

Ωb

2
ei𝜙 − 𝜅(𝜌22 + 𝜌33) (8)

�̇�00 = 2𝛾 ′(𝜌22 + 𝜌33) − i
Ωa

2
(𝜌02 − 𝜌20) − i

Ωb

2
(𝜌03e

−i𝜙 − 𝜌30e
i𝜙) (9)

�̇�22 = −2(𝛾 + 𝛾 ′)𝜌22 + i
Ωa

2
(𝜌02 − 𝜌20) − 𝜅(𝜌23 + 𝜌32) (10)

�̇�33 = −2(𝛾 + 𝛾 ′)𝜌33 + i
Ωb

2
(𝜌03e

−i𝜙 − 𝜌20e
i𝜙) − 𝜅(𝜌23 + 𝜌32) (11)

with 𝜌ij = 𝜌∗ji 𝜌00 + 𝜌11 + 𝜌22 + 𝜌33 = 1 which demonstrates the
population conservation. We define 𝜙 = 𝜙b − 𝜙a as the relative
phase of the applied fields. The optical coherence corresponding
to the probe transition of |0⟩ → |2⟩ (|0⟩ → |3⟩) is 𝜌20(𝜌30). The op-
tical coherence corresponding to the probe transitions |0⟩ → |2⟩
and |0⟩ → |3⟩ are 𝜌20 and 𝜌30, respectively. The probe fields are
very weak and can be treated as a perturbation. The parameter 𝜅
denotes the coupling coefficient between states |2⟩ and |3⟩ due
to spontaneous emission in a modified anisotropic vacuum[64]

(anisotropic Purcell effect) which is responsible for the appear-
ance of quantum interference.[65]

The parameters 𝛾 and 𝜅 are defined as[37,66–70]

𝛾 =
𝜇0𝜇

2�̄�2

2ℏ
�̂�−. ImG(r, r; �̄�). �̂�+ (12)

𝜅 =
𝜇0𝜇

2�̄�2

2ℏ
�̂�+. ImG(r, r; �̄�). �̂�+ (13)

where G(r, r; �̄�) [�̄� = (𝜔3 + 𝜔2)∕2 − 𝜔1], r and 𝜇0 refer to the
dyadic electromagnetic Green’s tensor, the position of the quan-
tum emitter and the permeability of vacuum, respectively. Using
Equations (12) and (13), the values of 𝛾 and 𝜅 read[37,66–70]

𝛾 =
𝜇0𝜇

2�̄�2

2ℏ
Im

[
G⊥(r, r; �̄�) +G‖(r, r; �̄�)] = 1

2
(Γ⊥ + Γ‖) (14)

𝜅 =
𝜇0𝜇

2�̄�2

2ℏ
Im

[
G⊥(r, r; �̄�) −G‖(r, r; �̄�)] = 1

2
(Γ⊥ − Γ‖) (15)

Here, G⊥(r, r; �̄�) = Gzz(r, r; �̄�) and G‖(r, r; �̄�) = Gxx(r, r; �̄�) are
components of the electromagnetic Green’s tensor, with the sym-
bol ⊥(‖) referring to a dipole oriented normal, along the z axis
(parallel, along the x axis) to the surface of the nanostructure. We
also define the spontaneous emission rates normal and parallel
to the surface by Γ⊥,‖ = 𝜇0𝜇

2�̄�2 Im[G⊥,‖(r, r; �̄�)]∕ℏ. The degree of
quantum interference then can be expressed by

p = (Γ⊥ − Γ‖)∕(Γ⊥ + Γ‖) (16)

Themaximumquantum interference is obtained in spontaneous
emission[65] when p = ±1, which is only achieved by placing the
emitter close to a structure that completely quenches either Γ⊥

or Γ‖. On the other hand, when the emitter is placed in vacuum,
Γ⊥ = Γ‖, no quantum interference occurs in the system (𝜅 = 0).
As can be seen in Figure 1b,c, the plasmonic nanostructure

considered here is a 2D array of touching metal-coated silica
nanospheres. The dielectric function of the shell is provided by a
Drude-type electric permittivity

