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ABSTRACT

High-dimensional all-optical information transfer facilitates large-capacity, high-speed, and energy-efficient optical communication, playing
a pivotal role in advancing modern photonic technologies. Here, we demonstrate the all-optical transfer of structured information between
two beams with different frequencies via spatial cross-phase modulation in a hot 85Rb vapor. A high-power pump beam, characterized by a
structured light, induces a refractive index change in the rubidium vapor. A low-power, initially Gaussian probe beam counter-propagates
through the rubidium vapor cell, undergoing a nonlinear phase shift induced by the pump beam. This enables the transfer of the spatial char-
acteristics imprinted by the pump beam onto the probe beam with maximum structural integrity and similarity. The spatial evolution of the
transverse intensity of the probe beam vs frequency detunings of the pump and probe beams, pump beam power, and cell temperature is
studied. We have further shown that the structural similarity can be manipulated by changing the pump beam power and temperature of the
vapor cell. Our findings may reveal a way to manipulate light fields, offering potential applications in optical communication, all-optical data
processing, and advanced photonic devices.
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Cross-phase modulation (XPM), as one of the optical Kerr effects,
plays an important role in quantum nonlinear optics.1 Different from
self-phase modulation (SPM),2,3 XPM typically refers to the intensity
variation of one light wave inducing a phase change of another light
wave when two light waves of different wavelengths propagate through
a nonlinear medium.4–6 Owing to the practical advantages for all-
optical information conversion,7 XPM has been widely applied in vari-
ous fields, such as optical communication,8 all-optical information
conversion,9–12 quantum entanglement,13 non-reciprocal devices14 the
generation of Bessel-like beams.15 However, the structured light waves
have not yet been explored in hot atoms to realize all-optical informa-
tion conversion based on XPM.

In recent decades, structured light waves have also gained much
interest, partially due to their unique spatial beam structures with tai-
lored amplitude and phasefronts.16–19 One type of structured light
waves is a vortex beam carrying orbital angular momentum

(OAM).20,21 Unlike the conventional Gaussian beam, the structured
light wave generally refers to an optical beam with a tailored spatial
amplitude/phase distribution and corresponding unique properties,
which has led to many remarkable applications in optical micro-
processing,22,23 far-field super-resolution imaging,24 optical communi-
cation,25 and optical micro-manipulation.26–28 Moreover, by adjusting
the polarization state of the structured light,29–32 the modulation insta-
bility can also be effectively controlled.

In this work, we investigate the all-optical transfer of structured
information between two different frequency beams using XPM in hot
atoms. The pump beam is a superposition mode coherently super-
posed by two Laguerre–Gaussian (LG) beam modes, creating a
structured-beam profile, which induces a change in the nonlinear
refractive index of the rubidium vapor. When the Gaussian probe
beam passes through the rubidium vapor cell, it acquires the nonlinear
phase shift information from the pump beam, resulting in the transfer
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of structured information. The spatial evolution of the transverse
intensity of the probe beam vs frequency detunings of the pump and
probe beams, pump beam power, and cell temperature is studied. We
have further shown that the structural similarity can be manipulated
by changing the pump beam power and temperature of the vapor cell.
The present study may provide a useful tool for transferring various
types of structured light beams.

The pump beam after passing the Q-plate is a Laguerre–Gaussian
(LG) mode, the electric field distribution in cylindrical coordinates
ðr;/; zÞ are given by33

Ep‘ðr;/; zÞ ¼ E expði‘/Þê; (1)

where E r; zð Þ ¼ E0
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is the beam

radius at position z, w0 is the beam waist, zR ¼ pw2
0=k is the Rayleigh

range, k is the wavelength, k ¼ 2p=k is the wave vector, R zð Þ
¼ z 1þ zR=zð Þ2
� 	

is the radius of curvature of the wavefronts, Lj‘jp is
the associated Laguerre polynomial, p is the radial index, ‘ is the azi-
muthal index (also known as the topological charge), and ê is the
polarization vector.

