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Manipulation of the photonic spin Hall effect in a cavity magnomechanical system
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In this paper, we examine the theoretical implications of photonic spin Hall effect (PSHE) amplification in
a cavity magnomechanics system. In the framework of the PSHE, we show that spin-orbit interactions cause
separation of space across the transverse plane between photons with opposing spins. Our findings reveal that
the formation of photonic spin can be tuned across both positive and negative values, depending on the Brewster
angle, while varying the magnon-phonon coupling. Notably, we find that in the absence of magnon-phonon
coupling, we have magnomechanically induced transparency window at resonance and the PSHE has a higher
peak value. Further in the presence of magnon-phonon coupling, the absorption peak occurs at resonance,
which leads to a decrease of the PSHE. However, we observe a significant enhancement of the PSHE at two
distinct detuning points where light transmission is maximized. Additionally, probe field detuning emerges as
a crucial factor in controlling the PSHE. These results suggest that dynamically tuning the coupling between
cavity magnons and magnon-phonon modes can greatly enhance the PSHE, presenting new opportunities for
advanced nanoscale light manipulation.
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I. INTRODUCTION

The photonic spin Hall effect (PSHE) refers to the
spin-dependent transverse displacement of light that occurs
perpendicular to the plane of incidence [1]. It originates from
the coupling between the spin along with orbital angular mo-
menta of light, causing different polarization states to undergo
distinct shifts upon reflection or refraction, resulting in a fas-
cinating interplay between spin and spatial displacement [2].
As a result, beams with distinct polarizations can be spatially
separated, depending on the spin state of the photons [3]. This
effect is sometimes referred to as the Imbert-Fedorov effect.
It demonstrates how different polarization states can result
in distinct lateral displacements when light interacts with an
interface [4].

Spin-dependent splitting has captivated researchers’ inter-
est ever since the pioneering Stern-Gerlach experiment proved
electron spin quantization. This experiment gave early ev-
idence for the quantized nature of angular momentum and
particles associated with spin [5]. The PSHE closely re-
sembles the spin Hall effect observed in condensed-matter
physics [6], as it manifests as the splitting of right circularly
polarized (RCP) and left circularly polarized (LCP) light, oc-
curring perpendicular to the plane of incidence when a linearly
polarized Gaussian beam [either transverse electric (TE) or
transverse magnetic (TM)] interacts with an optical interface.
This spin-dependent splitting occurs in both reflected and
transmitted light waves, resulting from the differential phase
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accumulation in the RCP and LCP components of these
waves [2]. This phase, arising from light-matter interactions,
is known as the Berry phase and it exhibits equal magni-
tudes but opposite signs for RCP and LCP light. Since phase
plays a crucial role in determining the magnitude and direc-
tion of light propagation, the opposing Berry phases of RCP
and LCP light lead to their spatial separation at the optical
interface. In essence, the PSHE introduces additional spin de-
grees of freedom for the versatile manipulation of light. This
capability shows great promise in applications such as quan-
tum information processing and plasmonics [2,7], spin-based
nanophotonic devices [8], optical sensing [9], and precise
metrology [10].

To broaden the scope of these applications, achieving a
pronounced PSHE is essential. However, the effect is often
weak, resulting in transverse shifts at the nanometer scale due
to limited spin-orbit interaction. Consequently, enhancing and
controlling the PSHE presents a significant challenge, which
is crucial for advancing modern photonics. Overcoming this
hurdle is vital for the development of more efficient and ef-
fective photonic devices that leverage the unique properties of
spin-dependent phenomena. Recently, a significant PSHE, as
well as high performance for any incident polarized light, was
obtained by employing complete internal as well as external
reflection [11], along with anisotropy impedance of the incon-
sistencies within the microwave spectrum [12]. Investigations
employing quantum weak measurements [13] demonstrated
that the PSHE exhibits pronounced enhancement in the vicin-
ity of the Brewster angle upon reflection.

Another captivating phenomenon gaining attention is the
cavity magnomechanics (CMM) that explores the interactions
between magnons (collective spin excitations in magnetic
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materials), photons confined in electromagnetic cavities, and
mechanical vibrations (phonons). These interactions, typi-
cally studied in hybrid quantum systems within a cavity,
have significant implications for the performance of the sys-
tem [14,15]. Systems focused on collective spin excitations,
known as magnons, in magnetic materials like yttrium iron
garnet (YIG) have garnered substantial attention and achieved
notable advancements in recent years [16–19]. A key ad-
vantage of magnonic systems is their exceptional ability to
coherently interact with various quantum systems, includ-
ing microwave photons [20–23], optical photons [24], and
superconducting qubits [25]. These interactions have given
rise to systems such as magnon-qubit hybrids, magnomechan-
ics, cavity optomagnonics [26], magnomechanical frequency
combs [27], and cavity magnonics ring spectroscopy [28].
Strong coupling between microwave cavity photons and
magnons in YIG crystals, which was theoretically predicted,
has also been successfully demonstrated in experiments [29].
This achievement is especially significant as it has catalyzed
research in the rapidly growing field of CMM. The YIG-based
magnonic system offers additional advantages, such as wide
frequency tunability and low dissipation rates, which have
further accelerated progress in this area. Recently, researchers
have investigated the manipulation of the Goos-Hänchen shift
in the reflected portion of an incident probe field within a
CMM system using the stationary phase method [30].

Despite significant research on the PSHE, its behavior
within a CMM system remains largely unexplored, which is
the central focus of this study. This work aims to fill that
gap by demonstrating how such a system offers enhanced
flexibility in manipulating spin-orbit interactions. To control
the PSHE in the reflected probe light, we employ a CMM sys-
tem as a key mechanism in our analysis. Our results suggest
that tuning the coupling strength between cavity magnons and
magnon-phonon modes can substantially enhance the PSHE,
offering promising prospects for nanoscale light manipula-
tion. Investigating the PSHE in CMM systems could lead
to advancements in spin-based applications such as optical
sensing. This framework not only deepens our understanding
of these systems but also reveals possibilities for harnessing
their unique properties in various technological domains.