𝜖(𝜔) = 1 −
𝜔2
p

𝜔(𝜔 + i∕𝜏)
(17)

where 𝜔p shows the bulk plasma frequency and 𝜏 is the relax-
ation time of the conduction-band electrons of the metal. A typi-
cal value of the plasma frequency for gold is ℏ𝜔p = 8.99 eV, which
can also determine the length scale of the system as c∕𝜔p ≈ 22
nm. In the calculations we have taken 𝜏−1 = 0.05𝜔p. The dielec-
tric constant of SiO2 is taken to be 𝜖 = 2.1. The lattice constant
of the square lattice is a = 2c∕𝜔p and the sphere radius S = c∕𝜔p
with core radius Sc = 0.7c∕𝜔p. The maximization quantum in-
terference rate p can be achieved by using this particular choice
of sphere/core radius and lattice constant. The layered multiple
scattering method[37,71–73] is used for the calculation of the spon-
taneous decay rates next to the plasmonic nanostructure.We con-
sider �̄� = 0.632𝜔p, while the distance between the quantum sys-
tem and the surface of the plasmonic nanostructure, d, is altered.
For the results of Γ⊥ and Γ‖ used here, we refer to Figure 3 in ref.
[30]. It is observed that Γ‖ results in significant suppression and
its actual value is markedly lower than the free-space decay rate.
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In addition, the value of Γ⊥ reduces with increasing the distance
between the quantum system and the plasmonic nanostructure.
For distances close to the plasmonic nanostructure, Γ⊥ is much
larger than the free-space decay rate. The value of Γ⊥ becomes
larger than the free-space decay rate for distances up to 0.6c∕𝜔p,
while for distances between 0.65c∕𝜔p and c∕𝜔p the value of Γ⊥ is
lower than the free-space decay rate. We note that the plasmonic
nanostructure influences the linear and nonlinear susceptibili-
ties through the change of the decay rate of the quantum system
𝛾 and the coupling coefficient 𝜅. Both of these terms, as can be
seen from Equations (12) to (15), depend on Γ‖ and Γ⊥, which are
influenced by the presence of the plasmonic nanostructure and
therefore, as we already mentioned above, can change with the
distance of the quantum system from the plasmonic nanostruc-
ture.
In order to derive the linear and nonlinear electric suscepti-

bilities for the laser field Ωa, we assume that the probe fields are
weak enough such that they are treated as perturbation to the sys-
tem when reaching the steady-state. The method used here is a
third order extension of themethod presented in ref. [74], while it
is similar to that used in refs. [13] and [63]. Under the weak-field
approximation, one can apply the perturbation approach to the
density-matrix elements

𝜌ij = 𝜌
(0)
ij + 𝜆𝜌

(1)
ij + 𝜆2𝜌

(2)
ij + 𝜆(3)𝜌

(3)
ij +⋯ (18)

where 𝜆 represents a continuously varying parameter ranging
from zero to unity. Here the 𝜌

(n)
ij with n = 1, 2, 3 are of the nth

order in the probe beams. Since we are working in the weak field
limit (e.g., the probe fields are considered to be weak), the zeroth-
order solution is 𝜌(0)00 = 1, while the other elements 𝜌(0)ij = 0. Sub-
stituting Equation (18) into Equations (6)–(11), the equations of
motion for the first- and third order density-matrix elements are
then simplified to

�̇�
(1)
20 =

(
i𝛿 + i

𝜔32

2
− 𝛾 − 𝛾 ′

)
𝜌
(1)
20 − 𝜅𝜌

(1)
30 + i

Ωa

2
(19)

�̇�
(1)
30 =

(
i𝛿 − i

𝜔32

2
− 𝛾 − 𝛾 ′

)
𝜌
(1)
30 − 𝜅𝜌

(1)
20 + i

Ωb

2
e−i𝜙 (20)

�̇�
(3)
20 =

(
i𝛿 + i

𝜔32

2
− 𝛾 − 𝛾 ′

)
𝜌
(3)
20 − 𝜅𝜌

(3)
30 + i

Ωa

2

(
𝜌
(2)
00 − 𝜌

(2)
22

)
− i

Ωb

2
e−i𝜙𝜌(2)23 (21)

