list of publications

 

Listed in reverse chronological order, 1998-2017

[see also: recent publications and preprints on arXiv preprint server]

  1. J. Armaitis, J. Ruseckas, and E. Anisimovas, Phase-space curvature in spin-orbit-coupled ultracold atomic systems, Phys. Rev. A 95, 043616 (2017).
  2. V. Novičenko, E. Anisimovas, and G. Juzeliūnas, Floquet analysis of a quantum system with modulated periodic driving, Phys. Rev. A 95, 023615 (2017).
  3. E. Anisimovas, M. Račiūnas, C. Sträter, A. Eckardt, I. B. Spielman, and G. Juzeliūnas, Semisynthetic zigzag optical lattice for ultracold bosons, Phys. Rev. A 94, 063632 (2016).
  4. M. Račiūnas, G. Žlabys, A. Eckardt, and E. Anisimovas, Modified interactions in a Floquet topological system on a square lattice and their impact on a bosonic fractional Chern insulator state, Phys. Rev. A 93, 043618 (2016).
  5. A. Eckardt and E. Anisimovas, High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective, New J. Phys. 17, 093039 (2015).
  6. E. Anisimovas, G. Žlabys, B. M. Anderson, G. Juzeliūnas, and A. Eckardt, Role of real-space micromotion for bosonic and fermionic Floquet fractional Chern insulators, Phys. Rev. B 91, 245135 (2015).
  7. T. Andrijauskas, E. Anisimovas, M. Račiūnas, A. Mekys, V. Kudriašov, I. B. Spielman, and G. Juzeliūnas, Three-level Haldane-like model on a dice optical lattice, Phys. Rev. A 92, 033617 (2015).
  8. E. Anisimovas, F. Gerbier, T. Andrijauskas, and N. Goldman, Design of laser-coupled honeycomb optical lattices supporting Chern insulators, Phys. Rev. A 89, 013632 (2014).
  9. N. Goldman, E. Anisimovas, F. Gerbier, P. Öhberg, I. B. Spielman, and G. Juzeliūnas, Measuring topology in a laser-coupled honeycomb lattice: from Chern insulators to topological semimetals, New J. Phys. 15, 013025 (2013).
  10. A. Radzvilavičius, O. Rancova, and E. Anisimovas, Dimensional transitions in small Yukawa clusters, Phys. Rev. E 86, 016404 (2012).
  11. E. Anisimovas and A. Radzvilavičius, Configurational entropy of confined Yukawa clusters, Contrib. Plasma Phys. 52, 170 (2012).
  12. O. Rancova, E. Anisimovas, and T. Varanavičius, Numerical modeling of structural transitions in few-particle confined 2D systems, Comp. Phys. Commun. 182, 1914 (2011).
  13. O. Rancova, E. Anisimovas, and T. Varanavičius, Structural transitions in laterally compressed two-dimensional Coulomb clusters, Phys. Rev. E 83, 036409 (2011).
  14. A. Radzvilavičius and E. Anisimovas, Topological defect motifs in two-dimensional Coulomb clusters, J. Physics: Condens. Mat. 23, 385301 (2011).
  15. A. Radzvilavičius and E. Anisimovas, Configurational entropy of Wigner clusters, J. Phys.: Condens. Mat. 23, 075302 (2011).
  16. E. Anisimovas, O. Rancova, and T. Varanavičius, Metastable configurations of Wigner crystals in a circular trap, Lith. J. Phys. 50, 405 (2010).
  17. E. Anisimovas and A. Matulis, Quasiclassical theory of quantum dots, Lith. J. Phys. 50, 377 (2010).
  18. A. Matulis, D. Jarema, and E. Anisimovas, A quasiclassical approach to strongly correlated quantum dots, Central European Journal of Physics 7, 704 (2009).
  19. E. Anisimovas, M. B. Tavernier, and F. M. Peeters, Vortex structure of few-electron quantum dots, Physica E 40, 1621 (2008).
  20. A. Matulis and E. Anisimovas, Dissipation in a Schrodinger-equation formalism, Physica E 40, 1520 (2008).
  21. E. Anisimovas, M. B. Tavernier, and F. M. Peeters, Electron-vortex separation in quantum dots, Phys. Rev. B 77, 045327 (2008).