Although the fundamental principles of the PSHE are well
understood, incorporating it into a CMM system introduces
a new dimension of tunability through magnon-phonon in-
teractions. The PSHE has gained considerable attention for
its ability to govern spin-dependent photon dynamics in var-
ious optical platforms, including plasmonic structures [31],
photonic crystals [32], and atomic systems [33–35]. How-
ever, the investigation of the PSHE within a CMM system,
where external magnetic fields and mechanical vibrations
provide dynamic control, remains largely unexplored. This
work addresses this gap by demonstrating how such a system
enhances the flexibility of spin-orbit interaction manipulation,
offering unprecedented control over light-matter interactions.

Following our exploration of the proposed framework in
this study, we now focus on applying the necessary mathe-
matical formulations to derive expressions for the output field.
Section II provides a detailed overview of our model system
along with the corresponding equations to determine the ef-
fective susceptibility of the intracavity magnonics system. In

FIG. 1. The system under discussion is modeled through the
placement of the YIG sphere that lies within a single cavity. At an
angle θi, a weak probe field having frequency ωp is applied to the
cavity. A significant external magnetic field is speculated to drive
the YIG sphere, causing magnon-phonon coupling. The direction of
the applied magnetic field is shown by the arrows on the YIG sphere.

Sec. III we focus on the calculation of the PSHE, followed
by an in-depth analysis of the results in Sec. IV, where we
explore both the single and double PSHE. Section V presents
a detailed discussion of the PSHE within the framework of
CMM. Section VI highlights the main conclusions drawn
from the study and outlines their potential implications in a
broader context.

II. EFFECTIVE SUSCEPTIBILITY
OF THE MAGNOMECHANICAL SYSTEM

Figure 1 illustrates a theoretical model of a cavity con-
taining a YIG sphere, which is influenced by a probing field
with frequency ωp. We focus on a CMM system comprising
a single-mode cavity with frequency ωa, inside which a YIG
sphere is embedded. The frequency ωa is selected based on
recent hybrid magnomechanical experiments [14,36], specifi-
cally with ωa = 2π × 7.86 GHz for the present configuration.
The wavelength of the probe light is determined by the res-
onant frequencies of both the magnon and cavity modes,
yielding a probe light wavelength of λ = 38.2 mm. A bias
magnetic field is applied to the YIG sphere, leading to the
generation of quantized spin waves, referred to as magnon
modes. These magnon modes interact with the cavity’s elec-
tromagnetic field through magnetic dipole interactions. Each
mirror has a thickness d1, while the thickness of the intra-
cavity magnonic medium is d2. The nonlinear susceptibility
χ , which is represented in terms of permittivity as ε2 =
1 + χ , determines the system’s response to external fields.
The quadrature of the output field determines the permittivity
of the intracavity medium χ , while the permittivity of the
mirrors is taken as ε1 = 2.22, which corresponds to fused
silica, a commonly used material in optical cavity setups.
Controllable absorption and dispersion are therefore made
possible by the alteration of the probe field’s resonance con-
ditions. As a result, the probe field’s reflection properties are
very sensitive to the magnomechanical interactions within the
cavity.
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The excited magnon modes cause the material’s magne-
tization to shift, which in turn causes magnetostriction to
deform the YIG lattice structure. These distortions alter the
physical properties of the YIG material, leading to a cou-
pling between phonons and magnons within the YIG sphere.
This interaction, known as magnon-phonon coupling, is rep-
resented by the parameter gmb.

The dynamics of this whole system is determined by a
mathematical framework, which may be expressed directly as

H = h̄�cc†c + h̄�mm†m + h̄ωbb†b + h̄gmc(m†c + mc†)

+ h̄gmbm†m(b + b†) + i	d (m† − m)

+ ih̄Ep(c†e−iδt − eiδt c), (1)

where �c = ωc − ωd is the cavity detuning and c† and c
represent the creation and annihilation operators, respectively,
for the cavity mode. The term h̄�cc†c corresponds to the
free energy of the cavity. Here �m = ωm − ωd is the magnon
detuning and m† and m represent the creation and annihila-
tion operators, respectively, for the magnon mode. The term
h̄�mm†m describes the free energy of the magnon modes. The
ωb is the frequency of the phonon mode and b† and b represent
the creation and annihilation operators, respectively, for the
phonon mode. The term h̄ωbb†b corresponds to the free energy
of the phonon modes. The term h̄gmc(m†c + mc†) describes
the interaction between the magnon and cavity modes, where
gmc represents the coupling strength between the magnons
and the cavity photons. Similarly, the term h̄gmbm†m(b + b†)
represents the magnon-phonon interaction, with gmb denoting
the coupling strength between magnons and phonons.

As discussed earlier, the YIG sphere is subjected to an
external magnetic field, which is represented by the term
i	d (m† − m). Here 	d =

√
5

4 γ
√

ρV B0 describes the coupling
strength of the driving field, where B0 is the amplitude of the
magnetic field, ωd is its frequency, ρ is the spin density, and
V is the volume of the YIG sphere. Additionally, a probe laser
field with amplitude Ep and frequency ωp is applied to the
cavity, as illustrated in Fig. 1. The amplitude of the probe

light field is specified as Ep =
√

2κaPp

h̄ωp
. Here Pp is the power

of the probe field, κa is the cavity photon decay rate, and
δ = ωp − ωd .

