
New J. Phys. 26 (2024) 093042 https://doi.org/10.1088/1367-2630/ad7c73

OPEN ACCESS

RECEIVED

16 May 2024

REVISED

11 August 2024

ACCEPTED FOR PUBLICATION

18 September 2024

PUBLISHED

30 September 2024

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Generating grating in cavity magnomechanics
Wenzhang Liu1, Muqaddar Abbas1,∗, Seyyed Hossein Asadpour2, Hamid R Hamedi3,∗,
Pei Zhang1,∗ and Barry C Sanders4,∗
1 Ministry of Education Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key
Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Physics, Xi’an Jiaotong University, Xi’an
710049, People’s Republic of China

2 School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran
3 Institute of Theoretical Physics and Astronomy, Vilnius University, Sauletekio 3, Vilnius 10257, Lithuania
4 Institute for Quantum Science and Technology, University of Calgary, Alberta T2N 1N4, Canada
∗ Authors to whom any correspondence should be addressed.

E-mail: muqaddarabbas@xjtu.edu.cn, hamid.hamedi@tfai.vu.lt, zhangpei@mail.ustc.edu.cn and sandersb@ucalgary.ca

Keywords: cavity magnomechanics, Fraunhoffer diffraction, magnomechanically induced grating

Abstract
We investigate the phenomenon of magnomechanically induced grating (MMIG) within a cavity
magnomechanical system, comprising magnons (spins in a ferromagnet, such as yttrium iron
garnet), cavity microwave photons, and phonons (Li et al 2018 Phys. Rev. Lett. 121 203601). By
applying an external standing wave control, we observe modifications in the transmission profile of
a probe light beam, signifying the presence of MMIG. Through numerical analysis, we explore the
diffraction intensities of the probe field, examining the impact of interactions between cavity
magnons, magnon-phonon interactions, standing wave field strength, and interaction length.
MMIG systems leverage the unique properties of magnons, and collective spin excitations with
attributes like long coherence times and spin-wave propagation. These distinctive features can be
harnessed in MMIG systems for innovative applications in information storage, retrieval, and
quantum memories, offering various orders of diffraction grating.

1. Introduction

Electromagnetically induced transparency (EIT) is a well-established phenomenon wherein a typically
opaque medium becomes transparent when exposed to a specific type of electromagnetic radiation [1]. This
nonlinear optical effect proves valuable in enhancing interactions while minimizing destructive processes,
particularly photon absorption. Consequently, systems employing EIT exhibit the potential for facilitating
long-distance quantum communication [2].

When the control beam is configured as a standing-wave field, EIT can be harnessed to create a
diffraction grating, giving rise to another phenomenon known as electromagnetically induced grating
(EIG) [3]. This configuration allows for the creation of both spatially absorbing (amplitude) and dispersion
(phase) gratings in the sample, offering greater flexibility than classical optical gratings. EIG has a wide range
of uses. For example, the arrangement of photonic gap bands may be changed through a grating formed by
an optically generated lattice [4, 5].

EIG can be employed to generate an electromagnetically induced Talbot effect [6], which proves highly
advantageous for imaging mutually exclusive ultra-cold atoms. The tunability of gratings for diffraction in
EIG opens up promising applications in various fields [7, 8]. Subsequent experimental verifications of EIG
were conducted in both cold [9, 10] and hot [11] atomic samples.

In addition, a lot of research has recently been done on mechanical oscillators as transducers that mediate
the conversion of coherent signals across various systems [12]. Radiation force [13, 14], electrostatic
force [15], as well as piezoelectric element force [16] has all been employed to couple phonons with optically
or microwave photons. Such interaction processes result in the rapid emergence of a wide range of cavity
electro- and optomechanical systems [17], although they all lack adequate tunability.
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The magnetostrictive force [18] offers an additional method for coupling a different information carrier
magnon with a phonon. Magnon is a collective excitation of magnetization, and its frequency may be
changed at any time by altering the biased magnetic field [19]. Because magnetostrictive contact is weak in
most dielectric or metallic materials, that is easy to ignore it while processing data. Due to the dominance of
the magnetostrictive force in magnetic materials, a very flexible hybrid system for coherent information
processing may be developed [20].

A microwave cavity combined with a ferromagnetic material, such as a yttrium iron garnet (YIG) sphere,
is the most common physical implementation of a cavity magnonic system. In recent decades, this system has
attracted a lot of attention and shown extraordinary performance. YIG has garnered significant attention due
to its distinctive characteristics, including a high spin density and an exceptionally low loss rate [21, 22].
Previously, YIG has found applications in magnetic storage [23], spintronics [24], and microwave
devices [25]. Placing a YIG sphere within a cavity capitalizes on its unique properties, enabling the creation
of a sensitive and easily tunable system [26–30]. The YIG sphere functions as a mechanical generator, with its
movement determined by its magnetization.

