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The aim of the experiment 
Measure dependence of alpha particle energy distribution on distance traveled by alpha particles in air 
and other gases. 

1. Tasks 
1. Measure the pulse height distribution of the silicon surface barrier detector when the detector is 

exposed to radiation of the covered 241Am (americium-241) alpha source placed at 10 cm from the 
detector, at several values of air pressure (from 10 hPa to 250 hPa). Duration of each measurement 
should be about 5 min. 

2. Measure the pulse height distribution of the detector when the detector is exposed to radiation of the 
covered 241Am alpha source placed at 10 cm from the detector using four different gases: air, nitrogen 
(N2), carbon dioxide (CO2) and helium (He) at the same pressure (about 30 to 40 hPa). Duration of 
each measurement should be about 5 min. 

3. Measure the pulse height distribution of the detector when it is exposed to radiation of the open 241Am 
alpha source placed at 5 to 10 mm from the detector at the lowest achievable pressure. 

4. Using the known value of the alpha particles emitted by 241Am and the results of Task 3, calibrate the 
detector, i. e. determine the ratio of particle energy and average pulse height. 

5. For each value of pressure (p) used in Task 1, determine the distance x that an alpha particle has to 
travel in air at standard pressure (1013 hPa) in order to lose the same amount of energy that it loses 
after traveling 10 cm at a pressure p. 

6. Using the results of Tasks 1, 4 and 5, plot the dependence of average alpha particle energy E on the 
traveled path x at standard air pressure. Using this dependence, calculate and plot the dependence of 
the stopping power (−dE/dx) on x. 

7. Using the results of Task 6, plot the dependence of the stopping power (−dE/dx) on average energy of 
alpha particles (E) at standard air pressure. 

8. Using the results of Tasks 1, 4 and 5, calculate and plot the dependence of the width of alpha particle 
energy distribution on the traveled path x at standard air pressure. 

9. Using the results of Task 2, calculate the ratio of alpha particle energy decrease to the average 
number of electrons in a molecule for each gas at equal concentrations of gas molecules. 

2. Control questions 
1. What are the types of ionizing radiation? 
2. What is the origin of energy losses of charged particles in matter? 
3. Explain the concept of the stopping power of the medium. What are the main parameters determining 

the rate of energy loss? 
4. What are the differences between interaction of heavy charged particles (such as alpha particles) with 

matter and interaction of electrons with matter? 
5. Explain the concept of particle range and its difference from the average penetration depth. 
6. Explain the concept of detector pulse height spectrum and its relation to the particle energy spectrum. 

Define energy resolution of a detector. 
 
Recommended reading: 
1. Krane K. S. Introductory Nuclear Physics. New York: John Wiley & Sons, 1988. p. 193 − 198. 
2. Lilley J. Nuclear Physics: Principles and Applications. New York: John Wiley & Sons, 2001. 

p. 129 − 136. 
3. Knoll G. F. Radiation Detection and Measurement. 3rd Edition. New York: John Wiley & Sons, 2000. 

p. 30 – 48. 
4. Payne M. G. Energy straggling of heavy charged particles in thick absorbers // Physical Review, vol. 

185, no. 2, 1969, p. 611 – 623. 
5. Laboratory Experiments. Phywe Systeme GmbH, 2005 (compact disc). 
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3. The types of ionizing radiation 
Ionizing radiation is a flux of subatomic particles (e. g. photons, electrons, positrons, protons, 

neutrons, nuclei, etc.) that cause ionization of atoms of the medium through which the particles pass. 
Ionization means the removal of electrons from atoms of the medium. In order to remove an electron 
from an atom, a certain amount of energy must be transferred to the atom. According to the law of 
conservation of energy, this amount of energy is equal to the decrease of kinetic energy of the particle that 
causes ionization. Therefore, ionization becomes possible only when the energy of incident particles (or 
of the secondary particles that may appear as a result of interactions of incident particles with matter) 
exceeds a certain threshold value – the ionization energy of the atom. Ionization energies of isolated 
atoms are usually of the order of a few electronvolts (eV). 1 eV = 1,6022·10−19 J. The ionization energies 
of molecules of most gases that are used in radiation detectors are between 10 eV and 25 eV. 