  22. A. Matulis and E. Anisimovas, Dissipation in a quantum-mechanical system, Opt. Mat. 30, 730 (2008).
  23. E. Anisimovas and A. Matulis, Schrödinger-equation formalism for a dissipative quantum system, Phys. Rev. A 75, 022104 (2007).
  24. E. Anisimovas and F. M. Peeters, Multiply charged excitons in vertically coupled quantum dots, Phys. Rev. B 74, 245326 (2006).
  25. M. B. Tavernier, E. Anisimovas, and F. M. Peeters, Ground state and vortex structure of the N=5 and N=6 electron quantum dot, Phys. Rev. B 74, 125305 (2006).
  26. E. Anisimovas, A. Matulis, and F. M. Peeters, Classical nature of quantum dots in a magnetic field, Acta Physica Polonica A 107, 188 (2005).
  27. A. Matulis and E. Anisimovas, A quasiclassical approach to strongly correlated quantum dots in intense magnetic fields, J. Phys.: Condens. Mat. 17, 3851 (2005).
  28. E. Anisimovas and F. M. Peeters, Biexciton spin and angular momentum transitions in vertically coupled quantum dots, Phys. Rev. B 71, 115319 (2005).
  29. E. Anisimovas and A. Matulis, Quasiclassical model of many-electron quantum dots, Lith. J. Physics 45, 235 (2005).
  30. M. B. Tavernier, E. Anisimovas, and F. M. Peeters, Electron-vortex interaction in a quantum dot, Int. J. Mod. Phys. B 18, 3633 (2004).
  31. E. Anisimovas, A. Matulis, and F. M. Peeters, Currents in a quantum dot in high magnetic fields, Phys. Rev. B 70, 195334 (2004).
  32. M. B. Tavernier, E. Anisimovas, and F. M. Peeters, Correlation between electrons and vortices in quantum dots, Physical Review B 70, 155321 (2004).
  33. A. Matulis and E. Anisimovas, Quantum dot properties in a strong magnetic field, Acta Physica Polonica A 105, 529 (2004).
  34. E. Anisimovas and F. M. Peeters, Negative trions in coupled quantum dots, Physica E 22, 566 (2004).
  35. E. Anisimovas, A. Matulis, M. B. Tavernier, and F. M. Peeters, Power-law dependence of the angular momentum transition fields in few-electron quantum dots, Phys. Rev. 69, 075305 (2004).
  36. B. Szafran, S. Bednarek, J. Adamowski, M. B. Tavernier, E. Anisimovas, and F. M. Peeters, Accuracy of the Hartree-Fock method for Wigner molecules at high magnetic fields, European Physical Journal D 28, 373 (2004).
  37. M. B. Tavernier, E. Anisimovas, F. M. Peeters, B. Szafran, J. Adamowski, and S. Bednarek, Four-electron quantum dot in a magnetic field, Phys. Rev. B 68, 205305 (2004).
  38. E. Anisimovas and F. M. Peeters, Excitonic trions in vertically coupled quantum dots, Phys. Rev. B 68, 115310 (2003).
  39. E. Anisimovas and F. M. Peeters, Dynamic response of artificial bipolar molecules, Phys. Rev. B 66, 075311 (2002).
  40. E. Anisimovas and F. M. Peeters, Correlated few-particle states in artificial bipolar molecule, Phys. Rev. B 65, 233302 (2002).
  41. E. Anisimovas, Tunneling spectroscopy of modulated two-dimensional electron systems, Physica E 12, 307 (2002).
  42. E. Anisimovas and P. Johansson, Electronic structure of antidot superlattices in commensurate magnetic fields, J. Phys.: Condens. Mat. 13, 3365 (2001).
  43. E. Anisimovas and P. Johansson, Butterfly-like spectra and collective modes of antidot superlattices in magnetic fields, Phys. Rev. B 60, 7744 (1999).
  44. E. Anisimovas and P. Johansson, Tip-geometry effects in circularly polarized light emission from a scanning tunneling microscope, Phys. Rev. B 59, 5126 (1999).
  45. E. Anisimovas and A. Matulis, Energy spectra of few-electron quantum dots, J. Phys.: Condens. Mat. 10, 601 (1998).

Leave a Reply

Your email address will not be published. Required fields are marked *