Researchers have demonstrated magnon-induced transparency (MIT) within a magnomechanical cavity
system, establishing a connection between the movement of a YIG sphere and the flow of light within a
cavity [21]. Notably, researchers have achieved the cooling of a YIG sphere to its quantum ground state [31],
and have established connections between the YIG sphere and the light inside the cavity [32, 33]. Recently,
researchers have examined fano-type optical response and four-wave mixing studied in magnetoelastic
system which has applications in highly sensitive detection and quantum information processing [34].

Recently, researchers have noted the emergence of magnonic frequency combs in the context of optics.
This intriguing phenomenon, detailed in an article referenced as [35], describes a spectrum characterized by
discrete frequency components evenly spaced at regular intervals. Magnonic frequency combs have garnered
attention due to their potential applications in diverse scientific disciplines. They play a significant role in
enhancing the precision of atomic clocks, where the evenly spaced frequencies facilitate accurate timekeeping
mechanisms. Recently some novel experimental research has demonstrated magnonic frequency combs [36],
slow-light hybird magnonics [37], and magnonic switch [38]. These findings pave the way for innovative
technologies, including highly sensitive magnetic sensors [39] and advancements in quantum information
processing [40].

In this study, we propose a magnomechanical cavity system utilizing magnetic dipole interactions to
achieve robust coupling between the collective motion of a large number of spins in a ferrimagnet.
Magnomechanical cavities demonstrate exceptional characteristics, including strong coupling [41], hybrid
functionality [22], high tunability, and potential applications in precision measurement, signal processing,
and information storage.

Motivated by the intriguing possibilities [42], we investigate cavity magnomechanics and analyze the
behavior of a diffraction grating within a cavity magnon set up in the presence of a robust standing-wave
field. In our proposed scheme strong standing wave (SW) pump and weak probe fields are optical and are
applied from the left side of the microwave cavity while the magnon is driven by a weak biased microwave
field that is directly applied on it in a perpendicular direction to generate phonon modes. Our study reveals a
captivating relationship between the diffraction grating and the strength of coupling between the cavity
magnon, denoted as gam, and the phonon modes denoted as gmb.

The cavity magnomechanics system provides a versatile means to control the diffraction grating through
the coupling strengths gmb and gam which facilitate the transfer and storage of energy to different orders of
the diffraction grating. This capability presents a promising avenue for tuning the grating to meet specific
application requirements. Our goal is to make use of the established mechanism by which magnons and
thermal vibrations may couple to generate multiple MIT which further leads to magnomechanically induced
grating (MMIG).

The structure of the article is organized as follows: in section 2, we derive the quantum Langevin
equations (QLEs) from the Heisenberg equation of motion. Employing a standard input–output connection,
we establish a mathematical representation for the entering field. Then we calculate the periodic
manipulation of the propagation characteristics of probe beam. Finally, we determine the Fraunhofer
diffraction intensity and investigate the transmission of the probe field to various diffraction orders. Section 3
presents numerical findings of our proposed system and in section 4, discussions related to the MMIG. In the
concluding section 7, we summarize our work and highlight key insights gained from the study.

2. Theoretical model

The proposed model is illustrated in figure 1. The cavity interior is driven by both the probe field and an
intense pumping field originating from the left side of the cavity. A microwave source with frequency ωm
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Figure 1. Schematic of an optical system comprising cavity mode a and magnon modesm. The cavity modes interact with
magnon modes through coupling gam and with phonon modes via coefficient gmb. The probe and control fields are applied on the
left side of the cavity magnon system. (b) Schematics illustrating a probe field that diffracts via a position-dependent standing
wave (SW) control field, whereby the entire magnon cavity system operates as an aperture, generating a diffraction grating. The
right side depicts the diffraction grating orders when the probe light beam undergoes diffraction.

serves as an excitation for the magnons. Figure 1(a) provides a schematic representation of a hybrid
magnomechanical system, consisting of a Fabry–Perot cavity with length L accommodating cavity photon
and magnon modes. When a microwave field is directly applied to magnons, the mechanical vibrations
induced by the magnons generate phonon modes. These magnon modes arise from the collective motion of
numerous spins in a ferrimagnet, such as a YIG sphere (a sphere with a diameter of 250µm). The coupling
between magnons and cavity photons is facilitated by a magnetic dipole interaction.

The connection between these magnons and phonons is established through magnetostrictive coupling.
Specifically, a magnon excitation within a YIG sphere induces a changing magnetization that deforms the
geometric shape within the sphere, resulting in the generation of vibration modes (phonons). Two strong
pump beams are symmetrically shifted to the z axis, as shown in figure 1(b). They impact the cavity medium
at angles that interact generating a SW within the medium with a spatial interval in the transversal
x-direction.