In our analysis, we will solve the Hamiltonian and derive
the quantum Langevin equations using the Heisenberg oper-
ator approach. This method allows us to thoroughly analyze
the system’s evolution and gain insight into its dynamical
behavior. The temporal evolution of the operators in quantum
Langevin dynamics, incorporating both the Hamiltonian and
dissipation effects described by a Lindblad operator L, is
governed by the equation [37]

dO
dt

= − i

h̄
[O, H] + D[L]O + N , (2)

where N accounts for external noise sources, such as vacuum
fluctuations and thermal noise. The Lindblad dissipator is
defined as

D[L]O = L†OL − 1
2 (L†LO + OL†L). (3)

For a cavity mode with photon annihilation operator c, the
decay is described by the Lindblad operator

L =
√

2κac, (4)

where κa is the cavity decay rate. Employing Eq. (4) in Eq. (3)
yields

D[L]O = 2κac†Oc − κa(c†cO + Oc†c). (5)

If O corresponds to the field operator c, this expression re-
duces to a standard decay term

dc

dt
= − i

h̄
[c, H] − κac + N . (6)

The expression O in Eq. (2) denotes the operators (c, m, b)
in the Hamiltonian, and N includes contributions from both
input vacuum noise and the Brownian noise operator. Using
Eqs. (1) and (2), we derive the Heisenberg-Langevin equa-
tions. The coupled dynamical equations, obtained from the
total Hamiltonian in Eq. (1), account for both dissipative
processes and quantum fluctuation effects and are expressed
as

ċ = −(i�c + κa)c − igmcm + Epe−iδt +
√

2κacin, (7)

ṁ = −(i�m + κm)m − igmcc − igmbm(b + b†) + 	d

+
√

2κamin, (8)

ḃ = −(iωb + κb)b − igmbm†m + ζ , (9)

where κm and κb are the decay rates for the magnon mode and
the phonon modes, and cin, min, and ζ are the quantum noise
operators associated with the cavity mode, magnon mode, and
mechanical modes, respectively. It is important to note that the
mean values of the quantum noise, Brownian noise, and input
operator are equal to zero [38].

The first-order fluctuations are linearized as c = cs + δc,
m = ms + δm, and b = bs + δb [39]. By substituting these
first-order fluctuations into Eqs. (7)–(9) and setting the time
derivatives to zero, the steady-state mean values for the cavity
mode cs, the magnon mode ms, and phonon modes bs are
obtained as

cs = −igmcms

i�c + κa
,

ms = −igmccs + 	d

i�′
m + κm

,

bs = −igmb|ms|2
iωb + κb

,

(10)

where �′
m = �m + gmb(bs + b†

s ). The equations of motion for
the quantum fluctuations are nonlinear and are expressed as

δċ = − (κa + i�c)δc − igmcδm + Epe−iδt , (11)

δṁ = − (i�m + κm)δm − igmcδc − igmb(δb + δb†)δm + 	d ,

(12)

δḃ = − (iωb + κb)δb − igmbδm†δm. (13)

The nonlinear terms in these equations, such as −igmb(δb +
δb†)δm and −igmbδm†δm, arise from the interactions among
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the cavity, magnon, and phonon modes and are crucial for
capturing the system’s nonlinear dynamics. To analyze the
equations of motion (11)–(13), we solve them perturba-
tively using the ansatz δO = ∑

n∈{−,+} On einδt , where O =
{c, m, b} [39]. The oscillation in the cavity is primarily at-
tributed to magnomechanical effects induced by applying
the driving field in our proposed model. Furthermore, the
amplitude and phase modulations within the system can be
finely tuned through the interplay of the control and probe

laser fields. These modulations give rise to both Stokes and
anti-Stokes sideband dispersion in the control beam. The
first-order expression for the transmitted probe field c− is
subsequently derived using the aforementioned methodology
and is given by

c− = B
A , (14)

where

B = Ep
(
g2

mcα3α5α6 + α2α3α4α5α6 − G2
mbg2

mcα5 + G2
mbα2α3α5 − G2

mbα2α4α5 + G2
mbg2

mcα6 − G2
mbα2α3α6 + G2

mbα2α4α6
)
, (15)

A = g4
mcα5α6 + g2

mcα1α3α5α6 + g2
mcα2α4α5α6 + α1α2α3α4α5α6 − G2

mbg2
mcα1α5 + G2

mbg2
mcα2α5 + G2

mbα1α2α3α5

− G2
mbα1α2α4α5 + G2

mbg2
mcα1α6 − G2

mbg2
mcα2α6 − G2

mbα1α2α3α6 + G2
mbα1α2α4α6, (16)

and

α1 = −iδ + i�c + κa, (17)

α2 = −iδ − i�c + κa, (18)

α3 = −iδ + i�m + κm, (19)

α4 = −iδ − i�m + κm, (20)

α5 = −iδ + iωb + κb, (21)

α6 = −iδ − iωb + κb. (22)

Here the effective magnomechanical coefficient of coupling
is given by Gmb = gmbms, which can be adjusted using an
external magnetic field while keeping gmb constant. We ex-
amine the output probe field (OPF) spectrum by using the
input-output relation given in [40]. To make things simpler,
this relationship might be stated as

Eout + Epe−iδt =
√

2κac, (23)

where

Eout = E0
out + E+

outEpe−iδt + E−
outEpeiδt . (24)

By solving Eqs. (23) and (24), we get the expressions

E+
out =

√
2κac−
Ep

− 1 (25)

and

E+
out + 1 =

√
2κac−
Ep

= ET . (26)

One way to conceptualize the OPF is as the effective
susceptibility of the intracavity medium χ = ET , which is
represented by Eq. (26). The complex variable χ , which has
both imaginary and real components, defines the quadrature
for the field ET [40–42]. It is possible to measure this quadra-
ture using homodyne detection techniques in addition to the
formula χ = χr + iχi. The real component χr represents the
absorption spectrum, while the imaginary portion χi repre-
sents the dispersion spectrum of the probing field. So we

find the permittivity of intracavity medium by the relation
ε2 = 1 + χ .