Ionizing radiation may be of various nature. The directly ionizing radiation is composed of high-
energy charged particles, which ionize atoms of the material due to Coulomb interaction with their 
electrons. Such particles are, e. g., high-energy electrons and positrons (beta radiation), high-energy 4He 
nuclei (alpha radiation), various other nuclei. Indirectly ionizing radiation is composed of neutral 
particles which do not directly ionize atoms or do that very infrequently, but due to interactions of those 
particles with matter high-energy free charged particles are occasionally emitted. The latter particles 
directly ionize atoms of the medium. Examples of indirectly ionizing radiation are high-energy photons 
(ultraviolet, X-ray and gamma radiation) and neutrons of any energy. Particle energies of various types of 
ionizing radiation are given in the two tables below. 

Table 1. The scale of wavelengths of electromagnetic radiation 

Spectral region Approximate wavelength 
range 

Approximate range of 
photon energies 

Radio waves    100000 km – 1 mm      1·10−14 eV – 0,001 eV 
Infrared rays     1 mm – 0,75 μm        0,001 eV – 1,7 eV 
Visible light   0,75 μm – 0,4 μm            1,7 eV – 3,1 eV 

Ionizing electromagnetic radiation: 
Ultraviolet light        0,4 μm – 10 nm         3,1 eV – 100 eV 
X-ray radiation         10 nm – 0,001 nm        100 eV – 1 MeV 
Gamma radiation  < 0,1 nm    > 10 keV 

Table 2. Particle energies corresponding to ionizing radiation composed of particles of matter 

Radiation type Approximate range of particle 
energies 

Alpha (α) particles (4He nuclei)              4 MeV  – 9 MeV 
Beta (β) particles (electrons and positrons)              10 keV  – 10 MeV 
Thermal neutrons < 0,4 eV 
Intermediate neutrons               0,4 eV – 200 keV 
Fast neutrons > 200 keV 
Nuclear fragments and recoil nuclei               1 MeV – 100 MeV 

 
 The mechanism of interaction of particles with matter depends on the nature of the particles 
(especially on their mass and electric charge). According to the manner by which particles interact with 
matter, four distinct groups of particles can be defined: 
1) heavy charged particles (such as alpha particles and nuclei), 
2) light charged particles (such as electrons and positrons), 
3) photons (neutral particles with zero rest mass), 
4) neutrons (neutral heavy particles). 
This experiment concerns only the first mentioned type of particles (heavy charged particles). However, 
the theoretical background needed for this experiment also includes some information about interaction of 
light charged particles (specifically, fast electrons) with matter. 
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4. Interaction of charged particles with matter 