We expect to see a periodic change in these coefficients as the SW adjusts across x from nodes to
antinodes due to the effect of the pump fields on the absorption as well as the dispersion of the weak probe
field. The spatial periodic modulation of phase as well as amplitude, causes the weak probing field to diffract
into various orders as it goes through the cavity magnon system. When the cavity magnon coupling is
modified, the SW field generates this periodic modulation.

The system Hamiltonian is

H=H0 +Hint +Hdr, (1)

where

H0 =∆aa
†a+

ωb

2

(
x2 + p2

)
+∆mm

†m,

Hint = gam
(
m†a+ a†m

)
+ gmbm

†mx,

Hdr = i
(
Emm†e−iδmlt −E∗

mmeiδmlt
)
+ i

(
a†Epe−iδplt − aE∗

p e
iδplt

)
+ i

(
Ela† −E∗

l a
)
, (2)

Here,∆a := ωa −ωl,∆m := ωm −ωl, δml := Ωm −ωl and δpl := ωp −ωl, where ωp, ωa, ωm, ωl, Ωm and ωb

represent the resonance frequencies of probe field, cavity modes, magnon modes, pump field, magnon
driving field and phonon modes, respectively. Furthermore, a† and a are cavity mode creation and
annihilation operators, whereasm† andm are magnon mode creation and annihilation operators. The
dimensionless position and momentum quadratures of the mechanical mode are denoted by x and p.

In equation (1), H0 represents the free part of the Hamiltonian, Hint denotes the interaction part, and
Hdr corresponds to the driving part of the Hamiltonian. In equation (2), the first part on the right side of H0

provides the cavity mode annihilation and creation operators a(a†), the second part gives the mechanical
mode operators, and the third term shows the magnon mode operatorsm(m†). The first part on the right
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side of Hint in equation (2) corresponds to the coupling of magnon modes with cavity modes with coupling
strength gam. The second term corresponds to the coupling of magnon modes with mechanical modes with
coupling strength gmb. The Hamiltonian Hdr consists of the field directly applied to magnon modes, as well
as the probe and pump fields applied from the left side of the magnon cavity. The amplitude of the probe and
pump fields is

Ep =

√
2κaPp
h̄ωp

, (3)

and

El =
√

2κaPd
h̄ωl

, (4)

respectively, where κa denotes the cavity decay rate, Pp (Pd) represents the power of the probe (pump) field,
and ωp,l describes the frequency of the probe and pump fields. The interaction of weak microwave source
applied to magnon modes is [42, 43]

Em =

√
5

4
γ
√
NB0, (5)

where γ denotes the gyromagnetic ratio, N is the total number of spins inside the YIG sphere, and B0 is the
amplitude of the driving magnetic field.

Now we will look at the Heisenberg formulation that describes motion to determine the way it describes
system dynamics. For every generic operatorO, an expression is

dO
dt

=− i

h̄
[O,H]− γO+N , (6)

where γ indicates the decay rate linked with the cavity photon, magnon, and phonon modes, whileN
represents the Brownian along with input vacuum noise operator related to the cavity field. When we apply
equation (2) in equation (6), we get the following coupled equations:

ȧ=−(κa + i∆a)a− igamm+ Epe−iδplt + El +
√
2κaain, (7)

ṁ=−(i∆m +κm)m− igama− igmbmx+ Eme−iδmlt +
√
2κmmin, (8)

ṗ=−ωbx− γbp− gmbm
†m+ ζ, (9)

ẋ= ωbp, (10)

κa, γb, and κm, are the decay rates whereas the quantum noise operators for the cavity, magnon, and phonon
modes are ain,min, and ζ , respectively. It is worth noting that the mean values of quantum noise, Brownian
noise, along the input operator are all zero [44].

Further we consider a much weaker probe field Ep and microwave field Em than the pump field El to
facilitate the solution of the aforementioned nonlinear QLEs. Consequently, we are able to define each
operator as the average of the mean value and first-order quantum fluctuation term, i.e. a= as + δa,
x= xs + δx, p= ps + δp, andm=ms + δm. The steady-state solution for the aforementioned equations may
be attained via setting the time derivatives to zero, namely,

as =
El (i∆ ′

m +κm)

(i∆ ′
m +κm)(i∆a +κa)+ g2am

, (11)

ms =
−igamas
i∆ ′

m +κm
, (12)

xs =
−gmb|ms|2

ωb
, (13)

where∆ ′
m =∆m − gmbxs is the effective detuning values of the magnon modes. The linearize QLEs of

motion are expressed as follows:

δȧ=−(κa + i∆a)δa− igamδm+ Epe−iδplt, (14)

δṁ=−(i∆m +κm)δm− igamδa− igmb (msδx+ xsδm)+ Eme−iδmlt, (15)

δṗ=−ωbδx− γbδp− gmb

(
m∗

s δm+msδm
†) , (16)
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δẋ= ωbδp. (17)

