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Spatial characterization of Fraunhofer diffraction in a four-level light-matter-coupling system
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We explore the spatial features of various orders of Fraunhofer diffraction patterns in a four-level N-type
atomic system. The system interacts with a weak probe light, a standing wave (SW) coupling field in the x
direction, and a cylindrical beam of composite optical vortex type. We derive the first-order linear and third-order
cross-Kerr nonlinear parts of the probe susceptibility by expanding the probe susceptibility of the system into the
second order of the SW beam. This allows us to solve the integral equation of Fraunhofer diffraction, decoding
its varying degrees to specific degrees of Bessel functions containing the nonlinear susceptibility. Notably, the
nonlinear susceptibility exhibits dependence on the orbital angular momentum (OAM) of the light beam, leading
to spatial variations in the Bessel functions, and consequently, in the different orders of Fraunhofer diffraction.
Leveraging the manipulation of OAM, we achieve precise control over the spatial mapping of diverse diffraction
orders at various locations. Our research sheds light on the spatial behavior of Fraunhofer diffraction in complex
atomic systems. It presents exciting prospects for harnessing the OAM characteristics of light in future optical
technologies.
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I. INTRODUCTION

Electromagnetically induced grating (EIG) is a fascinat-
ing phenomenon that occurs in atomic systems under the
influence of laser fields. The concept of EIG [1–3] comes
to the forefront when the conventional traveling wave (TW)
coupling field, commonly observed in electromagnetically in-
duced transparency (EIT) systems [4–7], is substituted with
a standing-wave (SW) coupling beam. Upon introducing the
SW control field, an intriguing spatial periodicity emerges in
the absorption and dispersion characteristics of the TW probe
beam, leading to the deflection of the probe field into high-
order directions. These unique EIG properties have significant
implications for various applications in the field of optics and
open up new perspectives on the interplay between light and
matter and pave the way for the creation of optical systems
and devices of the utmost quality. They find use in optical
switching [8,9], storage of light [10], all-optical beam splitting
and fanning [11], as well as novel implementations in electro-
magnetically induced Talbot effect [12], optical bistabilities
[13], topological insulators [14], and soliton physics [15,16],
to name a few.

Current studies on the EIG have surpassed the traditional
� configuration and expanded to encompass interactions of
many-level schemes with multiple beams, such as �-type [17]
and Y -type excitations [18], tripod systems [19], and other
four-level arrangements [20]. Furthermore, EIG effects have
been successfully extended to various media, moving beyond
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the initial observations in hot and ultracold atoms. Notably,
researchers have explored EIG in quantum dot molecules
[21–23], showcasing its applicability in more complex sys-
tems. Additionally, we recently described EIG in the vicinity
of a plasmonic nanostructure in our works [24,25], highlight-
ing its potential in novel applications involving plasmonics.

As emphasized in [26], the interaction of the EIG systems
with optical vortex beams, i.e., light beams carrying orbital
angular momentum (OAM) [27–29], is especially beneficial
in terms of providing new degrees of freedom for manipu-
lating the performance of the optical grating. In particular, it
has been shown that by varying the winding number of the
vortex beam, one can achieve direct control of the transfer
of the probe beam energy from the zero- to high-diffraction
orders [26].

The interaction of Laguerre-Gaussian (LG) beams with
atomic systems represents a well-established and thriving
direction in optical physics, leading to an increasing num-
ber of significant applications [30–33]. These applications
span across diverse fields, including interdisciplinary studies
[34,35], further amplifying the impact of this research area.

Remarkably, recent advancements in experimental tech-
niques have enabled the realization of optical vortex fields
in various forms and complexities. Researchers can now en-
gineer these fields with specific OAM, polarization, and in
different geometrical arrangements.

Of particular interest to our research is the interaction
of EIGs with composite optical vortices, which result from
the interference of two or more vortex beams [36]. Under
certain conditions for the OAMs, intriguing “petals”-like peri-
odic intensity structures can be observed [37,38]. The ability
to control the diffraction intensity distribution of the probe
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field to different locations in a two-dimensional (2D) EIG
by manipulating the OAM of the composite vortex beam was
demonstrated in [39]. This showcases the potential of tailored
optical vortices in directing and shaping EIGs for desired ap-
plications. Similarly, analogous effects were observed in a 2D
EIG system utilizing a tripod configuration of atomic levels
[40]. These results highlight the adaptability and importance
of investigating composite optical vortices in EIG studies,
where the exact regulation of light-matter interactions holds
promise for a variety of prospective applications.