When the pump beam is reflected by the polarizing beam split-
ter (PBS1), the pump beam becomes a y-polarized superposition
mode, which is coherently superposed by two LG beam modes with
equal but opposite OAM, thus creating a structured-beam profile
given by

Ey ¼ E r; zð Þ exp i‘/ð Þ þ exp �i‘/ð Þ½ �êy; (2)

where êy is the y axis polarization vector.
The electric field distribution of the probe beam propagating

along the z axis can be described as34

E r; z0ð Þ ¼ E 0; z0ð Þ exp � ikr2

2R zð Þ

 !
exp � r2

x2
p

 !
; (3)

where r is the radial coordinate, z0 is the position coordinate of the
medium entrance plane, and E 0; z0ð Þ represents the electric field of the
entrance plane center of the medium. k ¼ 2p=k describes the wave
vector, and R zð Þ ¼ z þ z2R=z is the curvature radius of the wavefront.
The spot size of the beam at a given z-position is given by
xp ¼ x0 1þ z2=z2R

� �1=2
, and here x0 is the waist radius and zR

¼ px2
0=k is the Rayleigh length.
When the strong pump beam passes through the atomic medium

with an effective interaction length of Leff , the Kerr nonlinear effect
induced by the spatial XPM, which makes the refractive index of
medium is spatially modulated. As the weak probe beam passes
through the medium, which acquires a nonlinear phase shift influ-
enced by the pump beam, it effectively transfers the structured infor-
mation of the pump to the probe beam.15 Given the significant
intensity difference between the pump beam I1 and the probe beam I2,
the pump beam plays a dominant role in the spatial XPM process.
Therefore, the nonlinear phase shift of the probe laser beam is
expressed as35

/probe rð Þ ¼ D/probe exp � 2r2

x2
p

 !
; (4)

where D/probe rð Þ ¼ 2kn2Leff I1 represents the peak nonlinear phase of
the probe beam, which is twice that of the pump beam
D/pump rð Þ ¼ kn2Leff I1. Here, n2 is the nonlinear refractive index of
the medium, given by15

n2 / l412N

2ce20h3D
3 ; (5)

where l12 denotes the dipole matrix element, N is the atomic num-
ber density, and D is the frequency detuning. Clearly, the nonlinear
phase shift can be significantly adjusted by the intensity of the pump
laser, the atomic number density, and the frequency detuning. Note
that the nonlinear refractive index n2 is directly proportional to the
l12, which depends on the spatial polarization state of the pump
beam. The spatially varying polarization superposition mode (Ey)
induces an azimuthal modulation of the atomic dipole coupling
strength (l12), which directly governs the nonlinear refractive index
(n2). Therefore, by engineering the spatial polarization state of the
structured pump beam, one can tailor the nonlinear refractive index
n2 to achieve the desired transfer of structured light information in
Rb vapor based on spatial XPM, and the spatial polarization state of
the pump beam is a critical degree of freedom for controlling the
overall XPM.

Structural similarity (SSIM) is an index used to measure the simi-
larity between two images. It evaluates the similarity by comparing
three main components: brightness, contrast, and structure. The calcu-
lation formula of SSIM is as follows:36

SSIM ¼ l x; yð Þ
� 	a � c x; yð Þ½ �b � s x; yð Þ½ �c; (6)

where x and y are the corresponding regions of the two images being

compared. In Eq. (6), l x; yð Þ ¼ 2lxlyþC1

l2xþl2yþC1
represents the brightness

comparison function, c x; yð Þ ¼ 2rxryþC2

r2xþr2yþC2
is the contrast comparison

FIG. 1. Detailed experimental setup. (a1) The intensity profile of the probe beam
before entering the atom cell. The intensity profile of the pump beam (a2) before
and (a3) after passing through the atom cell. (a4) The three-level atomic system. Qi

(i ¼ 1; 2), quarter-wave plate; Hj (j ¼ 1; 2; 3), half-wave plate; PBSk (k ¼ 1; 2),
polarizing beam splitter; BS, optical splitter; Q-plate, spiral phase plate; Rb, a nor-
mal Rb gas cell (length 10 cm) without buffer gas; CCD, charge-coupled camera;
Filter, bandpass filter with a center wavelength of 780.8 nm (bandwidth 10 nm).
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function, s x; yð Þ ¼ rxyþC3

rxryþC3
shows the structure comparison function.

Here, lx and ly are the average values of x and y in the image region,
respectively; rx and ry are the standard deviations of the image region
x and y, respectively. rxy is the covariance between regions x and y.
The constants C1, C2, and C3 are small constants added to avoid zero-
ing errors, usually set according to the dynamic range of the image.
When calculating, one sets a ¼ b ¼ c ¼ 1 and C3 ¼ C2=2.