�̇�
(3)
30 =

(
i𝛿 − i

𝜔32

2
− 𝛾 − 𝛾 ′

)
𝜌
(3)
30 − 𝜅𝜌

(3)
20 + i

Ωb

2
e−i𝜙

(
𝜌
(2)
00 − 𝜌

(2)
33

)
− i

Ωa

2
𝜌
(2)
32 (22)

We look for the steady-state solutions characterized by the time-
independent density matrix elements, giving

𝜌
(1)
20 = i

Ωa

2
S1 − i𝜅

Ωb

2
e−i𝜙S2 (23)

𝜌
(1)
30 = i

Ωb

2
e−i𝜙S3 − i𝜅

Ωa

2
S2 (24)

𝜌
(3)
20 = −a2𝜅 − a1(i𝛿 − i

𝜔32

2
− 𝛾 − 𝛾 ′) (25)

𝜌
(3)
30 = −a1𝜅 − a2(i𝛿 + i

𝜔32

2
− 𝛾 − 𝛾 ′) (26)

where

S1 =
(−i𝛿 + i𝜔32

2
+ 𝛾 + 𝛾 ′)

(−i𝛿 + i𝜔32

2
+ 𝛾 + 𝛾 ′)(−i𝛿 − i𝜔32

2
+ 𝛾 + 𝛾 ′) − 𝜅2

(27)

S2 =
1

(−i𝛿 + i𝜔32

2
+ 𝛾 + 𝛾 ′)(−i𝛿 − i𝜔32

2
+ 𝛾 + 𝛾 ′) − 𝜅2

(28)

S3 =
(−i𝛿 − i𝜔32

2
+ 𝛾 + 𝛾 ′)

(−i𝛿 + i𝜔32

2
+ 𝛾 + 𝛾 ′)(−i𝛿 − i𝜔32

2
+ 𝛾 + 𝛾 ′) − 𝜅2

(29)

a1 =
−iΩa

2

(
𝜌
(2)
00 − 𝜌

(2)
22

)
− iΩb

2
e−i𝜙𝜌(2)23

(−i𝛿 + i𝜔32

2
+ 𝛾 + 𝛾 ′)(−i𝛿 − i𝜔32

2
+ 𝛾 + 𝛾 ′) − 𝜅2

(30)

a2 =
−iΩb

2
e−i𝜙

(
𝜌
(2)
00 − 𝜌

(2)
33

)
− iΩa

2
𝜌
(2)
32

(−i𝛿 + i𝜔32

2
+ 𝛾 + 𝛾 ′)(−i𝛿 − i𝜔32

2
+ 𝛾 + 𝛾 ′) − 𝜅2

(31)

Here, the second-order densitymatrix elements of Equations (25)
and (26) featured in Equations (30) and (31) can be solved to ob-
tain the steady-state solutions 𝜌(2)ij . The expressions for the steady-

state solutions 𝜌(2)ij are:

𝜌
(2)
11 = −

(r + s)
2𝛾 ′

(32)

𝜌
(2)
22 =

2𝛾 ′𝜅r + 𝜅𝛾(r + s)
4𝛾 ′𝜅(𝛾 + 𝛾 ′)

(33)

𝜌
(2)
33 =

2𝛾 ′𝜅s + 𝜅𝛾(r + s)
4𝛾 ′𝜅(𝛾 + 𝛾 ′)

(34)

𝜌
(2)
23 =

𝜅(r + s) − 2𝛾 ′t
2𝛾 ′(i𝜔32 − 2𝛾 − 2𝛾 ′)

(35)

and 𝜌
(2)
00 = 0, where

t =
iΩa

2

(
−i

Ωb

2
ei𝜙S∗

3 + i𝜅
Ωa

2
S∗
2

)

−i
Ωb

2
ei𝜙

(
i
Ωa

2
S1 − i𝜅

Ωb

2
e−i𝜙S2

)
(36)

r =
iΩa

2

((
−i

Ωa

2
S∗
1 + i𝜅

Ωb

2
ei𝜙S∗

2

)
−
(
i
Ωa

2
S1 − i𝜅

Ωb

2
e−i𝜙S2

))
(37)
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s =
iΩb

2

((
−i

Ωb

2
ei𝜙S∗

3 + i𝜅
Ωa

2
S∗
2

)
e−i𝜙

−
(
i
Ωb

2
e−i𝜙S3 − i𝜅

Ωa

2
S2

)
ei𝜙

)
(38)