III. CALCULATION OF THE PSHE

Figure 1 shows the cavity mirror M1 illuminated by a TM-
polarized light beam along with a TE-polarized light beam
coming from the vacuum at an angle of incidence θi. While
the monochromatic Gaussian beam may penetrate the layered
structure or be reflected at the interface, our primary focus is
on the reflected part, particularly under conditions where the
angle of incidence and polarization significantly influence the
reflection behavior. Upon reflection, the RCP and LCP com-
ponents of the incident beam experience a spatial separation
along the direction perpendicular to the plane of incidence,
i.e., along the y axis, as depicted in Fig. 1. The PSHE is
a polarization-dependent optical phenomenon that develops
when photons with opposing helicities are separated by light
spin-orbit coupling. The complex reflection coefficients for
TM polarization (Rp) and TE polarization (Rs) for the three-
layer structure can be computed using the transfer-matrix
approach. The transfer matrix for the jth layer of a given
configuration is expressed as [43,44]

Nj (kz, ωp, d j ) =
⎛
⎝ cos

(
k j

x
) i sin

(
k j

x

)
q j

iq jsin
(
k j

x
)

cos
(
k j

x
)
⎞
⎠. (27)

Here k j
x = d j

√
ε jk2 − k2sin2(θi ) is the x component of the

wave vector in the jth layer of the medium. Similarly,
the thickness of the jth layer is given by d j , where j is
the number of the corresponding layer of the medium and
q j =

√
εkk2 − k2sin2(θi). In this context, εk is the permittivity

of the kth layer. Further k = 2π/λ is the wave vector and λ

is the wavelength of light. In our case, we have three layers:
1 and 3 are the cavity walls with permittivity ε1 and ε3, and
2 is the intracavity medium that consists of a YIG sphere
with permittivity ε2 = 1 + χ . The total transfer matrix for
the incident and reflected probe light beam for our proposed
model can be written as [43,45,46]

x(kz, ωp) = N1(kz, ωp, d1)N2(kz, ωp, d2)N3(kz, ωp, d3). (28)
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The coefficient of reflection also depends on the intracav-
ity permittivity ε2, which may be successfully regulated by
adjusting χ , as shown by Eq. (28). Following a number
of computations along with mathematical derivations, the
probing field’s TE-polarized reflection coefficient may be ex-
pressed as

Rs = q1s(x11 + x12q3s) − (
q2

3sx22 + x21
)

q1s(x11 + x12q3s) + (
q2

3sx22 + x21
) , (29)

where xi j are the elements of the transfer matrix x(kz, ωp),

q1s =
√

ε1k2 − k2sin2(θi ), and q3s =
√

ε3k2 − k2sin2(θi).
Likewise, by substituting pj p for q js, we can determine the

probe field’s TM-polarized coefficient of reflection as

Rp = p1p(x11 + x12 p3p) − (
p2

3px22 + x21
)

p1p(x11 + x12 p3p) + (
p2

3px22 + x21
) , (30)

where p1p =
√

ε1k2−k2sin2(θi )
ε1

and p3p =
√

ε3k2−k2sin2(θi )
ε2

. The
field amplitudes of two circular parts that comprise the re-
flected light are set up within the reflection system for a
TM-polarized Gaussian beam incident on the interface, as
given by [47]

E±
r (xr, yr, zr )

= ω0

ω
exp

(
− x2

r + y2
r

ω

)

×
(

Rp − 2ixr

kω

∂Rp

∂θ
∓ 2yrcot(θ )

kω
(Rs + Rp)

)
. (31)

Here the radius of the beam ω is defined as ω = ω0[1 +
( 2zr

k1ω
2
0
)2]1/2, where ω0 denotes the radius of the waist of the

incident beam and zr = k1ω
2
0

2 corresponds to the Rayleigh
length. The (xr, yr, zr ) display the arrangement of coordinates
for light that is reflected, accompanied by the superscript ±
denoting the distinct spin configurations. The aforementioned
transverse displacement for light that is reflected may be ar-
ticulated as

δ±
p =

∫
yr |E±

r (xr, yr, zr )|2dxrdyr∫ |E±
r (xr, yr, zr )|2dxrdyr

. (32)

From Eqs. (31) and (32), the corresponding transverse
spin-displacement components δ+

p and δ−
p in terms of the

three-layer cavity-magnon system’s refractive coefficients can
be expressed as [44,48]

δ±
p = ∓

k1ω
2
0Re

(
1 + Rs

Rp

)
cotθi

k2
1ω

2
0 + ∣∣ ∂lnRp

∂θi

∣∣2 + ∣∣(1 + Rs
Rp

)
cotθi

∣∣2 . (33)

The transverse displacement δ±
p corresponds to the shift expe-

rienced by the (left and right) circularly polarized components
of the incoming beam, measured perpendicular to the plane
of incidence. Here the wave vector in the incident medium is
given by k1 = √

ε1k, where ε1 is the relative permittivity. In
the following analysis, we concentrate on the shift associated
with the RCP, δ+

p . Due to the inherent spin symmetry of circu-
lar polarization, the LCP component undergoes an equivalent
shift in magnitude but in the opposite direction. As a result, it

TABLE I. Experimental parameters [14,36].

Parameter Symbol Value

cavity-magnon coupling strength gmc 2π × 2 MHz
magnon-phonon coupling strength Gmb 2π × 0.1 MHz
mechanical frequency ωb 2π × 15 MHz
cavity dissipation rate κa 2π × 2.1 MHz
magnon dissipation rate κm 2π × 0.1 MHz
phonon dissipation rate κb 2π × 150 Hz
temperature T 10 mK
power P 10 mW

suffices to examine a single polarization state to fully capture
the nature of the transverse displacement.