The linearized equations of motion are then solved perturbatively using ansatzes [45] δO =∑
n→{−,+}Oneinδt, whereO = a,m,x,p, with δ = δpl = δml. We consider the magnon driving field to

become resonant with the probe field frequency which leads us to consider δ = δpl = δml [43]. In our
suggested model, the oscillation in the cavity is predominantly due to magnomechanical phenomena caused
by a directly applied magnetic field. Moreover, the amplitude and phase oscillations can be controlled by the
control and probe lasers. This oscillation, in turn, induces Stokes and anti-Stokes dispersion in the control
field. The first-order solution for the transmitted probe field is then obtained using the aforementioned
methods.

a− =
M
R

, (18)

where

M= Ep
(
−δα5ω

2
bg

4
mbm

4
s −

(
−α1α6 − iωbg

2
mbmsm

∗
s

)(
α2δg

2
am +α3

(
−δωbg

2
mbmsm

∗
s + iα2α4δ

)))
− iα1gamEm

(
α2δg

2
am +α3

(
−δωbg

2
mbmsm

∗
s + iα2α4δ

))
, (19)

R= α1g
2
am

(
α2δg

2
am +α3

(
−δωbg

2
mbmsm

∗
s + iα2α4δ

))
+α7

(
−δα5ω

2
bg

4
mbm

4
s

−
(
−α1α6 − iωbg

2
mbmsm

∗
s

)(
α2δg

2
am +α3

(
−δωbg

2
mbmsm

∗
s + iα2α4δ

)))
, (20)

and

α1 =−ω2
b + δ (δ+ iγb) , (21)

α2 = δ (γb + iδ)− iω2
b, (22)

α3 = ka + i(δ+∆a) , (23)

α4 = δ+∆m + gmbxs + ikm, (24)

α5 =−ika + δ+∆a, (25)

α6 = km + i(−δ+∆m + gmbxs) , (26)

α7 = ka − i(δ−∆a) . (27)

The input–output relationship can be expressed as [46]

Eout (t)+ Epe−iδt + El =
√
2κaa, (28)

where

Eout (t) = E0
out + E+

outEpe−iδt + E−
outEpeiδt. (29)

After solving equations (28) and (29), we obtain

E+
out =

√
2κaa−
Ep

− 1. (30)

The homodyne method could be used to measure it [46]. For the sake of simplicity, we define

E+
out + 1=

√
2κaa−
Ep

= ET. (31)

The mathematical quadrature formula for the field ET is written as

ET = Re [ET] + iIm [ET] . (32)

The out-of-phase along with in-phase quadratures for the resulting probe field is represented by Re[ET] and
Im[ET], respectively.
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2.1. Dynamics of MMIG
Using Maxwell’s equation, the wave propagation caused by the probing light beam (Ep) may be [47]

dEp
dz

= [−η (x)+ iζ (x)]Ep, (33)

in which η(x) = ( 2πλ )Re[ET] as well as ζ(x) = ( 2πλ )Im[ET] denote absorption as well as dispersion
corresponding to the probing field with a wavelength λ.

To simplify the analysis, we focus on the MMIG characteristics, disregarding the transversal component
of equation (33) [47]. This equation can be employed to straightforwardly calculate the optical transmission
function describing the probe laser beam at z= L, given by

Ttrans (x) = e−η(x)L+iζ(x)L, (34)

where |Ttrans(x)|= eη(x)L and ϕ(x) = ζ(x)L denote the magnitude and phase modulation within the cavity,
respectively. Here it is to be mentioned that the standing-wave control field generates a periodic modulation
in the system, leading to spatial variations in the transmission function. As a result, the transmission of the
system will exhibit different behaviors at different positions along the x-direction as shown in figure 1(b).
The intensity distribution of diffraction may be shown by considering the incident probing field as a plane
wave [47]

I(θ) = |E(θ) |2 × sin2 (NπΛx sinθ/λ)

N2 sin2 (πΛx sinθ/λ)
, (35)

where θ is the angle of diffraction in the x-direction, Λx = π/kx is the spatial period within the x direction,
and N is a particular quantity of spatial periods generating an atomic grating. The term E(θ) denotes the
Fourier transformation of Ttrans(x) and describes a Fraunhofer diffraction over just one period given by

E(θ) =

ˆ 1

0
Ttrans (x)e

−2πiΛxx sinθ/λdx, (36)

θ represents the diffraction angles with respect to the z-direction.

3. Results

Our research on MMIG with a SW field pump in a cavity is presented in this section. We investigated the
effects of various system parameters on phase as well as amplitude modulation, which impacts the
controllability of the diffraction patterns along with intensity along with the transmission profile of the
probing light beams. We analyze the intensity of MMIG by varying the coupling strength gam between
magnon and cavity. We also investigate the effect of the coupling strength gmb between the phonon along
with magnon. Furthermore, we analyze the effect of the interaction length on MMIG intensities. The fixed
parameters considered are ωb/2π = 10γ, κa = ωb/15, κm = ωb/15,∆m/2π = 10γ,∆a/2π = 10γ,
γb/2π = 0.0014γ, γ= 1MHz.