The experimental setup is shown in Fig. 1. The system incorpo-
rates a cylindrical rubidium vapor cell fabricated from transparent
glass, with precise dimensions of 25mm in diameter and 100mm in
length. To ensure accurate temperature regulation, the vapor cell is
housed in a precision temperature control furnace capable of main-
taining thermal stability within 6 0.1 �C throughout the experimental
procedures. The probe beam generated by a tunable diode laser
(Toptica DL100, center wavelength 780.78 nm, linewidth 100 kHz) is a
Gaussian mode [see Fig. 1(a1)]. It propagates through a polarization
beam splitter (PBS2), transmitting a 100-mm-long natural-abundance
Rb vapor cell to a beam splitter (BS) and forming an image reflected
by the BS in a charge-coupled device (CCD) camera, which is
equipped with a narrowband optical filter (center wavelength
780.8 nm, bandwidth 10nm). The pump beam (generated by a tunable
diode laser, center wavelength 795.53 nm, linewidth 100 kHz) is sent
to a Q-plate to generate the LG mode with the topological charge
l ¼ 2, and later reflected by a polarizing beam splitter (PBS1), which
becomes a y-polarized superposition mode. The intensity profiles of
the pump beam before and after entering the rubidium vapor cell is
shown in Figs. 1(a2) and 1(a3), respectively. A three-level atomic

system is shown in Fig. 1(a4), which has one ground state, j1i, and two
excited states, j2i and j3i. The designated states can be chosen as
j1i ¼ j52S1=2; F ¼ 3i, j2i ¼ j52P1=2; F ¼ 2i, and j3i ¼ j52P3=2;
F ¼ 4i. The probe beam couples to the atomic transition j1i $ j3i
with a detuning D2, while the pump beam drives the transition j1i
$ j2i with a detuning D1.

Figures 2(a1)–2(a12) display the spatial evolution of the trans-
verse intensity of the probe beam vs different temperatures of the
rubidium vapor cell. When temperature is 45 or 50 �C, as shown in
Figs. 2(a1) and 2(a2), the intensity profile of the probe beam is blurry.
As we change the temperature from 55 to 80 �C, one can see that
intensity of the probe beam is increasing and shows a “fan-like” profile
[see Figs. 2(a3)–2(a8)]. However, as we further increase the cell tem-
perature, the probe field is remarkably absorbed and nearly disappears
when the temperature is 100 �C [see Fig. 2(a12)]. For clarity, we plot
the probe beam intensity as a function of temperature of the rubidium
vapor cell in Fig. 2(b). From this figure, it is clear that the probe beam
intensity initially increases and finally decreases with the increasing
temperature, which is in good agreement with the experimental find-
ings in Figs. 2(a1)–2(a12). In fact, we note that an increase in tempera-
ture results in an increase in the atomic density of the medium, which
leads to more frequent collisions and hence more severe decoherence,
thereby resulting in a strong absorption of the probe field. Note that
the relationship between the atomic number density N and cell tem-
perature is calculated based on Ref. 37.

For a better understanding of the effect of temperature on the
transfer of structured light information, the SSIM vs the temperature
of the rubidium vapor cell is depicted in Fig. 2(c). As illustrated in
this figure, it is evident that there is a strong relationship between
the SSIM and the temperature. The findings reveal that one can
achieve the optimized SSIM by adjusting the temperature of the
rubidium vapor cell.

FIG. 2. The spatial evolution of the transverse intensity of the probe beam vs differ-
ent temperature of the rubidium vapor cell: (a1) 45 �C (N ¼ 9:65� 1016 m�3), (a2)
50 �C (N ¼ 1:47� 1017 m�3), (a3) 55 �C (N ¼ 2:27� 1017 m�3), (a4) 60 �C
(N ¼ 3:39� 1017 m�3), (a5) 65 �C (N ¼ 4:99� 1017 m�3), (a6) 70 �C (N
¼ 7:27� 1017 m�3), (a7) 75 �C (N ¼ 1:05� 1018 m�3), (a8) 80 �C
(N ¼ 1:53� 1018 m�3), (a9) 85 �C (N ¼ 2:19� 1018 m�3), (a10) 90 �C
(N ¼ 3:11� 1018 m�3), (a11) 95 �C (N ¼ 8:59� 1018 m�3), and (a12) 100�C
(N ¼ 1:19� 1019 m�3). (b) The probe beam intensity as a function of temperature
of the rubidium vapor cell. (c) The SSIM vs the temperature of the rubidium vapor
cell. The pump power and probe power are 20 and 0.1 mW, respectively. D1
¼ �400 MHz and D2 ¼ þ1:4 GHz.