4.1. Interaction of heavy charged particles with matter 
 In nuclear physics, the term “heavy particles” is applied to particles with mass that is much larger 
than electron mass (me = 9,1·10−31 kg). Examples of heavy particles are the proton (charge +e, mass 
mp = 1,67·10−27 kg) and various nuclei (for example, 4He nucleus, which is composed of two protons and 
two neutrons). 
 When radiation is composed of charged particles, the main quantity characterizing interaction of 
radiation with matter is the average decrease of particle kinetic energy per unit path length. This quantity 
is called the stopping power of the medium and is denoted S. An alternative notation is −dE/dx or |dE/dx| 
(such notation reflects the mathematical meaning of the stopping power: it is opposite to the derivative of 
particle energy E relative to the traveled path x). 
 The main mechanism of the energy loss of heavy charged particles (and electrons with energies 
of the order of a few MeV or less) is ionization or excitation of the atoms of matter (excitation is the 
process when internal energy of the atom increases, but it does not lose any electrons). All such energy 
losses are collectively called ionization energy losses (this term is applied to energy losses due to 
excitation, too). Atoms that are excited or ionized due to interaction with a fast charged particle lie close 
to the trajectory of the incident particle (at a distance of a few nanometers from it). The nature of the 
interaction that causes ionization or excitation of atoms is the so-called Coulomb force which acts 
between the incident particles and electrons of the matter. When 
an incident charged particle passes by an atom, it continuously 
interacts with the electrons of the atom. For example, if the 
incident particle has a positive electric charge, it continuously 
“pulls” the electrons (whose charge is negative) toward itself (see 
Fig. 1). If the pulling force is sufficiently strong and if its time 
variation is sufficiently fast (i. e. if the incident particle‘s velocity 
is sufficiently large), then some of the electrons may by liberated 
from the atom (i. e., the atom may be ionized). Alternatively, the 
atom may be excited to higher energy levels without ionization. 
 Coulomb interaction of the incident particles with atomic 
nuclei is also possible, but it has a much smaller effect on the 
motion of the incident charged particles, because the nuclei of the 
material occupy only about 10−15 of the volume of their atoms. 
 Using the laws of conservation of energy and 
momentum, it can be proved that the largest energy that a non-
relativistic particle with mass M can transfer to an electron with 
mass me is equal to 4meE/M, where E is kinetic energy of the particle. Using the same laws, it can be 
shown that the largest possible angle between the direction of particle motion after the interaction and its 
direction prior to the interaction is equal to me / M. Since M exceeds me by three orders of magnitude (see 
above), we can conclude that the decrease of energy of a heavy charged particle due to a single excitation 
or ionization event is much smaller than the total kinetic energy of the particle and the incident particle 
practically does not change its direction of motion when it interacts with an atom (i. e., the trajectories of 
heavy charged particles in matter are almost straight). Note: The change of the direction of particle 
motion is called scattering. 
 The quantum mechanical calculation of the mentioned interaction gives the following expression 
of the stopping power due to ionization energy losses: 

22 4
2e

2 2 2
0 e

21 ln
4π (1 )

mz e nS
m I

β
ε β

⎧ ⎫⎪ ⎪= −⎨ ⎬
−⎪ ⎪⎩ ⎭

v
v

,                                              (4.1) 

where v is the particle velocity, z is its charge in terms of elementary charge e (“elementary charge” e is 
the absolute value of electron charge), n is the electron concentration in the material, me is electron mass, 
ε0 is the electric constant (ε0 = 8,854 ⋅ 10-12 F/m), β is the ratio of particle velocity and velocity of light c 
(i. e. β ≡ v / c), and the parameter I  is the mean excitation energy of the atomic electrons (i. e., the mean 
value of energies needed to cause all possible types of excitation and ionization of the atom). This 
formula is applicable when v exceeds 107 m/s (this corresponds to alpha particle energy of 2 MeV). 

Fig. 1. The classical model of ionization of 
an atom due to Coulomb interaction of its 
electrons with an incident heavy charged 
particle. ze is the electric charge of the 
incident particle, −e is the electron charge 

ze

-e

v

b

x=0

F

F||



 5

 The strong dependence of the stopping power (4.1) on particle velocity v, its charge z and 
electron concentration n can be explained as follows. The decrease of particle energy during one 
interaction is directly proportional to the square of the momentum transferred to the atomic electron (this 
follows from the general expression of kinetic energy via the momentum). This momentum is 
proportional to duration of the interaction (this follows from the second Newton’s law), and the latter 
duration is inversely proportional to v. Therefore the mean decrease of particle energy in one interaction, 
(and the stopping power) is inversely proportional to v2. The proportionality of the stopping power to z2 
follows from the fact that the mentioned momentum transfer is directly proportional to Coulomb force, 
which is proportional to z according to the Coulomb’s law. The proportionality of the stopping power to n 
follows from the fact that the mean number of collisions per unit path is proportional to n. 