Decomposing the susceptibility as

𝜒 ≈ 𝜒 (1) + 3𝜒 (3)E2a∕4 (39)

using

𝜒(𝛿) =
√
2N𝜇′

𝜀0Ea
𝜌20 (40)

and expanding 𝜌20 in perturbation series, the linear susceptibility
𝜒 (1) and the third-order nonlinear susceptibility 𝜒 (3) can be writ-
ten as

𝜒 (1)(𝛿) =
√
2N𝜇′

𝜀0Ea
𝜌
(1)
20 = N𝜇′2

𝜀0ℏ

𝜌
(1)
20

Ωa
(41)

and

𝜒 (3)(𝛿)E2a =
4N𝜇′2

3𝜀0ℏ

𝜌
(3)
20

Ωa
(42)

Note that 𝜀0 is the vacuum permittivity and N is the density of
the quantum systems. We now replace Equations (27)–(31) into
equations (23), (25) and use Equations (32)–(38). This simplifies
Equations (41) and (42) to

𝜒 (1)(𝛿) = N𝜇′2

𝜀0ℏ

−i𝜅A + B(𝛿 − 𝜔32

2
+ i𝛾 + i𝛾 ′)

(−i𝛿 + i𝜔32

2
+ 𝛾 + 𝛾 ′)(−i𝛿 − i𝜔32

2
+ 𝛾 + 𝛾 ′) − 𝜅2

(43)

and

𝜒 (3)(𝛿) = 2N𝜇′4

3𝜀0ℏ3
−i𝜅C + D(𝛿 − 𝜔32

2
+ i𝛾 + i𝛾 ′)

(−i𝛿 + i𝜔32

2
+ 𝛾 + 𝛾 ′)(−i𝛿 − i𝜔32

2
+ 𝛾 + 𝛾 ′) − 𝜅2

(44)

where we have defined x = Ωb

Ωa
. The expressions for the coeffi-

cients A, B, C and D are:

A = e−i𝜙x (45)

B = 1 (46)

C = 1
8

[
−
2𝛾 ′f1 + 𝛾 f2
4𝛾 ′(𝛾 + 𝛾 ′)

−
𝜅f3 + 2𝛾 ′f4

2𝛾 ′(−i𝜔32 − 2𝛾 − 2𝛾 ′)

]
(47)

D = 1
8

[
−
2𝛾 ′f5 + 𝛾 f6
4𝛾 ′(𝛾 + 𝛾 ′)

−
𝜅f7 + 2𝛾 ′f8

2𝛾 ′(i𝜔32 − 2𝛾 − 2𝛾 ′)

]
(48)

with

f1 = −x3e−i𝜙(S3 + S∗
3) + x2𝜅e−2i𝜙S∗

2 + 𝜅x2S2 (49)

f2 = −xe−i𝜙(S1 + S∗
1) + 𝜅x2(S2 + S∗

2) − x3e−i𝜙(S3 + S∗
3)

− 𝜅x2e−2i𝜙(S2 − S∗
2) (50)

f3 = −(S1 + S∗
1) + 𝜅xe−i𝜙S2 + x𝜅ei𝜙S∗

2 − x2S3 + x𝜅S2e
i𝜙

− x2ei𝜙S∗
3 + 𝜅xS∗

2e
−i𝜙 (51)

f4 = xe−i𝜙(S3 + S∗
1) − 𝜅S2 − x2𝜅S∗

2 (52)

f5 = (S1 + S∗
1) − x𝜅S∗

2 − 𝜅xS2e
−i𝜙 (53)

f6 = (S1 + S∗
1) − 𝜅x(ei𝜙S∗

2 + S2e
−i𝜙 + S∗

2e
−i𝜙 + S2e

i𝜙)

+ x2(S3 + S∗
3) (54)

f7 = xe−i𝜙(S1 + S∗
1) − 𝜅x2(S2 + S∗

2) − 𝜅x2e−2i𝜙(S2 + S∗
2)

+ x3(e−i𝜙S3 + S∗
3) (55)

f8 = −x2S∗
3 + x𝜅e−i𝜙S∗

2 − x2S1 + 𝜅x3S2e
−i𝜙 (56)