IV. RESULTS

We provide the results of our numerical simulations
in this section. We use the parameters from recent hy-
brid magnomechanical system experiments [14,36] for these
computations, which are also provided in Table I. Specifi-
cally, we use ωb = 2π × 15 MHz, κb = 2π × 150 Hz, κm =
2π × 0.1 MHz, κa = 2π × 2.1 MHz, and the magnon–cavity-
photon coupling gmc = 2π × 2 MHz. To investigate the
PSHE, we consider ε0 = 1, ε1 = 2.22, ε2 = 1 + χ , ε3 =
2.22, d1 = 4 mm, and d2 = 45 mm [30]. The system includes
a YIG sphere with a diameter D = 250 µm, spin density
ρ = 4.22 × 1027 m−3, and gyromagnetic ratio γ = 2π × 28
GHz/T [14,36]. For the chosen parameters, the driving mag-
netic field is set to B0 � 0.5 mT (corresponding to Gmb/2π �
1.5 MHz) to ensure that the system operates within the stable
regime [49].

To examine the results discussed in this paper, we start by
analyzing Fig. 2. Using Eq. (26), we plotted the real part of
the output probe field as a function of the normalized detuning
δ/ωb. In the first scenario, we set the coupling parameter for
the magnon-phonon interaction to zero (Gmb = 0). Under this
condition, the spectrum of the output probe field reveals a
phenomenon known as magnon-induced transparency (MIT).
This effect signifies that light is transmitted through the cav-
ity without any contribution from magnon-phonon coupling.
The appearance of MIT in the spectrum, which reflects the
interference between the probe field and the cavity mode, is
illustrated in Fig. 2(a).

Equation (33) reveals that the transverse displacement δ±
p

is governed by the behavior of the reflection coefficients
corresponding to both TE- and TM-polarized components
of the incident beam. To better understand this dependence,
we begin by analyzing the angular response of the reflection
coefficients as a function of the incident angle of the incoming
beam. Figure 2(b) presents the magnitudes of the reflection
coefficients for the TE polarization (Rs) and the TM polar-
ization (Rp), demonstrating their dependence on the angle of
incidence. This analysis provides a foundation for understand-
ing the role of polarization in influencing the transverse shift.

For the TE-polarized wave (Rs), represented by the purple
solid curve, the reflection coefficient shows a strong depen-
dence on the angle of incidence as shown in Fig. 2(b). At small
angles, the reflection coefficient is relatively low, indicating
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(deg)(deg)

(deg)

FIG. 2. (a) Absorption profile of the transmitted probe field, represented by Re(ET ) [with ET defined in Eq. (26)], plotted versus the
normalized probe detuning δ/ωb in the absence of magnon-phonon coupling, i.e., Gmb = 0 (brown dashed curve). The parameters are
mechanical frequency ωb = 2π × 15 MHz, mechanical damping κb = 2π × 150 Hz, magnon decay rate κm = 2π × 0.1 MHz, cavity decay
rate κa = 2π × 2.1 MHz, and magnon-photon coupling strength gmc = 2π × 2 MHz. (b) Fresnel reflection coefficients |Rs| and |Rp| depicted
as a function of the angle of incidence θi for TE and TM polarization, respectively. (c) Ratio |Rs|/|Rp| as a function of θi, revealing its
enhancement near the Brewster angle. (d) The PSHE, quantified by the normalized transverse shift δ+

p /λ [given by Eq. (33)], plotted against
the angle of incidence θi. The shift changes sign near the Brewster angle where the reflection coefficient ratio |Rs|/|Rp| attains its peak value. In
(b)–(d) the detuning is fixed at δ/ωb = 0. The remaining parameters are wavelength λ = 38.2 mm, permittivities ε0 = 1 and ε1 = ε3 = 2.22,
layer thicknesses d1 = 4 mm and d2 = 45 mm, and beam waist ω0 = 50λ.

increased transmission and reduced reflection. As the angle
increases, Rs initially decreases and reaches a minimum value
near 33◦. This behavior can be explained by the fact that
at smaller angles, the electric field of the TE wave is more
parallel to the interface, resulting in weaker interactions with
the surface and consequently lower reflection.

After reaching this minimum, Rs increases rapidly and
reaches a peak near the Brewster angle, approximately 56.7◦.
This rise occurs because, with increasing angle, the electric
field becomes more perpendicular to the interface, enhancing
its interaction with the surface and leading to stronger reflec-
tion. Beyond this peak, Rs decreases again, reaching another
minimum around 67◦, which can be attributed to the onset
of destructive interference effects and the angular dependence
of the reflection coefficient, which causes the reflected ampli-
tude to decrease due to phase mismatch between the incident
and reflected waves. At higher angles, approaching 90◦, Rs

increases once more, tending to a value close to 1, indicating
near-total reflection. This is because at high angles the inci-
dent wave is nearly perpendicular to the surface, resulting in
maximum interaction and reflection [see Fig. 2(b)].

For a TM-polarized wave (Rp), depicted by the brown
dashed curve, the reflection coefficient also depends on the
angle of incidence as shown in Fig. 2(b). Notably, at nor-
mal incidence (θ = 0◦), the reflection coefficients for both

polarizations are equal, indicating that the initial reflection be-
havior is identical for both TE and TM waves. As the incident
angle increases, Rp decreases, reaching a minimum around
33◦, similar to the TE-polarized waves. This decrease arises
due to the redistribution of the electromagnetic field at oblique
incidence; specifically, the magnetic-field component of the
TM wave becomes more aligned with the interface, reducing
its effective interaction with the boundary. Consequently, less
energy is reflected and the reflection coefficient decreases.

