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I. ADIABATONS IN Λ-TYPE ATOMIC SYSTEM

A. Equations of motion for atoms and fields

We consider a Λ-type atomic system, shown in Fig. 1, involving two metastable ground states |0⟩ and |1⟩, as well
as an excited state |e⟩. Laser fields with the Rabi frequencies Ω0 and Ω1 induce resonant transitions |0⟩ → |e⟩ and
|1⟩ → |e⟩, respectively. Applying the rotating wave approximation (RWA), the atomic Hamiltonian in the rotating
frame with respect to the atomic levels reads

HΛ = −1

2
(Ω0|e⟩⟨0|+Ω1|e⟩⟨1|+H.c.) + δ|1⟩⟨1| − i

2
Γ|e⟩⟨e|, (1)

where δ is a two-photon detuning. The losses in the Hamiltonian (1) are taken into account in an effective way by
introducing a rate Γ of the excited state decay. In order to simplify the mathematical description of the system while
keeping the relevant physical details, we characterize the state of an atom using a state vector |Ψ⟩ = ψ0|0⟩+ ψ1|1⟩+
ψe|e⟩, as in Ref. [1, 2], instead of more complete description employed in Refs. [3, 4] that involves a density matrix.

The time-dependent Schrödinger equation iℏ∂t|Ψ⟩ = HΛ|Ψ⟩ for the atomic state-vector |Ψ⟩ yields the following

FIG. 1. Three level Λ-type atomic system. Two laser beams with the Rabi frequencies Ω0 and Ω1 act on atoms characterized by
two hyperfine ground levels |0⟩ and |1⟩ as well as an excited level |e⟩. Parameter δ denotes two-photon detuning from resonance.
Atoms are initially in the ground level |0⟩ as marked by green circle.
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equations for the atomic probability amplitudes ψ0, ψ1 and ψe:

i∂tψ0 = −1

2
Ω∗

0ψe , (2)

i∂tψ1 = δψ1 −
1

2
Ω∗

1ψe , (3)

i∂tψe = − i

2
Γψe −

1

2
Ω0ψ0 −

1

2
Ω1ψ1. (4)

On the other hand, the Rabi frequencies of the laser fields obey the propagation equations

∂tΩl + c∂zΩl =
i

2
gψeψ

∗
l , l = 0, 1 (5)

where the parameter g characterizes the strength of coupling of the light fields with the atoms. It is related to the
optical depth α as g = cΓα/L, where L is the length of the medium. For simplicity here we have assumed that the
coupling strength g is the same for both laser fields.

B. Coupled and uncoupled states

The Hamiltonian (1) can be rewritten as [3]:

HΛ = −Ω

2
(|e⟩⟨C|+ |C⟩⟨e|) + δ|1⟩⟨1| − i

2
Γ|e⟩⟨e| , (6)

where

|C⟩ = 1

Ω
(Ω∗

0|0⟩+Ω∗
1|1⟩), (7)

is a coupled state with

Ω =
√
|Ω0|2 + |Ω1|2, (8)

being a total Rabi frequency. Additionally we introduce an uncoupled state

|U⟩ = 1

Ω
(Ω1|0⟩ − Ω0|1⟩), (9)

which is orthogonal to the coupled state. The probability amplitudes to find an atom in the coupled and uncoupled
states read

ψC = ⟨C|Ψ⟩ = 1

Ω
(Ω0ψ0 +Ω1ψ1) , (10)

ψU = ⟨U|Ψ⟩ = 1

Ω
(Ω∗

1ψ0 − Ω∗
0ψ1) . (11)

In terms of coupled and uncoupled states, the equations (2)–(4) for the atomic amplitudes take the form

i∂tψU = ∆ψU +Ω∗
−ψC , (12)

i∂tψC = −∆ψC +Ω−ψU − 1

2
Ωψe , (13)

i∂tψe = − i

2
Γψe −

1

2
ΩψC , (14)

with [3]

∆ = i
Ω0

Ω
∂t

Ω∗
0

Ω
+ i

Ω1

Ω
∂t

Ω∗
1

Ω
+ δ

|Ω0|2

Ω2
, (15)

Ω− = i
Ω1

Ω
∂t

Ω0

Ω
− i

Ω0

Ω
∂t

Ω1

Ω
− δ

Ω0

Ω

Ω1

Ω
. (16)

Here Ω− describes non-adiabatic losses and 2∆ represents the separation in energies between the uncoupled and
coupled states.