4.2. Interaction of electrons with matter 
 The physical mechanism of ionization energy losses of fast incident electrons as they slow down 
in matter is similar to that of heavy charged particles. I. e., the incident electron interacts with atomic 
electrons due to the Coulomb repulsion and either ionizes the atoms or excites them. However, there are 
some differences, too. First, since the mass of incident electrons is the same as the mass of atomic 
electrons, even a single collision with an atomic electron can cause a significant change of electron 
energy and of the direction in which the electron moves (again, this follows from the mentioned laws of 
conservation of energy and momentum). As a result, an incident electron follows a random erratic path as 
it slows down in matter. This is the main difference between interaction of fast electrons with matter and 
interaction of heavy charged particles with matter (as mentioned previously, the path of heavy charged 
particles in matter is practically straight). Besides, there are additional quantum effects related to the fact 
that it is impossible to distinguish between the incident electron and the electron that has been removed 
from an atom due to ionization (these are the so-called “exchange effects”). Taking into account all those 
effects, the following expression of the stopping power due to ionization energy losses of fast electrons is 
obtained: 

( )
224 2 2 2

2 2e
2 2 2 2
0 e e

1 1 1 1 1ln 1 1 ln 2 1 1
2 2 2 164π 2

m Ee n ES
m I m c
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⎢ ⎥ ⎝ ⎠⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

v
v

,   (4.2) 

where E is the kinetic energy of the electrons and the other notations are the same as in formula (4.1). 
Comparison of the expression of stopping powers of heavy charged particles (formula (4.1)) and electrons 
(formula (4.2)) shows that they differ only by the factor in braces, whose dependence on v and I  is 
weak. The factor before the braces is the same in both expressions (bearing in mind that for electrons 
z2 = 1). Therefore the main conclusions about dependence of the stopping power on velocity v of the 
incident particle and on electron concentration n in the material are equally applicable both to heavy 
charged particles and to electrons. 
 As in the case of heavy charged particles, scattering of incident electrons by atomic nuclei is 
much less important than scattering by atomic electrons. 
 When energy of the incident electron becomes sufficiently high, the energy loss due to 
electromagnetic radiation becomes prominent. It is known from classical electrodynamics that accelerated 
charged particles emit electromagnetic radiation, whose intensity is directly proportional to acceleration 
squared. The force that slows down an incident particle in the material arises from internal electric fields 
of the material (their sources are atomic nuclei and atomic electrons). The electromagnetic radiation that 
arises due to the mentioned acceleration (or slowing down) is called bremsstrahlung (German for 
“braking radiation”). Since acceleration is inversely proportional to the mass of the particle, 
bremsstrahlung is negligible in the case of heavy charged particles, but it can become the dominant 
mechanism of energy loss of electrons when their kinetic energy becomes large enough. The ratio of the 
stopping power due to radiation energy losses (Srad) and due to the previously discussed ionization energy 
losses can be calculated using the following approximate formula: 

rad
2

e1600
S EZ
S m c

≈ ,                                                            (4.3) 

where E is the kinetic energy of the incident electron, Z is the atomic number of the material, and c is 
velocity of light. Bearing in mind that mec2 ≈ 0,5 MeV, it follows from (4.3) that radiation energy losses 
exceed ionization energy losses when electron energy exceeds 800 / Z MeV. Since the largest possible 
value of Z is approximately 100 (the number of chemical elements), we can conclude that the radiation 
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losses are negligible if kinetic energy of the electrons is of the order of a few MeV or less, and then it can 
be assumed that electrons lose energy only due to ionization energy losses. 

4.3. Mass stopping power 
 From the expressions of the stopping power for heavy charged particles (4.1) and electrons (4.2) 
it follows that the main parameter of the material that determines the magnitude of ionization energy 
losses of charged particles is electron concentration in the material. If the material is composed of atoms 
of one chemical element, then 

an Zn= ,                                                                  (4.4) 
where Z is the atomic number of the element (i. e. the number of electrons in one atom), and na the atom 
concentration in the material. The atom concentration (in cm−3) is equal to ρNA / A, where ρ is density of 
the material (in g/cm3), NA = 6,022·1023 mol−1 is the Avogadro number and A is the atomic mass of the 
material (in g/mol). Therefore, electron concentration (in cm−3) is equal to 