The real and imaginary parts of 𝜒 (1) represent then the lin-
ear dispersion and absorption, respectively. The real and imag-
inary parts of the third-order susceptibility 𝜒 (3) are related to the
Kerr nonlinearity and nonlinear absorption, respectively. Setting
𝜔32 = 0 and 𝛿 = 0, Equations (43) and (44) simplify, their real and
imaginary parts can be expressed as

Im(𝜒 (1)(𝛿 = 0)) = N𝜇′2

𝜀0ℏ

𝛾 + 𝛾 ′ − 𝜅x cos(𝜙)
(𝛾 + 𝛾 ′)2 − 𝜅2

(57)

Re(𝜒 (1)(𝛿 = 0)) = N𝜇′2

𝜀0ℏ

−𝜅x sin(𝜙)
(𝛾 + 𝛾 ′)2 − 𝜅2

(58)

Im(𝜒 (3)(𝛿 = 0)) = 2N𝜇′4

3𝜀0ℏ3
−m1 cos(𝜙) −m2 cos(2𝜙) −m3

32𝛾 ′(𝛾 + 𝛾 ′)
(
(𝛾 + 𝛾 ′)2 − 𝜅2

)2 (59)

Re(𝜒 (3)(𝛿 = 0)) = 2N𝜇′4

3𝜀0ℏ3
−m4 sin(𝜙) −m2 sin(2𝜙)

32𝛾 ′(𝛾 + 𝛾 ′)
(
(𝛾 + 𝛾 ′)2 − 𝜅2

)2 (60)

where

m1 = 4𝛾 ′x3𝜅(𝛾 + 𝛾 ′) − 6x𝜅𝛾(𝛾 + 𝛾 ′) + 2𝛾x3𝜅(𝛾 + 𝛾 ′)

− 4𝜅3x − 𝜅2x2(𝛾 + 𝛾 ′) − 7𝛾 ′𝜅x(𝛾 + 𝛾 ′)

− 4𝜅x𝛾(𝛾 + 𝛾 ′) − 2x𝜅(𝛾 + 𝛾 ′)2 − 𝜅x3(𝛾 + 𝛾 ′)2

− 𝛾 ′𝜅x3(𝛾 + 𝛾 ′) (61)
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m2 = 2𝜅2x2𝛾 ′ + 2𝜅2x2(𝛾 + 𝛾 ′) (62)

m3 = 2𝜅2(𝛾 + 𝛾 ′)(1 + 2x2) + 2𝛾 ′𝜅2(1 − x2) − 2𝛾 ′𝜅x(𝛾 + 𝛾 ′)

− 𝜅x3(𝛾 + 𝛾 ′)2 + 4𝛾 ′(𝛾 + 𝛾 ′)3(x2 − 1) (63)

m4 = 3𝜅𝛾 ′x3(𝛾 + 𝛾 ′) + 2𝛾x3𝜅(𝛾 + 𝛾 ′) − 𝜅2x2(𝛾 + 𝛾 ′)

− 5𝛾 ′x𝜅(𝛾 + 𝛾 ′) − 2x𝜅(𝛾 + 𝛾 ′)2 − 𝜅x3(𝛾 + 𝛾 ′) (64)

3. Spatially Structured Optical Effects

Up to now no assumption has beenmade about the spatial profile
of laser fields. Now, we consider the case where the incident field
possesses a nontrivial structural profile which, however, is almost
unaffected by the plasmonic nanostructure (marginal reflection
and absorption) as it is tuned to the resonant frequencies of the
lower V-type subsystemwhich lie well above the surface-plasmon
bands of the nanostructure in which case the nanostructure is al-
most transparent to the impinging structured laser field. Since,
the position of the quantum system is kept fixed, that is, right
opposite the center of the nanosphere, we will study the role of
the position of the quantum system within the structured-field
landscape, which, given the fixed position of the quantum sys-
tem, is translated into the dependence of the applied structured
field relative to the nanostructure.
We assume that the probe field Ωb has an orbital angular mo-

mentum ℏl along the propagation axis z.[1,75] In this case, the vor-
tex probe field Ωb is characterized by the Rabi frequency