3

C. Adiabatic approximation

Let us consider a situation where the total Rabi frequency Ω is sufficiently large so that the conditions presented
below by Eqs. (20) and (24) hold. In this case the adiabatic approximation can be applied. To prepare for the
derivation of approximate equations we express ψe from Eq. (13):

ψe = 2
Ω−

Ω
ψU − 2

Ω
(i∂t +∆)ψC . (17)

On the other hand, Eq. (14) relates ψC to ψe as:

ψC = −2i

Ω

(
∂t +

Γ

2

)
ψe . (18)

Since the excited state decay rate Γ is considered to be large compared to the rate of change of the fields, we neglect
the temporal derivative ∂t in the above equation. Substituting Eq. (17) into Eq. (18) one gets

ψC = −2i
Γ

Ω2
(Ω−ψU − (i∂t +∆)ψC) . (19)

We solve this equation iteratively with respect to ψC, assuming that Ω is large compared to the rate of non-adiabatic
transitions

Ω ≫ |Ω−| . (20)

In the zeroth-order of the adiabatic approximation the coupled state is not populated, ψC ≈ 0, so Eq. (10) yields

ψ0 ≈ Ω1

Ω
, ψ1 ≈ −Ω0

Ω
. (21)

Non-zero ψC appears in the first-order approximation. Putting ψC ≈ 0 on the right hand side (r.h.s.) of Eq. (19),
one arrives at the first order result for the amplitude of the coupled state

ψC ≈ −2i
Γ

Ω

Ω−

Ω
ψU . (22)

Inserting this expression back in the r.h.s. of Eq. (19) we obtain the expression containing the second-order correction

ψC = −2i
Γ

Ω

Ω−

Ω
ψU + 4

Γ2

Ω2
(i∂t +∆)

Ω−

Ω2
ψU . (23)

The second order term should be much smaller than the first order one in the r.h.s. of the above equation. Since
the atomic population is concentrated in the uncoupled state, |ψU| ≈ 1 and |ψC| ≪ 1, one arrives at the following
condition

Γ|∆|
Ω2

≪ 1 ,
Γ|Ω−|
Ω2

≪ 1 . (24)

Now let us present the adiabatic expansion of the excited state amplitude ψ3. The zeroth-order approximation of
Eq. (17) is ψe ≈ 0. In the first order, taking into account Eq. (22) and the condition (24), we have

ψe ≈ 2
Ω−

Ω
ψU . (25)

Since the excited state should be weakly populated, the condition (20) is to be imposed.
Finally, inserting the first-order adiabatic result Eq. (22) relating ψC to ψU into Eq. (12) we obtain the equation

for the amplitude of the uncoupled state

i∂tψU = ∆ψU − 2iΓ
|Ω−|2

Ω2
ψU . (26)

The last term on the r.h.s. represents losses due to non-adiabatic corrections. Similarly, inserting Eqs. (25) and (22)
into Eq. (5) we get the equations for the amplitudes of the radiation fields Ω0 and Ω1:

∂tΩ0 + c∂zΩ0 = g

(
i
Ω−

Ω

Ω∗
1

Ω
− 2

Γ

Ω

|Ω−|2

Ω2

Ω0

Ω

)
|ψU|2 , (27)

∂tΩ1 + c∂zΩ1 = g

(
−iΩ−

Ω

Ω∗
0

Ω
− 2

Γ

Ω

|Ω−|2

Ω2

Ω1

Ω

)
|ψU|2. (28)

Equations (26), (27) and (28) describe adiabatic propagation of the fields. The second terms on the r.h.s. of Eqs. (27)
and (28) describe non-adiabatic losses.
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FIG. 2. Temporal dependence of pulse amplitudes in Λ system. Dashed lines correspond to pulse envelopes Ω0 and Ω1 at the
input (z = 0), solid lines show pulse envelopes at propagation distance z = 70Labs. Here Labs = L/α is resonant absorption
length. Amplitude shown on the vertical scale is measured in Γ.