As the angle of incidence continues to rise, Rp exhibits a
modest increase before undergoing a rapid decline, ultimately
vanishing at the Brewster angle (θB ≈ 56.7◦). This minimum
indicates complete transmission with no reflection, a charac-
teristic feature of TM-polarized light at the Brewster angle,
where the reflected and refracted rays become orthogonal, re-
sulting in the cancellation of the reflected component. Beyond
this point, Rp increases again, peaking around 60◦, but the
increase is less pronounced compared to Rs. After this peak,
Rp decreases again, reaching a minimum near 67◦, similar to
the behavior of Rs. At higher incident angles, Rp increases
once more, but the increase is less steep than that of Rs, and
the reflection remains lower than that of TE-polarized waves
[see Fig. 2(b)].

As illustrated in Fig. 2(b), the reflection coefficients for
both TE and TM polarizations exhibit a dependence on the
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angle of incidence. This dependence is critical in determin-
ing the ratio |Rs/Rp|, which in turn governs the transverse
shift. Equation (33) indicates that the normalized transverse
displacement δ+

p /λ is modulated by the ratio between the
reflection coefficients of the TE- and TM-polarized compo-
nents, represented by Rs and Rp, respectively, for a given
angle of incidence. Notably, when the magnitude of this ratio
exceeds unity, an enhanced transverse shift is observed. To
elucidate this dependence, the angular variation of the ra-
tio |Rs/Rp| is examined, with the detuning parameter fixed
at δ/ωb = 0, as illustrated in Fig. 2(c). This condition cor-
responds to the transparency regime, where the maximum
contrast in reflection behavior between the two polarization
modes is expected. The ratio reaches its maximum value at
δ/ωb = 0, which corresponds to the transparency window.
Further, the ratio increases sharply near the Brewster angle
(θB ≈ 56.7◦), due to the contrasting ways in which TE- and
TM-polarized light interact with the interface at this specific
angle. At the Brewster angle, the TM-polarized reflection
coefficient Rp vanishes, as depicted by the brown dashed
curve in Fig. 2(b). This develops because, at this particular
angle, the reflected TM wave is negated owing to destruc-
tive interference generated by boundary conditions at the
contact. The TE-polarized reflection coefficient Rs does not
reach zero at the Brewster angle; instead, it remains nonzero.
This disparity ensures that Rs dominates the ratio near the
Brewster angle, further amplifying |Rs/Rp|. Thus, near the
Brewster angle, the interaction of light with the interface
creates conditions in which TM-polarized light refracts fully
into the second medium, leaving no reflection. However, the
TE-polarized light does not follow this behavior and contin-
ues to reflect. As a result, the contrast between Rs and Rp

becomes pronounced, significantly enhancing their ratio. In
order to accurately characterize the dynamics near this pivotal
angle, the analysis focuses on a narrow range of incident
angles θi.

To elucidate the characteristics of the transverse displace-
ment induced by the PSHE, we next concentrate our analysis
on the normalized shift δ+

p /λ, which pertains to the RCP
component of the reflected beam. In Fig. 2(d) the PSHE δ+

p /λ

is analyzed versus incident angle θi at δ/ωb = 0. To ensure
clarity and allow for direct comparison, all parameters are
kept constant, highlighting the enhancement of the PSHE at
δ/ωb = 0. The transverse PSHE is observed to be positive
for incident angles θi < 56.7◦ and becomes negative for θi >

56.7◦. The interference effects that contribute to the transverse
shift are controlled by the π shift in phase associated with the
Fresnel coefficients Rs along with Rp, which causes this sign
reversal.

The enhancement of the PSHE at resonance, specifically at
δ/ωb = 0, is primarily driven by two factors. First, at this fre-
quency, magnon-induced transparency significantly reduces
absorption, thereby allowing for stronger light-matter interac-
tions that reinforce the spin-dependent splitting. The reduction
in absorption minimizes the loss of coherence between the
spin components, enabling a more pronounced spin-orbit
coupling effect. Second, the phase difference between the
TE- and TM-polarized reflection coefficients becomes more
pronounced near the Brewster angle, leading to enhanced

constructive interference, which amplifies the transverse spa-
tial shift of the polarization components. Together, these
effects result in a significant enhancement of the PSHE at
resonance, where the system’s transparency and the phase
relationship between the polarizations optimize the spin Hall
shift.

As we proceed with our study, we introduce the magnon-
phonon coupling with a strength of Gmb = 0.1 × 2π MHz,
as shown in Fig. 3(a). Upon examining the output probe
field spectrum, we observe the emergence of an additional
narrow peak within the transparency window at δ/ωb = 0,
represented by the brown dashed curve in Fig. 3(a). This
results in the splitting of the single transparency window into
two distinct windows, revealing a new aspect of the system’s
behavior and emphasizing the interaction between magnons
and phonons within the cavity [50–52].

Figure 3(b) illustrates the PSHE shift δ+
p /λ as a function

of the incidence angle θi at the resonant probe field detun-
ing δ/ωb = 0, with a fixed incident angle of θi = 56.7◦. A
noticeable reduction in the amplitude of the PSHE peaks is ob-
served, which corresponds to the absorption peak at resonance
shown in Fig. 3(a). This reduction is primarily attributed to en-
hanced absorption at resonance, induced by magnon-phonon
coupling. As the coupling strength increases, additional ab-
sorption channels emerge, modifying the system’s spectral
response, particularly narrowing the transparency window.
This redistribution of optical energy among different modes
limits the spectral range available for interaction with the in-
cident light, thereby weakening the spin-dependent splitting.
Consequently, the system’s ability to maintain coherence and
phase integrity of spin-dependent light components dimin-
ishes, leading to a suppressed PSHE.