Ωb = Ab exp(ilΦ) (65)

For a Laguerre–Gaussian (LG) doughnut beam we may write the
amplitude of a vortex beam Ab as

Ab(𝜚) = |Ωb|( 𝜚w )|l| exp(− 𝜚2

w2
) (66)

where Φ = tan−1(y∕x) is the azimuthal angle, x and y are trans-
verse directions, 𝜚 =

√
x2 + y2 represents the distance from the

vortex core (cylindrical radius), w denotes the beam waist param-
eter, and |Ωb| is the strength of the vortex beam. The Rabi fre-
quency of the other probe field does not have a vortex and is given
by

Ωa = |Ωa| (67)

In this case, Equations (19)–(31) for the evolution of the system
and their corresponding coefficients remain the same, with the
only difference that 𝜙 changes to lΦ. In addition, Equations (43)
and (44) will describe the azimuthally and radial varying lin-
ear and nonlinear susceptibilities, yet one needs to perform
under the transformations 𝜙 → lΦ and x → X( 𝜚

w
)|l| exp(− 𝜚2

w2
),

where X = |Ωb||Ωa| in the corresponding coefficients given in Equa-

tions (45)–(56). This allows to study the spatial modification, az-
imuthal modulation and radial modification, of the linear and

nonlinear response of a weak non-vortex probe field Ωa at weak
intensity regime.
We will consider a situation where the laser fields are at ex-

act resonance with the corresponding transitions (𝛿 = 0). We also
assume that the quantum system is degenerate (𝜔32 = 0). In this
case, the imaginary part of Equation (43) for the linear absorption
of probe field Ωa simplifies to

Im(𝜒 (1)(𝛿 = 0)) = N𝜇′2

𝜀0ℏ

(𝛾 + 𝛾 ′) − 𝜅X( 𝜚
w
)|l| exp(− 𝜚2

w2
) cos(lΦ)

(𝛾 + 𝛾 ′)2 − 𝜅2
(68)

Equation (68) implies that the linear absorption of the probe field
Ωa can be influenced by the vortex probe beam Ωb through the
term 𝜅X( 𝜚

w
)|l| exp(− 𝜚2

w2
) cos(lΦ). This term contains a phase factor

lΦ accounting for the spatial variation of the probe absorption,
as well as, a radial dependence. It is indeed the existence of the
quantum interference term 𝜅, which makes the quantum sys-
tem sensitive to the azimuthal phase, resulting in the spatially
dependent linear absorption when the quantum system is near
the plasmonic nanostructure (d ≠ 0), as shown in Figure 2.
In the figures below we plot and discuss the spatial depen-

dence of 𝜒 (1) and 𝜒 (3). We note that 𝜒 (1) and 𝜒 (3) are plotted in
units of N𝜇′2

𝜀0ℏΓ0
and 2N𝜇′4

3𝜀0ℏ3Γ30
, respectively. In SI units, 𝜒 (1) is dimen-

sionless and 𝜒 (3) has the units m2∕V2. The values presented here
for 𝜒 (1) are comparable to the values in free-space vacuum, while
the values for 𝜒 (3) are larger than those in free-space vacuum.
Figure 2 demonstrates the resulting absorption spectra for dif-

ferent values of the distance d. The results are presented in Fig-
ure 2 for two different vorticities l = 1 (Figure 2a–d) and l = 2
(Figure 2e–h). From Figure 2, we observe that the linear absorp-
tion increases with the distance d for the whole region of trans-
verse spatial profile. The spatially structured absorption profiles
oscillate sinusoidally in the presence of the plasmonic nanostruc-
ture (see also Equation (68)). We also note that there is also a
radial modification with the change of l, which comes the term
(𝜌∕w)|l|, which is also observed in Figure 2, as well as, in the rest
of the figures below.
Equation (68) implies that the linear absorption of the sys-