EIGs also play a significant role in the generation of
holographic gratings and optical modes. In a recent study
by Arkhipkin et al. [41], the Fresnel diffraction of optical
vortex light within a Raman interaction atomic medium with
a spatially periodic pump field was investigated. Under spe-
cific conditions and at distances corresponding to classical
Talbot planes, the study revealed the emergence of periodic
amplitude-phase distributions. Another investigation [42] fo-
cused on the near-field diffraction of optical vortex light on
a fork-shaped grating with different topological charges. This
study explored the evolution of specific optical vortices during
propagation.

Among other novel applications of composite Laguerre-
Gaussian beams are bright or dark ring lattices for trapping
atoms [43,44], including the creation of artificial gauge
magnetic and electric fields [45], as well as more exotic phe-
nomena, such as applications as wave-front sensors [46], or
the so-called azimuths [47,48], which represent a special class
of spatially localized self-trapped ringlike beams.

In this current study, we expand upon our previous re-
search [39], focusing on investigating the spatially dependent
diffraction efficiencies of an N-type four-level EIG scheme
interacting with composite vortex light. For this purpose, we
employ two spatially dependent coupling fields, a SW in the
x direction, and a composite vortex beam, both simultane-
ously interacting with the atomic energy levels. Expanding the
steady-state probe susceptibility to the second order with re-
spect to the SW beam allows us to uncover the contributions of
its first-order linear effect and third-order cross-Kerr nonlinear
effect. To analyze the resulting diffraction pattern, by em-
ploying analytical methods, we solve the integral equation of
Fraunhofer diffraction. This solution reveals a dependence on
Bessel functions that incorporate the nonlinear susceptibility.
As the nonlinear susceptibility is contingent on the topological
charge of the composite beam, it introduces spatial variations
in the Bessel functions, and hence, subsequently, on different
orders of Fraunhofer diffraction.

In our numerical calculations, we first consider the cases of
a simple vortex field, as well as a composite vortex with differ-
ent winding numbers, subsequently we focus on the situation
when a composite vortex beam with the same OAM numbers
is applied with two specific cases for the detunings of the three
laser fields interacting with the atomic transitions. Through
these calculations, we demonstrate that the intensity pattern
of the probe field diffraction exhibits spatial distribution at
different locations, which can be effectively controlled by
simply adjusting the OAM values of the composite vortex
field. For zero values of the winding number, the diffraction
of the zeroth, first, and second orders display distinct ring
patterns with varying intensities, arising from destructive and

FIG. 1. (a) Excitation scheme of atomic ensemble in EIG.
(b) Proposed four-level N-type excitation scheme, with two ground
states denoted as |1〉 and |2〉, along with two excited states repre-
sented by |3〉 and |4〉. These energy levels interact with three lasers:
a weak TW probe field with Rabi frequency �p, a strong SW field
with Rabi frequency �c(x), and a Laguerre-Gaussian beam with Rabi
frequency denoted as �LG(r, ϕ).

constructive interference. When the OAM is nonzero, these
ring shapes transform into intriguing petal-like structures, di-
minishing in size as the diffraction order grows. In addition,
we study the behavior of the different orders of Fraunhofer
diffraction patterns versus the atomic interaction length for
different OAM numbers, showing how the energy of the probe
field is distributed.

The simplicity and effectiveness of this proposed scheme
for controlling diffraction intensity make it particularly ap-
pealing for future experimental realizations and applications.
It offers a mechanism to customise and manipulate light-
matter interactions to suit particular applications in optical
technologies, which has significant potential for creating pho-
tonic components and systems that take advantage of the
OAM of light.

The paper is organized along the following lines. After
an Introduction, in Sec. II we develop the groundwork of
our theoretical model for the planned numerical calculations.
Employing Maxwell’s equation in the slowly varying enve-
lope approximation in the steady-state regime, as well as the
Fraunhofer diffraction equation, in Sec. III we proceed to
derive the analytical expressions for the spatial diffraction
intensities of the zero, first, and second orders. Section IV is
devoted to the analysis of the obtained numerical results of the
spatial diffraction intensities, including a variation of different
system parameters, such as laser beam detunings and field
strengths, atomic interaction length, as well as OAM num-
bers of the same or different values of the composite vortex
beam. In Sec. V we recap the main results, in parallel giving
directions for future experimental realizations and feasible
applications of our studies.