A
Zn N
A

ρ= .                                                                (4.5) 

The ratio Z / A varies from 0,5 for light atoms (excluding hydrogen, whose Z / A = 1) to 0,4 for heavy 
atoms. Thus, ionization energy losses are directly proportional to density of the material ρ, and the 
coefficient of proportionality is approximately the same in all materials. 
 Summarizing everything that has been said above about ionization energy losses, we can 
conclude that the ionization stopping power (given by formulas (4.1) and (4.2)) depends on two 
characteristics of the incident particle – its velocity v and charge z – and on two parameters of the 
material – its density ρ and the mean atomic excitation energy I  (all other quantities in those formulas 
are principal physical constants). In addition, the quantities z and ρ enter the expression of the stopping 
power as a multiplicative factor z2ρ, velocity v is uniquely determined by particle kinetic energy E, and 
dependence on I  is logarithmic, i. e. weak. Thus, 

 2 ( )S z f Eρ≈ ⋅ ,                                                            (4.6) 
where f depends only on particle energy. 
 The quantity −dE/(ρdx) ≡ S/ρ is 
called mass stopping power. From (4.6) it 
follows that mass stopping power due to 
ionization energy losses is relatively weakly 
affected by chemical composition of the 
material (e. g., see Fig. 2). Therefore, if 
energy is lost mainly due to atomic 
ionization and excitation, then the total path 
of a given particle with a given initial energy 
(i. e., the length of the path where the particle 
loses all its kinetic energy, “range”), is 
mainly determined by density of the material 
and is inversely proportional to the latter. 
 The expressions of stopping power 
(4.1), (4.2) and (4.6) do not include the mass 
of the incident particle. This means that 
ionization stopping powers of different 
particles with equal velocity and equal 
absolute values of electric charge z (for 
example, electron and proton) are equal. 
However, stopping powers of electrons and 
protons with equal energies are very 
different. This is because velocity of a 
particle with a given energy is strongly 
dependent on the particle mass. For example, 
velocity v and kinetic energy E of a non-relativistic particle are related as follows: 

Fig. 2. Dependences of electron mass stopping power in air, 
aluminum and lead on electron kinetic energy. The solid lines 
correspond to atomic ionization and excitation, and dashed lines 
are for radiation (from [1]) 
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2 2E
M

=v ,                                                                      (4.7) 

where M is the particle mass. After replacing v2 in Eq. (4.1) with the expression (4.7) and taking into 
account that for non-relativistic particles β << 1, we obtain: 

2 4
e

2
e0

41 ln
8π

m Ez e nMS
m E IMε

= .                                                         (4.8) 

We see that ionization energy losses of non-relativistic particles are directly proportional to the mass of 
the particle. Therefore, ionization stopping power of heavy charged particles (e. g. protons) is much larger 
than ionization stopping power of electrons with the same energy. For example, the stopping power for 
0,5 MeV protons is about 2000 times larger than the stopping power for 0,5 MeV electrons. Hence, a 
heavy charged particle is able to travel a much smaller distance in a material than an electron with the 
same energy. 

4.4. Estimation of particle path in a material from initial and final energies. Particle range  
 If the dependence of the stopping power S on particle energy E is known, then it is possible to 
calculate the particle’s path x which corresponds to the decrease of particle energy from the initial value 
E0 to some smaller value E1. Based on the definition of the stopping power, that path is equal to the 
integral 

0

1

d
( )

E

E

Ex
S E

= ∫ .                                                                   (4.9) 

By replacing S(E) with its expression (4.6), we obtain 
0

1

0 12 2
1 d 1 ( , )

( )

E

E

Ex g E E
f Ez zρ ρ

= ≡∫ ,                                                 (4.10) 

where g(E0, E1) is a universal function of initial and final energies of the particle. Thus, if we know the 
path x1 that the particle travels in a material, we can easily calculate the equivalent path x2 in a different 
material, which corresponds to the same decrease of particle energy (from E0 to E1): 