To begin, we will look at how the output probe light behaves with or without cavity modes, as well as the
magnon mode interaction strength gam. In figure 2, we present the absorption (Re[ET]) and dispersion
(Im[ET]) of the probe light beam in the cavity magnon system against a normalized detuning δ/ωb for
various values of gam and gmb. The Im[ET] of the output probe field illustrates the dispersive characteristics of
the magnomechanical cavity for specific gam and gmb. The slope can change with varying values of gam and
gmb. Specifically, a negative slope corresponds to a negative group index, and a positive slope leads to a
positive group index of the cavity. However, our main focus is on the transmission of the probe field of the
output spectrum Re[ET].

In the scenario where gam and gmb are absent, the real and imaginary components of the output probe
field are presented against the probe detuning δ/ωb in figures 2(a) and (b). Illustrated by the solid blue curve,
the graph exhibits a Lorentzian profile, indicating substantial absorption of the probe light within the cavity
(refer to figure 2(a)). It is notable that all incident light is absorbed within the magnon cavity system. In the
absence of magnon-phonon interaction (gmb = 0) and with a fixed cavity-magnon coupling of
gam/2π = 1MHz, a narrow transmission window appears in the probe field spectrum, depicted by the blue
curve. This narrow transparency window corresponds to a minimal transparency region with associated
dispersion changes, as illustrated in figures 2(c) and (d). Upon increasing the cavity-magnon coupling to
gam/2π = 4MHz, a broader transparency window with anomalous dispersion emerges, as shown in
figures 2(e) and (f). Introducing a small increment in magnon-phonon interaction strength
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Figure 2. The absorption and dispersion parts of output probe field versus probe field detuning δ. The fixed parameters
considered are ωb/2π = 10γ, κa = ωb/15, κm = ωb/15,∆m/2π = 10γ,∆a/2π = 10γ, γb/2π = 0.0014γ, γ= 1MHz.

(gmb/2π = 2MHz) while maintaining the cavity-magnon coupling at gam/2π = 4MHz, the transparency
window starts to bifurcate into a double window with the associated dispersion profile depicted in
figures 2(g) and (h). Further increasing the magnon-phonon interaction to gmb/2π = 3 MHz, while keeping
the cavity-magnon coupling constant at gam/2π = 4MHz, results in a more pronounced splitting of the
transparency window into a double magnon-mechanically induced transparency (MMIT) scenario, as
shown in figures 2(i) and (j).

Now, let us delve into the modulation of the probe light beam transmission, a key aspect in achieving the
desired diffraction intensity pattern. In this analysis, we consider the pump field as a SW field, represented by

E l =

√
2κaPd
h̄ωl

sin [π x/Λx] , (37)

where Λx is the spatial period. Other parameters are kept consistent with those in figure 2. The SW control
field plays a crucial role in creating MMIT. Due to the intensity-dependent response in the cavity, the SW
control field induces spatially modulated absorption and refraction of the probe field. Consequently, the
entire cavity acts as a grating, allowing the probe beam to diffract in various directions. Figure 3 illustrates
the transmitted probe beam against the position x for different values of cavity magnon coupling. Recalling
our earlier observation from figure 2 that weak magnon-cavity coupling results in enhanced absorption,
increasing the coupling strength gam leads to MMIT, resulting in reduced absorption and enhanced
transmission of the probe light beam. Let us consider gam/2π = 1γ as an example, and observe the effect on
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Figure 3. The normalized transmission profile as a function of position x with the variation of cavity magnon coupling gam, i.e.
(a) gam/2π = 1γ (blue dashed line), (b) gam/2π = 2γ (red dashed line), (c) gam/2π = 4γ (blue solid line). The fixed parameters
considered are ωb/2π = 10γ, κa = ωb/15, κm = ωb/15,∆m/2π = 10γ,∆a/2π = 10γ, γb/2π = 0.0014γ, γ= 1MHz.

Figure 4. The intensity of normalized diffraction against sin(θ) and detuning δ. The fixed parameters considered are
gmb/2π = 3γ, gam/= 3γ, ωb/2π = 10γ, κa = ωb/15, κm = ωb/15,∆m/2π = 10γ,∆a/2π = 10γ, γb/2π = 0.0014γ,
γ= 1MHz, Em = 0.001γ, interaction length L= 55mm.

the transmitted probe light in figure 3(depicted by the blue dashed line). The periodic modulation in the
transmitted probe light beam is a direct consequence of the SW pump field.