II. MODEL AND THEORY

The system of interest consists of in a four-level N-type
atomic configuration with two ground states |1〉, |2〉 and two
excited states |3〉, |4〉 as shown in Fig. 1. The atomic levels
in our system are coupled by three laser fields. The first
laser is a weak light with a Rabi frequency of �p, which
specifically probes the |1〉 → |3〉 transition. The transition
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|2〉 → |4〉 is derived with a coupling field with Rabi frequency
of �c. Finally, a third laser beam, denoted as �LG inter-
acts with the |2〉 → |3〉 transition. The Rabi-frequencies of
probe and coupling fields are defined as �p = �μ13 · �Ep/2h̄,
�c = �μ24 · �Ec/2h̄, and �LG = �μ23 · �ELG/2h̄, with �μi j being
the electric-dipole transition matrix element of |i〉 → | j〉.

We adopt the interaction picture, employing the elec-
tric dipole and rotating wave approximations. Under these
assumptions, the total Hamiltonian of the system can be ex-
pressed as follows:

Hint = − h̄(�p − �LG)|2〉〈2| − h̄�p|3〉〈3|
− h̄(�p − �LG + �c)|4〉〈4|
− h̄(�p|3〉〈1| + �LG|3〉〈2| + �c|4〉〈2| + H.c.). (1)

In the above, we define the laser detunings as �p = ωp − ω31,
�c = ωc − ω42, and �LG = ωLG − ω32, where ωp, ωc, ωLG

are the laser beams’ frequencies, and ωi j, (i, j = 1..4) are the
resonant frequencies of the corresponding atomic transitions
|i〉 → | j〉.

The wave function of the system is decomposed into
the basis set of atomic levels; {|1〉, |2〉, |3〉, |4〉}, i.e., �(t ) =∑

i=1,4 ai(t )e−iωit |i〉, involving the time-dependent coeffi-
cients ai(t ), as well as the atomic levels energies h̄ωi, (i =
1, . . . , 4). The dynamics of the system are described by the
equations of motion for the probability amplitudes of all
atomic states

da1

dt
= i�pa3,

da2

dt
= i[(�p − �LG)a2 + �LGa3 + �ca4] − γ2a2,

da3

dt
= i(�pa1 + �LGa2 + �pa3) − 
3

2
a3,

da4

dt
= i[�ca2 + (�p − �LG + �c)a4] − 
4

2
a4. (2)

The parameters 
3, 
4, and γ2 indicate the decay rates
from the upper levels |3〉, and |4〉, as well as the ground
state decoherence, respectively. In what follows, we will as-
sume 
3 = 
4 = γ and express all other parameters in units
of γ .

Under the weak probe-field approximation, specifically
when |a1|2 ≈ 1, the susceptibility of the probe field can be
derived by solving Eqs. (2) under the steady-state condition
as follows:

χp = Nμ2
13

2ε0h̄
χ (ωp). (3)

We use the definition of the polarization of the medium
�Pp = N �μ13a3a∗

1 where N shows the atomic density, and ε0

is the dielectric constant in a vacuum. The form of χ (ωp) is
given by

χ (ωp) = A2A4 − �2
c

A4
(
A2A3 − �2

LG

) − A3�2
c

, (4)

where, for the sake of simplicity, we introduce the following
notations:

A2 = �p − �LG + iγ2; A3 = �p + i

3

2
;

A4 = �p − �LG + �c + i

4

2
. (5)

To analyze the nonlinear modulation induced by the control
field with SW pattern, we expand χ (ωp) into the second order
of �c as

χ (ωp) = χ (1)(ωp) + �2
cχ

(3)(ωp). (6)

The first- and third-order Kerr nonlinear parts of the probe
susceptibility are then given by

χ (1)(ωp) = − A3

A2A3 − �2
LG(r, ϕ)

, (7)

χ (3)(ωp) = − �2
LG(r, ϕ)

A4

∣∣A2A3 − �2
LG(r, ϕ)

∣∣2 . (8)

Control fields that have SW patterns, in turn, cause spatial
modulation of the probe beam absorption and refraction. As
a consequence of the intensity-dependent susceptibility, the
atomic system acts as a grating, diffracting the probe beam in
different directions.