Figure 3(c) presents the PSHE shift δ+
p /λ under the same

conditions but at an off-resonant probe field detuning of
δ/ωb = ±0.0067. Here an enhancement in the amplitude of
the PSHE peaks is observed, corresponding to the trans-
parency window at this detuning, as shown in Fig. 3(a).
This increase results from the magnon-phonon coupling shift-
ing the transparency window to an off-resonant detuning.
In this regime, the redistribution of optical energy broadens
the spectral range over which the system effectively inter-
acts with incident light, enhancing the PSHE. The increased
transparency at off-resonant detuning improves the system’s
ability to preserve coherence and phase relationships of spin-
dependent components, thereby strengthening the observed
PSHE amplitude.

Next we investigate the combined effect of probe field
detuning δ/ωb and incident angle θi on the PSHE shift. In
Fig. 4(a) we display the PSHE shift δ+

p as a function of both
the incident angle θi and probe field detuning δ/ωb, assum-
ing no magnon-phonon coupling (Gmb/2π = 0). A maximum
PSHE of 24λ is observed at �p = 0. In Fig. 4(b) we present a
density plot of the PSHE when the magnon-phonon coupling
strength is nonzero (Gmb/2π = 0.1 MHz). With the coupling
turned on, the PSHE increases at two distinct probe field de-
tuning values, as shown in Fig. 4(b). This is due to the splitting
of the single magnon-induced transparency into two symmet-
ric transparency windows at equal and opposite detunings of
the probe field δ/ωb. Furthermore, the π shift in phase through
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 (deg)  (deg)

FIG. 3. (a) Absorption characteristics of the output probe field, represented by the real part of Re(ET ) [where ET is given in Eq. (26)], as a
function of the probe field detuning δ/ωb when the magnon-phonon coupling is active with Gmb = 2π × 0.1 MHz. The system parameters are
set as follows: ωb = 2π × 15 MHz, κb = 2π × 150 Hz, κm = 2π × 0.1 MHz, κa = 2π × 2.1 MHz, and the magnon–cavity-photon coupling
strength gmc = 2π × 2 MHz. The PSHE, represented by the normalized transverse shift δ+

p /λ for RCP components [as given in Eq. (33)], is
plotted against the angle of incident θi for (b) resonant detuning δ/ωb = 0 and (c) off-resonant detuning δ/ωb = ±0.0067. The other parameters
are λ = 38.2 mm, ε0 = 1, ε1 = 2.22, ε2 = 1 + χ , ε3 = 2.22, d1 = 4 mm, d2 = 45 mm, and beam waist ω0 = 50λ.

the phases of the Fresnel coefficients Rs along with Rp is also
responsible for the transverse PSHE’s sign change, becoming
positive for θi < 56.7◦ and negative when θi > 56.7◦.

The observed behavior can be explained by the inter-
play between the magnon-phonon coupling and the system’s
resonance properties. When the magnon-phonon coupling is

(a) (b) 

/ b/ b

p/
+

p/
+

i (deg)i (deg)

FIG. 4. Density plot of the PSHE δ+
p /λ [transverse shift for RCP components given in Eq. (33)] against detuning of the probe field

δ/ωb along with incident angle θi when (a) magnon-phonon coupling is off, i.e., Gmb = 0, and (b) magnon-phonon coupling is on,
i.e., Gmb = 0.1 × 2π MHz. The other parameters are ωb = 2π × 15 MHz, κb = 2π × 150 Hz, κm = 2π × 0.1 MHz, κa = 2π × 2.1 MHz,
magnon–cavity-photon coupling gmc = 2π × 2 MHz, λ = 38.2 mm, ε0 = 1, ε1 = 2.22, ε2 = 1 + χ , ε3 = 2.22, d1 = 4 mm, d2 = 45 mm, and
beam waist ω0 = 50λ.
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FIG. 5. (a) Density plot of the transverse shift δ+
p /λ [transverse shift for RCP components given in Eq. (33)] versus incident angle

θi and magnon-phonon coupling Gmb by considering δ/ωb = 0. (b) Density plot of the transverse shift δ+
p /λ [transverse shift for RCP

components given in Eq. (33)] versus detuning δ/ωb and magnon-phonon coupling Gmb by considering θi = 56.7◦. The other parameters
are ωb = 2π × 15 MHz, λ = 38.2 mm, κb = 2π × 150 Hz, κm = 2π × 0.1 MHz, κa = 2π × 2.1 MHz, magnon–cavity-photon coupling
gmc = 2π × 2 MHz, ε0 = 1, ε1 = 2.22, ε2 = 1 + χ , ε3 = 2.22, d1 = 4 mm, d2 = 45 mm, and beam waist ω0 = 50λ.

turned on, it splits the single MIT into two symmetric MIT
windows at equal and opposite detunings of the probe field.
This splitting is due to the interaction between magnons and
phonons within the cavity, which introduces additional ab-
sorption channels and modifies the spectral response of the
system. As a result, the PSHE is enhanced at these two detun-
ing values, reflecting the new transparency windows where
light experiences minimal absorption and maximized interac-
tion with the system. The change in the sign of the transverse
PSHE around the Brewster angle (θi = 56.7◦) results from the
phase difference that exists among Fresnel reflection coeffi-
cients Rs (TE polarized) and Rp (TM polarized). This phase
shift alters the nature of the interaction between the incident
light and the surface, leading to a positive PSHE for angles
smaller than the Brewster angle and a negative PSHE for
angles larger than it.

To better understand the effect of the quantum parameter,
namely, the magnon-phonon coupling strength Gmb, we ana-
lyze its influence in conjunction with the incident angle θi on
the PSHE shift at resonance detuning δ/ωb = 0, as depicted
in Fig. 5(a). Initially, when the magnon-phonon coupling is
weak, the PSHE is maximized at resonance near the Brewster
angle due to minimal absorption. However, as the magnon-
phonon coupling strength increases, the PSHE shifts away
from the Brewster angle owing to increased absorption at
resonance.