At transverse locations of the SW field, specifically at nodes, the impact of the pump field strength is
notably weak, resulting in insufficient modulation of the probe beam. Consequently, there is minimal
transmission observed in the magnon cavity, leading to a lower overall amplitude. In contrast, at antinodes,
the coupling is robust, significantly enhancing the transmission of the probe light beam. Despite this
improvement, the overall amplitude remains subdued due to the relatively weak magnon cavity coupling (see
figure 3, blue dashed line). Upon a slight increment in magnon cavity coupling (gam/2π = 2γ), there is a
further boost in the transmission profile of the probe light beam. This enhancement can be attributed to
reduced absorption, leading to an augmented MMIT effect (see figure 3, red dashed line). With a magnon
cavity coupling of gam/2π = 4γ, a broader transparency window emerges, indicative of a strong magnon
cavity interaction. This results in a significantly enhanced transmission profile of the probe light beam (see
figure 3, blue solid line).

Furthermore, we will investigate the interference pattern exhibited by the probe light that traverses the
SW pump field, acting as a slit. In addition, by adjusting the cavity magnon interaction parameter gam, we
will investigate the diffraction intensity pattern orders in the far-field regime, which is also referred to as
Fraunhofer diffraction. In figure 4, we depict the normalized diffraction intensity plotted against sinθ and
detuning δ. The figure clearly illustrates a rapid decrease in diffraction intensity when the detuning slightly
deviates from the transparency window, particularly for δ = ωb. Consequently, for the subsequent
discussion, we opt for a detuning δ equal to ωb.

Examining figure 5(a) for a cavity magnon interaction of gam/2π = 1γ, we observe that the predominant
energy of the probe field is concentrated at the central maximum. Additionally, there is only a relatively small
diffraction of probe energy into higher diffraction orders. At gam/2π = 1γ, the weak transmitted amplitude
grating is a consequence of probe field absorption within the cavity, resulting in the loss of higher orders of
diffraction. As seen in figure 5(b) for gam/2π = 2γ, the rate of probe transfer of energy increases gradually
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Figure 5. The intensity of normalized diffraction as a function of sin(θ) with the variation of cavity magnon interaction gam and
magnon phonon interaction gam. (a) gam/2π = 1γ, (b) gam/2π = 2γ, (c) gam/2π = 3γ, (d) gam/2π = 4γ. The fixed parameters
considered are gmb/2π = 3γ, ωb/2π = 10γ, κa = ωb/15, κm = ωb/15,∆m/2π = 10γ,∆a/2π = 10γ, γb/2π = 0.0014γ,
Em = 0.001γ, |El/2π|= 4.5γ, γ= 1MHz.

from zeroth through higher diffraction orders. This behavior is attributed to the heightened transmission of
the probe light beam with the increase in gam/2π, leading to amplified diffraction of light into higher orders.
Similarly, in figure 5(c) at gam/2π = 3γ, the enhancement in diffraction intensity from the zeroth to the first
order is notable due to a further increase in the grating amplitude of the transmitted probe beam. According
to figure 3(solid blue line), the second order of diffraction intensity occurs at gam/2π = 4γ, where the
grating amplitude is at its maximum, as seen in figure 5(d). It is important to note that a strong cavity
magnon interaction, as depicted in figure 3(solid blue line), can result in significant non-zero phase
modulation. This modulation could diffract a portion of the probe energy toward higher-order diffraction.

To achieve a more pronounced enhancement in the transfer of probe energy from the zeroth order to
higher-order diffraction intensities, we escalate the amplitude of the SW pump field to |El/2π|= 5γ. This
results in a further augmentation of the transmission grating profile, leading to increased transfer of probe
energy to higher diffraction patterns, as depicted in figure 6(a). Continuing the increase in the strength of the
pump beam to |El/2π|= 6γ, we observe a decrease in the amplitude of the zeroth order, with probe energy
now transferring from the zeroth order to the first, second, and third order diffraction orders, as illustrated
in figure 6(b). To visualize this enhancement in the transfer of probe energy to higher diffraction orders more
clearly, a density plot in figure 6(c) present the diffraction intensity against sinθ and |El/2π|. As the strength
of the pump field increases, a discernible transfer of probing energy to higher orders becomes evident.

To investigate the influence of interaction length on the transfer of energy to the first-order diffraction
pattern, we plot the diffraction intensity of the first order, designated as Ip(θ1), versus the interaction length
L in figure 7(a). The plot reveals that the magnitude of the first-order diffraction intensity increases with an
increase in the interaction length within a certain range (L⩽ 30). However, it experiences a slight decrease
with a further increase in the interaction length, as illustrated in figure 7(a). Moving on to the examination
of the effect of magnon cavity coupling strength gam on the first-order diffraction intensity, figure 7(b)
depicts the first-order intensity of diffracted light versus cavity magnon coupling gam. It is observed that for
small values of gam, the amplitude of the first-order diffraction intensity remains small. However, with a
subsequent increase in gam, the amplitude of the diffraction intensity shows an increment within a certain
range. This behavior is attributed to the fact that when the cavity magnon interaction is weak, more probe
light is absorbed inside the cavity, resulting in lower transmission of the probe light beam. In such a scenario,
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Figure 6. The intensity of normalized diffraction as a function of sin(θ) with the variation of pump field. (a) |El/2π|= 5γ, (b)
|El/2π|= 6γ, (c) density plot of normalized diffraction intensity versus sin(θ) and the intensity of pump field |El/2π|. The fixed
parameters considered are gam/2π = 4γ, gmb/2π = 3γ, ωb/2π = 10γ, κa = ωb/15, κm = ωb/15,∆m/2π = 10γ,
Em = 0.001γ,∆a/2π = 10γ, γb/2π = 0.0014γ, γ= 1MHz.