For the purposes of observing these effects, we will then
utilize a coupling field �c = �c0[sin(πx/�x )], which consti-
tutes a SW with a space frequency �x along the x direction.
Moreover, we replace the �LG field with a composite vortex
beam, i.e., a superposition of two vortices

�LG = �e−r2/w2
[(r/w)|l1|eil1ϕ + (r/w)|l2|eil2ϕ], (9)

where w is the beam waist and its value is in order of μm, the
radial distance from the axis of the LG beam is represented by
r =

√
x2

1 + y2
1 , with l1, l2 providing the winding numbers, and

ϕ is the azimuthal angle. We can simplify the expressions by
assuming l1 = −l2 = l:

�LG = �lg cos(lϕ); �lg = 2�e−r2/w2
(r/w)|l|. (10)

III. FRAUNHOFER DIFFRACTION PATTERN

By employing Maxwell’s equations in the slowly vary-
ing envelope approximation and considering the steady-state
regime, we can derive the diffraction pattern of the probe
beam as follows:

∂Ep

∂z
= i

π

ε0λp
Pp, Pp = ε0χ (ωp)Ep, (11)

with λp denoting the probe light wavelength. The above can
be rewritten as

∂Ep

∂z′ = iγχ (ωp)Ep, (12)

where we introduced the definition z′ = (πNμ2
13)/(h̄ε0λpγ )z.

In what follows we will work with a dimensionless z′, by treat-
ing ξ = (h̄ε0λpγ )/(πNμ2

13) as the unit for z. The parameter
ξ can be controlled by the atomic density of the medium, and
its order is about μm.

The transmission function of the grating is determined by

T (x) = e−Im[χ (ωp)]LeiRe[χ (ωp)]L, (13)
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where L is the interaction length. The first and second expo-
nential terms correspond to the grating amplitude and phase
modulation, respectively. After performing the Fourier trans-
forming of Eq. (13), we arrive at the expression for Fraunhofer
diffraction

Ip(θx ) = |E (θx )|2 sin2(Mπ�x sin θx/λp)

M2 sin2(π�x sin θx/λp)
, (14)

where

E (θx ) =
∫ 1

0
T (x) exp(−i2πx�x sin θx/λp)dx. (15)

The mth-order diffraction angle θx with respect to the z direc-
tion is calculated from sin θx = mλp/�x.

We are interested in investigating the Fraunhofer diffrac-
tion orders by analytically solving Eq. (15). For this purpose,
we need to solve Eq. (13) first. By inserting Eq. (6) in Eq. (13)
the transmission function of the 2D grating is given by

T (x) = e−Im[χ (1) (ωp)+�2
cχ

(3) (ωp)]LeiRe[χ (1) (ωp)+�2
cχ

(3) (ωp)]L. (16)

It should be reminded that �2
c (x) = �2

c0 sin2(πx/�x ).
By presenting χ (3)(ωp) in the form of χ (3)(ωp) = A +
iB; Re[χ (3)(ωp)] = A; Im[χ (3)(ωp)] = B, and using a new no-
tation k = exp({−Im[χ (1)(ωp)] + iRe[χ (1)(ωp)]}L), we get a
new expression of Eq. (15):

E (θx ) = k
∫ 1

0
exp

[
iLχ (3)(ωp)�2

c0 sin2(πx/�x )
]

× exp(−i2πx�x sin θx/λp)dx. (17)

By setting M = Lχ (3)(ωp)�2
c0 in Eq. (17) we obtain

E (θx ) = k exp

(
iM

2

) ∫ 1

0
exp

(
− i

M

2
cos(2πx/�x )

)

× exp(−i2πx�x sin θx/λp)dx. (18)

To further simplify the above expression we introduce φ =
2πx
�x

and n = �x sin �x/λp and arrive at

E (θx ) = k exp

(
iM

2

)∫ 2π

0
exp

(
− i

M

2
cos φ

)

× exp(−inφ)

(
�x

2π

)
dφ. (19)

Next, we define M ′ = −M/2 and P = k exp( iM
2 )( �x

2π
), and we

use the following integral:∫ 2π

0
exp[−i(nφ − M ′ cos φ)]dφ

=
∫ 2π

0
[cos(nφ − M ′ cos φ) − i sin(nφ − M ′ cos φ)]dφ.