FIG. 3. The spatial evolution of the transverse intensity of the probe beam vs differ-
ent pump beam power: (a1) 0 mW, (a2) 3 mW, (a3) 5 mW, (a4) 10 mW, (a5) 15
mW, (a6) 20 mW, (a7) 25 mW, (a8) 30 mW, (a9) 40 mW, and (a10) 50 mW. (b) The
probe beam intensity as a function of the pump beam power. (c) The SSIM vs the
pump beam power. The temperature of the atom cell is 70 �C, N ¼ 7:27� 1017

m�3, and the other parameters are the same as in Fig. 2.
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We now turn to see the influence of the pump beam on the trans-
fer dynamics of the probe beam. The spatial evolution of the transverse
intensity of the probe beam vs different pump beam power are shown
in Figs. 3(a1)–3(a10). When no pump beam exists or pump beam is
weak, as shown in Figs. 3(a1) and 3(a2), the intensity profile of the
probe beam remains blurry. When the pump beam power is tuned
from 5 to 25 mW, the probe beam is increasing with a fan-like pattern
[see Figs. 3(a3)–3(a6)]. As we further increase the pump beam power,
there is no significant change in the intensity profile of the probe beam
[see Figs. 3(a7)–3(a10)]. For the sake of comparison, we plot probe
beam intensity as a function of the pump beam power in Fig. 3(b).
From this figure, one can see that probe beam intensity is initially
increases but changes limited with further increasing pump beam
power. The above results can be qualitatively explained as follows.
Once the higher energy states are fully occupied, the rubidium atomic
medium cannot absorb more photons from the pump beam, leading
to absorption saturation. At this point, further increases in pump
beam do not result in the increasing intensity of the probe beam. Also,
we show the SSIM vs the pump beam power in Fig. 3(c). As can be
clearly noted in this figure, the SSIM is modulated, which is close to
0.62 by an appropriate choice of the pump beam power.

We next study how the pump-beam detuning D1 affects the
transverse intensity profile of probe beam. The spatial evolution
of the transverse intensity of the probe beam vs different pump-
beam detunings are shown in Figs. 4(a1)–4(a12). Clearly, the
intensity distributions of the transmitted probe beam is very sen-
sitive to the pump-beam detuning. It is interesting to note in this
case that, by appropriately chosen the frequency detuning of
pump beam, the nonlinear phase shift can be modulated, so we
can see the intensity profile of the probe beam is modulated, as
illustrated in Figs. 4(a1)–4(a12).

Finally, we present the spatial evolution of the transverse intensity
of the probe beam vs different probe-beam detuning in Figs. 5(a1)–
5(a12). It is easy to find from these figures that, at optimal working
point of probe-beam detuning, the structured information encoded by
the pump beam can effectively transmit to the probe field. However,
when the probe-beam detuning D2 < þ0:8GHz or D2 > þ1:7GHz,
the probe beam intensity diminishes and its spatial distribution grows
less distinct, indicating a reduced efficiency in transferring the struc-
tured information of the pump field to the probe beam.

In conclusion, we experimentally demonstrate the all-optical
transfer of structured light information between two different

frequency beams via cross-phase modulation in hot atoms. When the
strong pump beam passes through the atomic medium, the nonlinear
effect induced by spatial XPM makes the refractive index of the
medium spatially modulated. As the weak probe beam passes through
the atoms, it acquires a nonlinear phase shift imprinted by the pump
beam, effectively transferring the structured information of the pump
to the probe beam. The all-optical transfer can be effectively controlled
via the temperature of the atom cell, the optical power of the pump
beam, and the frequency detunings of the probe and pump beams. We
thus believe that our work may have potential applications in optical
communication, quantum sensing, all-optical data processing, and all-
optical devices.38–45
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