1
2 1

2 2

mxx xρ
ρ ρ

= ≡ ,                                                              (4.11) 

where ρ1 and ρ2 are densities of the two materials, and xm is the so-called “mass path” – the product of the 
path x and density of the material: 

mx xρ≡ .                                                                   (4.12) 
The mass path is the mass of a column of matter with height equal to the true path length x and with unit 
cross-section area (in the above example, the mass path must be equal in both materials). 
 A similar concept to the mass path is the mass thickness dm, which is defined as the product of 
thickness d of a layer of a material and its density: 

md dρ≡ .                                                                   (4.13) 
In general, if a particle falls normally to a layer of a material and emerges from its other side, the path 
travelled inside that layer is different from the layer thickness, because particle’s trajectory inside the 
layer may not be straight. Since the path is the length of the trajectory (regardless of its shape), the path is 
in general longer than the thickness. However, since heavy charged particles travel in straight lines, the 
path of those particles is equal to the layer thickness (assuming that the particles fall normally to its 
surface). Therefore, in the case of heavy charged particles the path x in the relation (4.11) may be 
replaced with thickness of the layer of the material d: 

1
2 1

2 2

mdd dρ
ρ ρ

= ≡ .                                                            (4.14) 

This formula allows calculating thickness d2 of a material 2, such that the particles passing through that 
layer lose the same amount of energy as they lose passing through a layer of material 1 with thickness d1. 
 The particle range is the total path traveled by the particles in the material until the particle stops. 
In other words, the range is the total length of the particle’s trajectory. The range can be expressed via the 
stopping power of the material. That expression is a separate case of a more general relation (4.9), with E1 
equal to 0: 
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0

0

d
( )

E ER
S E

= ∫ ,                                                            (4.15) 

where E0 is the initial energy of the particle. 
 In general, the particle’s range is not the same as the particle’s penetration depth. The penetration 
depth is defined as the largest distance between the surface of the material and the particle as it travels 
inside the material. The penetration depth depends on the shape of the particle’s trajectory and is always 
smaller than the range. Since interaction with atoms of the material is of random nature, different particles 
will be deflected differently, so that their penetration depths will be different (even if those particles are 
identical and have equal initial energies). However, their ranges in the material will be very similar 
(practically equal to each other). The difference between range and penetration depth is especially 
pronounced in the case of electrons, because of their erratic paths (see Fig. 4). In contrast, the range of 
heavy charged particles is practically equal to their penetration depth (if the beam of particles is normal to 
the surface of the material), because heavy charged 
particles move in straight lines. 
 The mentioned difference between the 
shapes of trajectories of heavy charged particles and 
electrons becomes especially evident from 
comparison of their absorption curves – 
dependences of particle count rate on thickness of 
the material (see Fig. 3 and Fig. 5). In Fig. 3, we see 
that the initial part of the absorption curve of heavy 
charged particles is horizontal. This is because 
heavy charged particles that initially moved towards 
the detector will be still moving towards it after 
passing a layer of a material whose thickness is less 
than the particle range. Assuming that the detector is 
ideal (i. e. it detects any particle that reaches it, 
regardless of the particle’s energy), we can conclude 
that presence of a material between the particle 
source and the detector has no effect on the detection probability of the particle (the material only slows 
down the particles, but does not affect their direction of motion). This situation is changed when thickness 
of the material approaches the particle range. Then some particles lose all their energy and do not reach 
the detector, so the count rate drops abruptly. The shape of electron absorption curve is quite different 
(see Fig. 5). The number of electrons that reach the detector starts to decrease immediately when the layer 
thickness d is increased. This is because an increase of d causes an increase of probability that an electron 
will miss the detector due to its scattering in the layer. 
 Due to statistical nature of the energy transfer to an atom, ranges of identical particles with equal 
initial energies are slightly different. Therefore, when the layer thickness becomes equal to the range, the 
count rate does not immediately drop to zero. That drop is gradual (see Fig. 3). The distance where the 
count rate becomes equal to half of its maximum value is equal to the average range. This is the quantity 