(20)

Since the first term of Eq. (20) gives zero, Eq. (19) attains a
simplified form

E (θx ) = −iP
∫ 2π

0
sin(nφ − M ′ cos φ)dφ = iP2πJn(M ′),

(21)

where Jn(M ′) represents a Bessel function of the nth order.
Plugging the definitions of P, M ′, and further k, M into
Eq. (21), renders the final expression for E (θx ):

E (θx ) = − i�x exp

{
iL

[
χ (1)(ωp) + 1

2
χ (3)(ωp)�2

c0

]}

× Jn

(
−Lχ (3)(ωp)�2

c0

2

)
. (22)

We can now proceed to obtain the n-order diffraction intensity
by combining Eqs. (15) and (22)

I (θ (n)
x ) =

∣∣∣∣�Jn

(
−Lχ (3)(ωp)�2

c0

2

)∣∣∣∣
2

. (23)

Here � stands for the following expression:

� = −i�x exp
{
iL

[
χ (1)(ωp) + 1

2χ (3)(ωp)�2
c0

]}
. (24)

In the following discussion, we mainly concentrate on the
spatial diffraction intensities of the zero, first, and second
orders as follows:

I (θ (0)
x ) =

∣∣∣∣�J0

(
−Lχ (3)(ωp)�2

c0

2

)∣∣∣∣
2

,

I (θ (1)
x ) =

∣∣∣∣�J1

(
−Lχ (3)(ωp)�2

c0

2

)∣∣∣∣
2

,

I (θ (2)
x ) =

∣∣∣∣�J2

(
−Lχ (3)(ωp)�2

c0

2

)∣∣∣∣
2

. (25)

It is clear from expressions in Eq. (25) that the different
orders of the Fraunhofer diffraction are directly related to the
identical orders of the Bessel function.

IV. RESULTS AND DISCUSSIONS

In this section, we will discuss the spatial dependency of
the different orders of the grating by adjusting the OAM of
the composite vortex light l in cases of different detunings
of the three laser fields interacting with the N-type atomic
system. We will also investigate how the different orders of
Fraunhofer diffraction behave, i.e., what is the distribution
of probe field energy, as a function of the atomic interaction
length for different winding numbers of the composite vortex
beam.

A. Case of simple vortex field

To begin with a simpler scenario, let us consider the setup
where a basic vortex beam is employed. In Fig. 2, we display
the different orders of the Fraunhofer diffraction pattern ver-
sus the detunings of the coupling fields �c and �LG when the
probe light is in resonance with its transition (i.e., �p = 0).
As seen here, the intensity of the different orders can be
controlled by the detunings of the coupling lights. When the
coupling lights are off-resonate, more of the probe energy
gathers in the first order (−1 � �c � −2; −1 � �LG � −2)
and (1 � �c � 2; 1 � �LG � 2). In other similar regimes for
the detunings (indicated by the yellow band in the higher
orders) the intensity of the diffraction orders may be higher
than the zero order.
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FIG. 2. Different orders of the Fraunhofer diffraction pattern ver-
sus the parameters �c and �LG. Panel (a) corresponds to the zero
order, (b) corresponds to the first order, (c) corresponds to the second
order, and (d) corresponds to the third order. The selected parameters
are �p = 0, �c0 = 0.5γ , � = 1.5γ , L/ξ = 50.

B. Case of composite vortex with different OAMs

As a second step we apply the composite form of the
optical vortex light [Eq. (9)] considering different values of
the winding numbers l1 and l2. As shown in Fig. 3, we present
the Fraunhofer diffraction patterns for this composite beam
with l1 = 4 and l2 = −1. The results in Fig. 3 are decomposed
into different parts to visualize the various diffraction orders.
Figures 3(a), 3(b), 3(c), and 3(d) correspond to the zero or-
der, the first order, the second order, and the third order,
respectively. This comprehensive representation of the differ-
ent diffraction orders provides a more complete and detailed
view of the pattern for the composite beam.