Figure 7. The intensity of first order diffraction. (a) Fixed coupling strength gam/2π = 4γ, (b) Fixed interaction length
L= 20mm, (c) Density plot of normalized first order diffraction intensity against cavity magnon coupling strength gam/2π and
interaction length L. The fixed parameters considered are gam/2π = 4γ, gmb/2π = 3γ, ωb/2π = 10γ, κa = ωb/15,
κm = ωb/15,∆m/2π = 10γ, Em = 0.001γ ∆a/2π = 10γ, γb/2π = 0.0014γ, γ= 1MHz.

the transfer of probe energy to the first-order diffraction intensity is weak, leading to a lower amplitude.
Further analysis reveals that there is a specific cavity magnon interaction strength gam at which maximum
diffraction occurs, accompanied by the maximum transfer of probe energy to the first-order diffraction
intensity. This optimal value of gam leads to the development of the highest amplitude. Finally in figure 7(c),
we present a density plot suggesting the existence of an optimal point for maximum energy transfer,
influenced by both the coupling strength gam and the interaction length L.
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4. Discussion

We provide a quick summary of our investigation and outcomes in this section. We have developed a method
to achieve MMIG in a magnomechanical system as a result of our investigation and analysis. Three main
parts make up this system: phonons, cavity microwave photons, and magnons. A phonon is a quantized
vibration generated by directly applying a magnetic field to a magnon, while a cavity microwave photon is an
electromagnetic wave that is quantized inside a resonant cavity. Magnons are quantized collective excitations
of magnetic moments. By harnessing the interactions between these components, we have successfully
generated a grating structure.

First, we establish a magnomechanically induced transparency by taking into account the Hamiltonian of
the whole system along with driving the general coupled equation using the Heisenberg operator approach,
which reveals the dynamics of each degree of freedom separately. Further, by using cavity input–output
theory, from coupled Langevin equations, we extract the cavity output field, which indeed will contain the
information of all optical interactions happening inside the cavity. The real (imaginary) part gives the
absorption (dispersion) behavior of the output probe field. By appropriately choosing the quantum
parameters such as cavity magnon interaction strength gam and magnon phonon interaction gmb the
absorptive and dispersive properties of the medium are modified.

Together with Fraunhofer intensity diffraction calculations, we also employ SW control field to solve the
probe light transmission function equations for MMIG. The transmission function varies spatially as a result
of a periodic modulation in the system caused by the SW control field. Moreover, we are examining how the
duration of medium interactions affects the pattern of diffraction intensities in MMIG. It is shown that most
of the probing energies accumulates in the center when the interaction duration reaches a specific amount.
As the interaction duration increased, the probe energy transferred to higher orders. Furthermore, the
diffraction intensities of higher order may be attained by selecting the cavity magnon interacting strength
gam in a suitable manner.

These findings suggest that MMIG are crucial for generating high-efficiency gratings by considering the
quantum parameters. As a result, properly adjusting the quantum parameters is a good way to achieve high
diffraction efficiencies. Our approach offers a novel and promising method for achieving MMIG, which can
have potential applications in information storage and retrieval. This advancement could contribute to the
development of more efficient and versatile quantum memory systems, with implications for various fields
such as quantum computing, quantum communication, and quantum information processing.

5. Energy level diagram

The energy level diagram in figure 8 provides an understanding of the physical process behind this
phenomenon. When there is no magnon-phonon interaction (gmb = 0), a photon is released during the
probe photon transition, but the magnon state does not change |Na,Nm + 1,Nb⟩ → |Na + 1,Nm,Nb⟩ →
|Na,Nm,Nb⟩. The transition when a magnon is activated but the photon state stays unaltered is overlapped
by |Na,Nm,Nb⟩ → |Na + 1,Nm,Nb⟩ → |Na,Nm,Nb⟩. Both the significant SW pump field as well as the cavity
decay which generates this overlap lead to destructive interference. Consequently, a magnon induced
transparency window emerges where the pump field is strongest (antinodes), and absorption occurs where
the pump field is weakest (nodes). When considering the influence of magnon-phonon interaction, an
additional transition path |Na,Nm + 1,Nb⟩ ↔ |Na,Nm,Nb + 1⟩ introduces constructive interference, altering
the transmission characteristics of the system.