Fig. 5. Absorption curves of electrons with various initial energies 
Fig. 4. Scattering of a parallel beam of 
electrons (“beta particles”) in matter 
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that is most frequently used in practice. Further on, we will refer only to the average range, therefore the 
word “average” will be omitted. 
 If ionization energy losses dominate, then the particle range can be expressed by formula (4.10), 
where E1 = 0: 

0

02 2
0

1 d 1 ( )
( )

E ER E
f Ez z

ϕ
ρ ρ

= ≡∫ ,                                              (4.16) 

where ϕ(E0) is a universal function of the particle’s initial energy. Thus, if the range R1 of the particle in 
material 1 is known, than its range R2 in material 2 can be calculated using a simple relation 

1
2 1

2

R Rρ
ρ

= ,                                                             (4.17) 

where ρ1 and ρ2 are densities of the two materials. For this reason, the previously defined concept of 
range is frequently replaced by the concept of mass range Rm, which is equal to the product of range and 
material density: 

mR Rρ= .                                                                (4.18) 
The mass range of charged particles is approximately the same in all materials. 
 The fact that particle range in a given material is proportional to a universal function of particle 
initial energy (see Eq. (4.16)) was important in early years of investigation of radioactivity. Having 
measured the range of α particles in a given material and knowing the function ϕ(E) and density ρ of the 
material, it is possible to calculate approximate energy of the α particle. Since now there are detectors 
whose signal height directly reflects particle energy, such indirect methods of energy measurements are  

4.5. Detector pulse height spectrum 
 The most common method of 
measuring particle kinetic energy is based on 
the fact that the number of free charge carriers 
created due to absorption of particle’s energy 
in a material is directly proportional to the 
absorbed energy. The mentioned number of 
carriers can be easily measured by applying a 
strong enough electric field which separates 
the opposite charge carriers (such as electrons 
and holes in a semiconductor or electrons and 
positive ions in a gas chamber) and collects 
them on the electrodes of a capacitor. This 
results in a voltage pulse whose height (H) is 
proportional to the collected charge and to the 
absorbed energy. 
 By measuring the heights of a large 
number of voltage pulses, we would notice that 
those heights are not equal to each other. In 
other words, those heights are statistically 
distributed. This distribution may be caused by 
imperfection of the detector (i. e., the pulse 
heights may have a random component even 
when the absorbed energy is exactly the same), 
or it may reflect the distribution of the 
absorbed energy. Therefore, the pulse height 
distribution is frequently used when 
investigating the energies of incident particles 
or when evaluating quality of the detector. 
 The statistical distribution of pulse heights is usually represented in the form of a differential 
pulse height spectrum. An example of such a spectrum is shown in Fig. 6a. The horizontal axis 
corresponds to pulse height. The vertical axis corresponds to the number of pulses with a particular 
height. Let us denote this number as ΔN. In order to define this number, it is necessary to define a 

Fig. 6. Examples of differential and integral pulse height spectra 
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particular interval of pulse heights. Let us denote the width of this interval as ΔH. Thus, ΔN is the number 
of pulses with heights between H and H + ΔH. Now, let us take the ratio ΔN / ΔH. If the interval width 
ΔH is small enough, then the ratio ΔN / ΔH would be the same as the ratio of infinitesimal differences 
(differentials) dN/dH. The latter ratio is plotted in Fig. 6a. The number of pulses with heights between H1 
and H2 can be determined by integrating  the differential pulse height spectrum from H1 to H2: 

2

1

1 2
d( ) d
d

H

H

NN H H H H
H

< < = ∫ .                                                (4.19) 

This integral is shown as a hatched area in Fig. 6a. The total number of pulses is equal to the integral of 
the entire differential pulse height spectrum: 

0
0

d d
d

NN H
H

∞

= ∫ .                                                        (4.20) 