FIG. 3. Spatial dependency of the different diffraction orders
versus x1/w and y1/w for l1 = 4 and l2 = −1. Panel (a) corresponds
to the zero order, (b) corresponds to the first -order, (c) corresponds to
the second order, and (d) corresponds to the third order. The selected
parameters are �p = 0, �c = −1, �LG = 2, �c0 = 0.5γ , � = 1.1γ ,
L/ξ = 50.

As discussed in [31], a composite twisted beam with dif-
ferent values of l1 and l2 exhibits a central vortex of charge
l1, surrounded by |l1 − l2| peripheral vortices. Our findings
concerning the diffraction patterns and the spatial mapping
of different orders strongly align with the structural charac-
teristics of such a composite vortex. Specifically, we observe
that the different diffraction orders of the grating exhibit a
prominent five-fold symmetry, which directly corresponds to
the presence of |l1 − l2| peripheral vortices in the composite
beam. For the zero-order grating [Fig. 3(a)], the majority
of light is concentrated at the core of the azimuthal space,
consistent with the central vortex of the composite beam. Fur-
thermore, the zero-order grating exhibits five peripheral spots
precisely located at the positions where the singularity points
of the peripheral vortices in the composite beam are situated.
Surrounding this central region, there is a ring-shaped area
where the probe field energy is entirely reconstituted.

In contrast, the first-order grating illustrated in Fig. 3(b)
produces a distinctive wheel-like pattern, indicating a sig-
nificant change in energy distribution compared to the zero
order. In this case, the energy is concentrated in locations that
were previously completely devoid of it, essentially creating
an antiphase relationship with the zero order. With the higher
second-[Fig. 3(c)] and third– [Fig. 3(d)] orders of grating, the
patterns undergo structural changes while still retaining the
five-fold symmetry.

C. Case of composite vortex with same OAMs

As mentioned in Sec. II, the main focus of our investi-
gations is the case of equal winding numbers l1 = l2 of the
composite vortex coupling field [see Eq. (10)].

1. Resonant probe and coupling fields

We first investigate the case when all laser beams are
resonant with the respective atomic transitions, e.g., �p =
�c = �LG = 0. In Fig. 4, we present the spatial properties
of the different orders of diffraction patterns for a winding
number l = 0. The blue areas indicate regions of low intensity
in the diffraction pattern, while the dark red structures repre-
sent positions of high-intensity diffraction. When l = 0, the
diffraction intensities of the zero [Fig. 4(a)], first [Fig. 4(b)],
and second [Fig. 4(c)] orders exhibit distinct ring patterns. For
the zero order, the majority of the energy is concentrated at
the center, forming a high-intensity region surrounded by a
ring-shaped area where the probe-field energy is completely
absent. This ring-shaped void represents a region of destruc-
tive interference, arising from the diffraction process. Moving
away from this zero-energy ring, the energy starts to reappear.
In contrast, for the first and second orders of diffraction, the
energy distribution undergoes a fascinating transformation. In
these cases, the central region experiences a complete absence
of energy, resulting in a dark spot at the center. As one moves
away from the center, the energy becomes manifest, taking the
form of a ring, indicating its presence. This ring-shaped re-
gion represents constructive interference, where the diffracted
waves combine to create regions of increased intensity. As
the order of the grating increases, the ring patterns gradually
shrink and narrow. This reduction in size and width of the
grating rings is a consequence of the increasing complexity of
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FIG. 4. Spatial dependency of the different diffraction orders
versus x1/w and y1/w for winding number l = 0. Panel (a) cor-
responds to the zero order, (b) corresponds to the first order, and
(c) corresponds to the second order. The selected parameters are
�p = �c = �LG = 0, �c0 = 0.2γ , � = 1.5γ , L/ξ = 50. Notice
that, for the first and second orders of diffraction, the energy dis-
tribution undergoes a pattern in which the central region experiences
a complete absence of energy, resulting in a dark spot at the center.

the diffraction process, leading to more intricate interference
patterns. In higher-order diffraction patterns, the ring-shaped
regions become progressively smaller and tighter, reflecting
the rich and intricate behavior of the diffraction process. Con-
sequently, the number and intensity of these bright and dark
regions depend on the size and microscopic structure of the
atoms and the wavelength of the incident light.