6. Possible experimental realization

This section describes a potential practical implementation of our proposal and cites evidence from
experiments that validate our theoretical analysis. We have considered a microwave cavity with a YIG sphere
inside of it. The microwave cavity is generated by the fabrication of high-conductivity copper. The
250-micrometer-diameter YIG sphere operates as both the phonon and magnon resonator, with a phonon
frequency of ωb ≈ 2π× 10MHz and a coupling strength of gmb ⩽ 2π× 3MHz [21].

While the magnon is stimulated at gigahertz frequencies, the phonon mode is parametrically activated,
that is, at the beating frequencies (megahertz) of the magnon modes. Because of its exceptional material as
well as geometrical characteristics, the YIG sphere is also a great mechanical resonator. The phonon along
magnon modes is connected to the changing magnetization brought about by the magnon excitation, which
deforms the YIG sphere’s spherical shape as well as vice versa.
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Figure 8. Energy level diagram. |Na⟩, |Nm⟩, |Nb⟩ represents the states of photon, magnon, and phonon in microwave radiation.

The choice of cavity structure in cavity magnomechanics examines is important since it affects the
capabilities of the experimental equipment. 3D microwave copper cavities are typically made from bulk
metal (such as copper) and are designed in three dimensions, resembling a box-like structure. They often
have precise dimensions to support resonant modes at microwave frequencies [21]. 3D cavities typically have
well-defined input and output ports. These ports are crucial for coupling microwave signals into and out of
the cavity. They can provide good isolation from external electromagnetic interference, which is important
for sensitive measurements in magnomechanics.

However, planar cavities are fabricated on a flat surface, often using thin-film deposition techniques or
microfabrication processes. They can be patterned to create resonant structures similar to those in 3D
cavities. Planar cavities can also have defined input and output ports, though their positioning and geometry
are typically different from 3D cavities. The ports may be integrated differently into the planar structure.
Planar structures allow for miniaturization and integration with other components on a chip, which can
simplify experimental setups and enable compact devices. Fabrication techniques offer precise control over
the cavity dimensions and properties, potentially enhancing device performance.

Achieving efficient coupling of microwave signals into and out of planar cavities can be challenging,
depending on the design and fabrication quality. Planar structures may be more susceptible to external
electromagnetic interference compared to 3D cavities. The choice of cavity structure can influence the
frequency range over which the magnomechanical interactions are studied. Different structures may support
different modes and resonances. Planar structures offer advantages in terms of integration with other
components such as magnetic materials or sensors, potentially enhancing device functionality.

7. Conclusions

In this study, we introduced the MMIG in a magnomechanical cavity, featuring the interaction of a weak
probe field with a SW control field applied to the cavity. The direct application of a magnetic field on a
magnon induces magnon vibrations, subsequently leading to the generation of photon modes. Our analysis
focused on the output spectrum of the probe light beam, considering the effects of cavity magnon
interaction and magnon-phonon interaction. We explored the modulation in the transmission profile of the
probe light beam under varying cavity magnon interaction strengths. The investigation revealed the
influence of cavity magnon interaction, standing wave field strength, and interaction length on the transfer
of probe energy into higher diffraction orders. Notably, our results could have potential applications in
information storage and retrieval, particularly in implementing quantum memories with different orders of
diffraction grating. These findings open avenues for further research and practical implementations in
quantum information processing.
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Appendix. Derivation of Maxwell-Bloch equation

We now briefly explain the propagation function of the probe light. Following the Maxwell–Bloch equation,
the corresponding wave equation of incident probe field can be written as

−
∂2Ep (z, t)

∂z2
+

1

c2
∂2Ep (z, t)

∂t2
=−µ0

∂2P(z, t)

∂t2
(A.1)

it can then be factorized (
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∂
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)
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∂2P(z, t)
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where the corresponding polarization vector is P(z, t) = 1
2p(z, t)e

−i(vt−kz) + c.c, with εp(z, t) and p(z, t) being
carefully varied depending on time as well as positioning. The electric field vector for probing field is
Ep(z, t) = 1

2εp(z, t)e
−i(vt−kz) + c.c. When the change of εp(z, t) and p(z, t) in an optical frequency period are

not obvious, we can apply slowly varying approximation:

∂εp
∂t
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∂εp
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∂p
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∂p
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Under these approximations the propagation function of probe field reduce to

ik
∂Ep
∂z

+
ik
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∂Ep
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[
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− ivP

]
(A.4)

and under steady state condition the equation (A.4) reduce to

∂Ep
∂z

=− iπ

λε0
(P) (A.5)

The polarization vector P is related to the probe field Ep via ET as the relation P= ε0ETEp. By noting
η(x) = ( 2πλ )Re[ET] and ζ(x) = ( 2πλ )Im[ET], the equation (A.5) can be written as

dEp
dz

= [−η (x)+ iζ (x)]Ep. (A.6)
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