tem for the transition |0⟩ ↔ |2⟩ of the quantum system near the
plasmonic nanostructure can be manipulated through the wind-
ing number l (OAM number). The l factor in the cosine term
of Equation (68) governs the number of absorption peaks (or
dips) in the transverse (x–y) plane. The periodic oscillatory be-
havior of the absorption profile in the transverse plane for a given
value of distance d = 0.4c∕𝜔c but different OAM numbers l =
1 to 6 is observed in Figure 3. Because of the angular depen-
dence, the spatially structured absorption profile displays a l-fold
symmetry. The number of absorption peaks (or dips) increases
with larger winding number l. As a result, one can easily dis-
tinguish an unknown vorticity of a vortex probe beam Ωb solely
by counting the bright spots appearing in the absorption profile
of the probe field Ωa. Furthermore, the maximum of the linear
absorption curve is enhanced in some regions of the transverse
plane by increasing the winding number, while gain appears in
some other regions, see, for example, Figure 3f, which results
from the fact that for specific azimuthal angles and radial dis-
tances Im(𝜒 (1)(𝛿 = 0)) becomes negative. Since the denominator
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Figure 2. Spatially structured linear absorption Im(𝜒 (1)) profiles of the probe beam Ωa in units
N𝜇′2

𝜀0ℏΓ0
, in the presence of the plasmonic nanostructure

and for different values of the distance d of the quantum system from the plasmonic nanostructure: d = 0.1c∕𝜔c (a,e), d = 0.3c∕𝜔p (b,f), d = 0.6c∕𝜔p

(c,g) and d = 0.8c∕𝜔p (d,h). Here, the winding number is l = 1 for (a,b,c,d) and l = 2 (e,f,g,h), while the other parameters are 𝛿 = 0, 𝜔32 = 0, |Ωb||Ωa| = 1.5,

�̄� = 0.632𝜔p, 𝛾
′ = 0.3Γ0 and 𝛾 ′′ = 0. For d = 0.1c∕𝜔c: Γ⊥ = 35.668Γ0, Γ‖ = 0.086Γ0; for d = 0.3c∕𝜔p: Γ⊥ = 8.080Γ0, Γ‖ = 0.015Γ0; for d = 0.6c∕𝜔p:

Γ⊥ = 1.237Γ0, Γ‖ = 0.0044Γ0; and for d = 0.8c∕𝜔p: Γ⊥ = 0.439Γ0, Γ‖ = 0.002Γ0.

Ann. Phys. (Berlin) 2021, 2100117 © 2021 Wiley-VCH GmbH2100117 (7 of 12)

http://www.advancedsciencenews.com
http://www.ann-phys.org


www.advancedsciencenews.com www.ann-phys.org

Figure 3. Spatially structured linear absorption Im(𝜒 (1)) profiles of the probe beam Ωa in units
N𝜇′2

𝜀0ℏΓ0
, in the presence of the plasmonic nanostructure

and for different winding l = 1(a)−l = 6 (f). Here, d = 0.4c∕𝜔p and the other parameters are the same as Figure 2. For d = 0.4c∕𝜔c: Γ⊥ = 4.132Γ0,
Γ‖ = 0.0031Γ0.

Ann. Phys. (Berlin) 2021, 2100117 © 2021 Wiley-VCH GmbH2100117 (8 of 12)

http://www.advancedsciencenews.com
http://www.ann-phys.org


www.advancedsciencenews.com www.ann-phys.org

Figure 4. Spatially structured Kerr nonlinearity Re(𝜒 (3)) profiles of the probe beam Ωa in
2N𝜇′4

3𝜀0ℏ3Γ30
units, in the presence of the plasmonic nanostructure

and for different values of distance d of the quantum system from the plasmonic nanostructure: d = 0.1c∕𝜔p (a,e), d = 0.3c∕𝜔p (b,f), d = 0.6c∕𝜔p (c,g)
and d = 0.8c∕𝜔p (d,h). Here, the winding number is l = 1 for (a,b,c,d) and l = 2 (e,f,g,h), and the other parameters are the same as Figure 2.
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Figure 5. Spatially structured Kerr nonlinearity Re(𝜒 (3)) profiles of the probe beam Ωa in
2N𝜇′4

3𝜀0ℏ3Γ30
units, in the presence of the plasmonic nanostructure

and for different winding l = 1(a,e),l = 2 (b,f), l = 3 (c,g) and l = 4 (d,h). Here, d = 0.4c∕𝜔p (a,b,c,d), d = 0.9c∕𝜔p (e,f,g,h), and the other parameters
are the same as Figure 2. For d = 0.9c∕𝜔c: Γ⊥ = 0.277Γ0, Γ‖ = 0.0008965Γ0.
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is always positive, as 𝛾 > 𝜅, the condition for the gain is
𝜅X( 𝜚

w
)|l| exp(− 𝜚2

w2
) cos(lΦ) > (𝛾 + 𝛾 ′).