Further, Fig. 5 shows the diffraction patterns and the spatial
mapping of the various orders when l = 2. Here, we ob-
serve a petal-like pattern for the different diffraction orders.
Figures 5(a) to 5(c) provide a visual representation of the
diffracted patterns observed for the zero to second orders
of diffraction. These figures reveal intriguing characteristics
exhibited by gratings of different orders. Notably, each order
of the grating displays a distinctive pattern with a symmetrical
arrangement resembling petals. Upon closer examination, it
becomes apparent that the light distribution within the az-
imuthal space differs, depending on the diffraction order. In
the case of zero order, the light is predominantly concentrated
at the center, forming an intriguing anti-petal-like pattern. The
energy of the diffracted light appears to converge towards
the central region, resulting in reduced intensity towards the
outer areas. However, as we move to higher orders of diffrac-
tion such as the first and second orders, the dynamics of
light distribution undergoes a remarkable change. In these
instances, the light is no longer focused at the center but gath-
ers primarily at the petal regions. The central region, which
was previously the focal point of energy, now experiences a
complete absence of light. This unique behavior of light dis-
tribution creates a distinctive pattern with zero intensity at the
center and enhanced intensity at the petals. Furthermore, as
the order of diffraction increases, the petal patterns gradually
diminish in size. This is clearly illustrated in Fig. 5(c), where

FIG. 5. Spatial dependency of the different diffraction orders
versus x1/w and y1/w for winding number l = 2. Panel (a) cor-
responds to the zero order, (b) corresponds to the first order, and
(c) corresponds to the second order. The light distribution within
the azimuthal space differs, depending on the diffraction order. The
selected parameters are the same as in Fig. 4.

the petals become smaller and more compact, compared to
the lower orders. The shrinking of the petal patterns with
increasing order highlights the intricate relationship between
diffraction and the resulting spatial distribution of light.

2. Resonant probe and off-resonant coupling fields

In what follows, we will study the azimuthal dependence
of the different diffraction orders in the off-resonance con-
ditions for the coupling and composite optical vortex lights,
while the probe field is still resonant, i.e., �p = 0,�c = −γ ,

�LG = 2γ .
The numerical results for the case of winding number l = 0

are given in Fig. 6. In this analysis, it is evident that the
distribution of intensity in the zero order [Fig. 6(a)] attains
its maximum value in regions that are situated away from
the center. At the same time, the distribution of intensities
experiences a lower value in the central regions. In the case
of the first order [Fig. 6(b)], the intensity distribution reaches
its maximum value at the center and gradually decreases in
regions distant from the center. The second order [Fig. 6(c)]
reveals that the intensity distribution is visible in the central
regions, but its value is comparably lower than that of the
zero and first orders. Nevertheless, in some narrow regions
of space, the distribution of intensity surpasses the zero and
first orders. As for the third order, shown in Fig. 6(d), we ob-
serve that there is no intensity distribution in both the central
and outer regions, with only a few areas exhibiting a weak
intensity distribution, which is inferior to that of other orders.

Furthermore, we explore the behavior of the grating for
the nonzero OAM number l = 2, as depicted in Fig. 7. The
intensity distribution exhibits petal-like patterns for different
degrees of diffraction. Notably, the probe field’s highest-
energy concentration occurs in the first-order [Fig. 7(b)]
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FIG. 6. Spatial dependency of the different diffraction orders
versus x1/w and y1/w for winding number l = 0. Panel (a) cor-
responds to the zero order, (b) corresponds to the first order,
(c) corresponds to the second order, and (d) corresponds to the
third order. The selected parameters are �c = −γ , �LG = 2γ , �c0 =
0.5γ , and the rest are the same as in Fig. 4.

within the central petal region. As one moves away from the
center, the intensity distribution for other orders displays thin
petal-shaped regions.

3. Dependence on atomic interaction length

In the following part and as depicted in Fig. 8, we present
the different orders of the Fraunhofer diffraction patterns cor-

FIG. 7. Spatial dependency of the different diffraction orders
versus x1/w and y1/w for winding number l = 2. Panel (a) cor-
responds to the zero order, (b) corresponds to the first order,
(c) corresponds to the second order, and (d) corresponds to the
third order. The intensity distribution exhibits petal-like patterns for
different degrees of diffraction. The selected parameters are the same
as in Fig. 6.