D. Short duration of propagation

Let us now consider the case when the duration of the propagation τprop is much smaller than the life time of the
adiabatons: Γ |Ω−|2

Ω2 τprop ≪ 1. The propagation duration is of the order of L/vg, where vg = cΩ2/g is the group
velocity. Expressing the atom-light coupling strength via the optical density α, g = cΓα/L, we obtain the condition(

Γ|Ω−|
Ω2

)2

α≪ 1, (29)

which should be satisfied. In this situation one can neglect the decay terms in Eqs. (26), (27) and (28). Furthermore,
since |ψU| ≈ 1, Eqs. (27), (28) reduce to

∂tΩ0 + c∂zΩ0 = ig
Ω−

Ω

Ω∗
1

Ω
, (30)

∂tΩ1 + c∂zΩ1 = −igΩ−

Ω

Ω∗
0

Ω
. (31)

Combining Eqs. (30) and (31), the total Rabi frequency Ω obeys the equation

∂tΩ+ c∂zΩ = 0 . (32)

On the other hand, Eqs. (30) and (31) provide the following equation for the ratio χ = Ω0/Ω1:(
c−1 +

g

cΩ2

)
∂tχ+ ∂zχ+ iδ

g

cΩ2
χ = 0 . (33)

This equation has a similar form to the equation for the propagation of a weak probe field affected by a stronger
control field when |Ω0/Ω1| ≪ 1. Yet, in the present situation, such a condition is not imposed.

E. Solution

Equation (32) has the following solution satisfying the boundary condition at z = 0:

Ω(z, t) ≡ Ω(τ) =
√
|Ω0(0, τ)|2 + |Ω1(0, τ)|2 , (34)
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where τ = t− z/c. To obtain a solution of Eq. (33) we change the variables t and z to τ = t− z/c and z, respectively.
Then

g

cΩ2(τ)
∂τχ+ ∂zχ+ iδ

g

cΩ2(τ)
χ = 0 . (35)

Further we change the time variable τ to the stretched time

ζ(τ) =
c

g

ˆ τ

−∞
Ω2(τ ′)dτ ′ , (36)

yielding

∂ζχ+ ∂zχ+ iδ
g

cΩ2(ζ)
χ = 0 . (37)

A particular solution of this equation is

χ(z, ζ) = exp

(
ik(z − ζ)− iδ

g

c

ˆ ζ

−∞

dζ ′

Ω2(ζ ′)

)
. (38)

When δ = 0, a solution of Eq. (37) is an arbitrary function f(ζ − z), fixed by the boundary condition at z = 0:

f(ζ(t)) =
Ω0(0, t)

Ω1(0, t)
, (39)

or

f(z) =
Ω0(0, ζ

−1(z))

Ω1(0, ζ−1(z))
, (40)

where ζ−1 is a function inverse to the function ζ. It follows from Eq. (36) that if Ω(τ) becomes constant after a certain
time, the stretched time ζ becomes a linear function of τ . After that time the obtained solution f(ζ − z) describes a
shape-preserving propagation [1].

We performed numerical investigation of the above analytical study by modeling field equations with optical fields
of particular temporal shape. Here, the first optical field is described as a Gaussian pulse at the input: Ω0(0, t) =
A exp[−(t− t0)

2/τ20 ], where τ0 = 5Γ−1, t0 = 23Γ−1 and A = Γ. The second one is simply a constant field: Ω1(0, t) =
1.5Γ. Results of the numerical solution of Eqs. (30) and (31) are depicted in Fig. 2 which shows the adiabaton
propagation regime for the optical fields after some propagation time. Specifically, a shape-preserving combination of
fields Ω0(z, t) and Ω1(z, t) propagating with the group velocity vg can be seen on the right part of Fig. 2. The upward
pulse from Ω1(z, t) field seen in the left upper part of the figure is propagating with the speed of light.
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