In Figures 4 and 5, we show the Kerr nonlinearity of the
medium as a function of the transverse directions x and y. As
can be seen from Figure 4, the spatially-dependent Kerr non-
linearity is very sensitive to the distance from the plasmonic
nanostructure. The Kerr nonlinearity is remarkably enhanced
when increasing the distance parameter d. In particular, themax-
imal Kerr nonlinearity is enhanced by almost 10 times when we
increase d from 0.1c∕𝜔p (Figure 4a,e) to 0.3c∕𝜔p (Figure 4b,f).
Larger values of d mean higher values of the Kerr nonlinearity.
However, the maximal of Kerr nonlinearity is distributed to other
regions of the transverse plane (see Figure 4c–f).
Finally in Figure 5 we display how the winding number af-

fects the Kerr nonlinearity of the system. The results show a l-fold
symmetry of the Kerr nonlinearity. Moreover, very large position-
dependent Kerr nonlinearities can be achieved just by increasing
the winding number l.
Note that we have assumed the quantum system to be degen-

erated (𝜔32 = 0). We have also performed calculations with non-
zero 𝜔32 (not shown here). We have observed a similar qualita-
tive response for linear and nonlinear susceptibilities for 𝜔32 ≠ 0
with that presented above with 𝜔32 = 0. Yet, both the linear and
nonlinear susceptibilities reduce in magnitude as 𝜔32 increases.

4. Conclusions

We have analyzed the light–matter interaction of a four-level
double-V-type quantum system interacting with a pair of weak
probe fields while located near a 2D array of metal-coated dielec-
tric nanospheres, when one probe field carries an optical vortex,
and the other field has no vortex. Because of the creation of quan-
tum interference in spontaneous emission, the linear and non-
linear susceptibility of the non-vortex probe beam depends on
the azimuthal angle and the vorticity of the twisted probe beam.
This is different from an open double-V type quantum system
interacting with free-space vacuum, as no quantum interference
occurs in that case. Thanks to the angular dependence of the op-
tical susceptibility for the quantum system we can obtain regions
of high or low transmission as well as regions of large or small
nonlinearity. We have then investigated the effect of different pa-
rameters, like the distance of the quantum system from the sur-
face of plasmonic nanostructure and the vorticity of the twisted
probe beam, and analyzed their effect on the spatial structure of
the susceptibilities.
We stress that in this work we analyzed the linear and nonlin-

ear susceptibilities of the non-vortex probe field in the presence
of another, optical vortex, probe field. In essence, the optical vor-
tex probe field plays the role of the control field, but it is a weak
control field, and not the usual strong control field which is typi-
cally used in coherent light–matter interaction schemes inmulti-
level quantum systems. Spatial dependent linear and nonlinear
optical phenomena will also occur in the case of this system inter-
acting with a strong control optical vortex field, but this is beyond
the scope of the present paper, and will be addressed in a future
work. We also note that this work is interested in regular atomic
densities and not large atomic densities, where dipole–dipole in-
teractions (local field effects) need to be considered. For example,

typical atomic densities for which our work is valid are N = 1020

m−3. For large atomic densities, where dipole–dipole interactions
appear to be important, one may use the Clausius–Mossotti for-
mula for calculating the linear optical response of the system, or
use proper expansions for calculating the nonlinear optical re-
sponse of the system.[76] In those cases, the single quantum sys-
tem result also plays an important role and therefore one expects
that spatially dependent effects will also occur when the effects of
dipole–dipole interactions are considered, but the actual optical
responsewill depend on the strength of the dipole–dipole interac-
tions. This is also beyond the scope of the present work, and we
intend to study it in another future work. The results obtained
here can be used in optoelectronics and quantum information
processing and may find potential applications in the storage of
high-dimensional optical information in phase dependent quan-
tum memories.
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