 

 

FIG. 8. Different orders of Fraunhofer diffraction as a function of
the atomic interaction length L/ξ corresponds to (a) the zero order,
(b) the first order, (c) the second order, and (d) the third order for
r/w = 1, ϕ = π/4, and �p = �c = �LG = 0. It is fascinating to
observe that the first- to third-order contributions are prominent at
larger values of L/ξ , while they do not have any significant impact at
smaller L/ξ . The selected parameters are the same as in Fig. 4.

responding to various OAM numbers relative to the atomic
interaction length (L/ξ ). In our analysis, we consider a com-
posite vortex light with r/w = 1 and ϕ = π/4. Additionally,
all the incident lights are assumed to be in resonance with
their respective transitions, i.e., �p = �c = �LG = 0. For the
case of l = 0 (solid line), all the intensity of the probe field
accumulates at zero order. However, as the interaction length
L increases, the zero-order intensity decreases and eventually
reaches zero at L = 100ξ . It is worth noting that the inten-
sity of this order can be controlled by adjusting the value of
the OAM number. For l = 1 (dashed line), the intensity of
the zero order also decreases, similar to the previous case.
However, this time its intensity becomes zero at L 
 70ξ .
In contrast, for l = 2 (denoted by a dotted line), the entire
intensity of the probe field remains at the zero order, and its
value does not change with varying the interaction length.
This occurrence is because, for l = 2, the intensity of the com-
posite vortex light becomes zero (e.g., �LG = 0), effectively
converting the N-type atomic system into two independent
two-level atomic systems. Under such conditions, the SW
field has no effect on the Fraunhofer diffraction pattern of the
probe field, resulting in intensities of the higher orders having
initial zero values. As the interaction length increases, the
intensity of different orders grows, and this can be controlled
by adjusting the value of the OAM number of the compos-
ite vortex field. For the case of l = 0 (solid line), with the
decrease of the zero-order intensity, most of the intensity is
transferred to the first order. When L = 100ξ , the intensity of
the zero order has vanished, and all the energy is transferred
to the first, second, and third orders. However, increasing
the OAM to l = 1 (dashed line) leads to most of the probe
intensity gathering in the second and third orders.

Gratings of various types have garnered significant interest
in a wide range of applications, including optical switching
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[9], routing, and multibeam splitters [49], shaping biphoton
spectra [50], and generating stationary light pulses [51]. Grat-
ings with varying periods are also commonly used to measure
topological charges [52,53]. These lattices enable dynamic
control over the intensity and spatial distribution of diffraction
patterns, making them particularly valuable in the context of
multichannel optical communication and multiparticle cap-
ture applications.

Considering these diverse applications, our proposed
model holds significant promise for several purposes. It can be
employed for the measurement of topological charges in op-
tical vortex light, enabling a better understanding of complex
light-matter interactions. Moreover, it has the potential to be
a valuable tool in optical light-shaping technologies, offering
practical advantages in applications such as optical switching
and the dynamic control of diffraction patterns.

V. CONCLUSION

In summary, we investigated the spatially dependent
diffraction orders of electromagnetically induced grating
(EIG) in a four-level N-type atomic system. To achieve this,
we employed an excitation scheme that simultaneously inter-
acted with a standing wave beam along the x direction and
a composite vortex. Through the use of analytical methods
for solving the integral equation of Fraunhofer diffraction,
we established a direct link between the different diffraction
orders and the corresponding Bessel functions of those orders.
Our numerical analysis revealed that when the OAM of the

composite beam is set to zero, distinctive ring patterns emerge
for the various diffraction orders. These ring-shaped regions
exhibit different intensities, resulting from constructive or
destructive interferences. As the winding numbers of the com-
posite beam increase, the ring patterns undergo fascinating
transformations, evolving into petal-like structures with vary-
ing sizes depending on the diffraction order. The behavior of
the different orders of Fraunhofer diffraction patterns upon
varying the atomic interaction length for different OAM num-
bers shows the distribution of the probe field energy. Taking
advantage of the additional degree of freedom provided by the
coupling composite optical vortex, we proposed a straightfor-
ward scheme for controlling the performance of the EIG. The
direct control offered by our method makes it experimentally
feasible in common atom optics setups and it holds great
promise for constructing photonic devices and other elements
for quantum technology applications. The ability to tailor
and control EIGs using composite optical vortices opens up
exciting possibilities for advancements in quantum optics and
related fields.
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