Figure 5(b) presents a density graph of the PSHE versus
detuning of probe field δ/ωb and Gmb/2π , with θi = 56.7◦
remaining constant. In the absence of magnon-phonon cou-
pling, the PSHE exhibits a peak at resonance due to strong
spin-orbit interactions of light, where different (left and right)
circular polarization components experience distinct spatial
shifts. These shifts arise from the inherent coupling between
the polarization state and the Berry phase effects. However, as
the coupling strength Gmb increases, absorption at resonance
becomes more significant, leading to a suppression of the
PSHE.

Despite this suppression, two symmetric MIT windows
emerge, where absorption is minimized, allowing for an en-
hancement of the PSHE. As shown in Fig. 5(b), the PSHE is
significantly enhanced at two distinct detuning points where
light transmission is maximized.

This observed behavior stems from the intricate interplay
between magnon-phonon coupling and the system’s reso-
nance properties. Initially, weak coupling enhances the PSHE
near the Brewster angle due to minimal absorption, preserving
the coherence of the spin-orbit interaction. However, stronger
coupling introduces additional absorption channels, suppress-
ing the PSHE and shifting it away from the Brewster angle.
This coupling also modifies the spectral response, splitting
the transparency window into two symmetric MIT regions
where the polarization-dependent phase shift is restored. Con-
sequently, the PSHE is maximized at detunings corresponding
to these MIT windows, where light-matter interactions are
optimized, and the spin-dependent splitting is reinforced.

V. DISCUSSION

From the above analysis, we establish a direct connection
between MIT and the PSHE, leading to an enhanced, tunable,
and split displacement effect that sets our work apart from
previous research. While the physics of the medium appears
to enter the PSHE through a single complex parameter, the
permittivity ε2 = 1 + χ , this effective susceptibility χ is not
fixed. Instead, it is actively modulated by magnon-phonon
coupling Gmb and external magnetic fields, enabling dynamic
control over the PSHE within our model. This tunability sur-
passes the capabilities of conventional optical systems, as the
system’s dispersion properties can be precisely manipulated
by adjusting parameters such as Gmb and external magnetic
fields. These modifications allow for controlled, real-time
adjustments of spin-dependent beam displacements, offering
new degrees of freedom to manipulate spin-orbit effects in
photonic systems.

053716-9



ABBAS, DIN, HAMEDI, AND ZHANG PHYSICAL REVIEW A 111, 053716 (2025)

Unlike previous studies of the PSHE in atomic systems,
which typically rely on cavity QED techniques [33–35], our
approach utilizes the transfer-matrix method. This method is
more suitable for magnomechanical systems, where experi-
mental configurations differ from those in traditional cavity
QED setups. The ability to dynamically tune the PSHE
without relying on optical pumping or high-power lasers, a
common limitation in atomic platforms, makes this approach
particularly advantageous for on-chip photonic devices requir-
ing reconfigurability. This reconfigurability, combined with
the introduction of new physical degrees of freedom, opens
new pathways for tunable photonic devices and quantum in-
formation processing.

The phenomenon of MIT has been discussed in more detail
in the literature [50–52]. Our work does not treat MIT as
a mere phenomenon but as a mechanism for actively con-
trolling the PSHE, a connection that has not been explored
previously. By demonstrating how MIT splitting influences
spin-dependent beam displacements, we establish a direct link
between magnomechanics and spin-orbit photonics, enabling
functionalities like magnetic-field-driven PSHE sign reversal
and dual amplification windows. The mechanical mode (ωb =
2π × 15 MHz) introduces a low-frequency mechanical degree
of freedom, which is absent in atomic systems. Mechanical
vibrations can dynamically shift the MIT window, enabling
strain- or temperature-tunable spin Hall shifts, capabilities
that are unattainable in atomic media.

This platform also offers a theoretical framework for the
development of hybrid quantum technologies. By integrating
the PSHE with a tunable magnomechanical system, we open
up new possibilities for strain-mediated spin-orbit devices
and magnetic-field-reconfigurable photonics. For instance,
mechanical vibrations at ωb = 2π × 15 MHz could modu-
late PSHE shifts via strain coupling, enabling phonon-driven
photonic circuits. Additionally, adjusting Gmb via B0 allows
for dynamic control of spin-dependent beam displacements,
which could be used for on-chip signal routing. These con-
cepts are uniquely feasible in solid-state systems like ours,

which are compatible with cryogenic operation. The low de-
cay rate of the mechanical mode (κb = 2π × 150 Hz) ensures
stable PSHE operation even at 10 mK, aligning with the noise
resilience requirements of future quantum hardware.

While experimental validation is still needed, our results
lay the groundwork for advancing spin-orbit photonics in
hybrid quantum platforms, offering new avenues for tunable
photonic devices and quantum information processing.

VI. CONCLUSION

In conclusion, the PSHE in a hybrid CMM system ex-
hibits unique features that are strongly influenced by the
system’s spectrum characteristics and the coupling between
the magnon and phonon. In the absence of coupling, the PSHE
is significantly enhanced at resonance due to MIT, which
reduces absorption and allows for stronger spin-orbit inter-
actions. However, the inclusion of magnon-phonon coupling
opens additional absorption channels, resulting in modified
spectral responses and splitting the transparency window into
two separate regions. The increased absorption suppresses the
PSHE at resonance but enhances it at off-resonant detuning,
indicating a change in the system’s interaction with the probe
light. These findings highlight the intricate dynamics between
light-matter interactions, spin-orbit coupling, and the system’s
structural features, suggesting promising opportunities for
quantum sensing and communication technologies.
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