The largest pulse height is given by the abscissa (x-coordinate) of the right edge of the spectrum (for 
example, in the case of Fig. 6a the largest pulse height is H5). The abscissas of the maxima (peaks) of the 
spectrum (e. g., H4 in Fig. 6a) correspond to the most probable pulse heights, i. e. such pulse heights that 
are observed most frequently.  The abscissas of the minima of the spectrum (e. g., H3 in Fig. 6a) 
correspond to least probable pulse heights, i. e., pulse heights that are least likely to be observed. 
 The same information that is contained in a differential pulse height spectrum can be presented in 
the form of an integral pulse height spectrum. The integral pulse height spectrum gives the total number 
of pulses with heights greater than a specified value H. In other words, the integral pulse height spectrum 
is the integral of the differential pulse height spectrum from H to ∞: 

d( ) d
dH

NN H H
H

∞

= ∫ .                                                            (4.21) 

N(H) is always a decreasing function. The value of the integral pulse height spectrum at H = 0 is equal to 
the total number of pulses N0. As in the case of the differential pulse height spectrum, the abscissa of the 
rightmost point of the integral pulse height spectrum is equal to the maximum pulse height (e. g., H5 in 
Fig. 6b). 
 The differential and integral pulse height spectra are equivalent to each other in terms of the 
information that they provide. The value of the differential pulse height spectrum corresponding to any 
value of pulse height H is equal to the absolute value of the slope (i. e. rate of decrease) of the integral 
spectrum corresponding to the same pulse height. The maxima of the differential spectrum correspond to 
the largest slope of the integral spectrum (e. g., point H4 in Fig. 6). The minima of the differential 
spectrum correspond to the smallest slope of the integral spectrum (e. g., point H3 in Fig. 6). In practice, 
the differential pulse height spectrum is used more frequently than the integral pulse height spectrum, 
because small changes of the spectrum can be more easily noticed in the differential spectrum than in the 
integral spectrum. 

4.6. Detector energy resolution 
 Radiation detectors are frequently used for measurements of radiation energy spectrum. Such 
measurements comprise the field of radiation spectroscopy. In this section, we will discuss two related 
concepts that are important in radiation spectroscopy – energy response function and energy resolution of 
a detector. 
 Let us assume that energy of all particles that enter the detector is equal to E0. In the ideal case, 
the heights of all pulses caused by those particles should be also equal to each other and proportional to 
that E0: 

0 0H const E= ⋅ .                                                           (4.22) 
However, as mentioned in Section 4.5, detector pulse heights are not equal to each other even when the 
incident particles have equal energies. As a result, the relation (4.22) only applies to the average pulse 
height. I. e., the average pulse height of a real detector is proportional to particle energy. The heights of 
individual pulses are randomly distributed about the average height. As mentioned, this distribution is 
usually presented in the form of a differential pulse height spectrum. The differential pulse height 
spectrum corresponding to a particular energy E0 of incident particles is called the response function of 
the detector corresponding to particle energy E0. We will denote this function G(H; E0). The pulse height 
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H is the argument of the response function, while the particle energy E0 is its parameter. The shape of the 
response function is Gaussian: 

2
0 0 0

0 2
( ( ))( ; ) exp

22π
N H H EG H E

σσ
⎛ ⎞−

= −⎜ ⎟
⎝ ⎠

,                                         (4.23) 

where H0 is the average pulse height 
(given by (4.22)), σ is the standard 
deviation of pulse height, and N0 is 
the total number o pulses (i. e. the 
integral of the response function 
from −∞ to +∞). An example of a 
detector response function is shown 
in Fig. 7. The statistical uncertainty 
of pulse height is reflected by the 
width of the response function. This 
width (ΔH) is usually measured at 
half-height of the peak (that is why 
it is abbreviated FWHM: “full width 
at half maximum”). If the peak is 
Gaussian in shape, then FWHM is 
related to the standard deviation of 
pulse height as follows: 

2,35H σΔ = . 
Fig. 8 shows an example of two response functions corresponding to the same particle energy E0. Since 
the particle energy is the same in both cases, 
the position of the maximum (H0) is the 
same, too (H0 is the average pulse height). If 
the total number of pulses (N0) is the same, 
too, then the areas (integrals) of both peaks 
are also equal to each other. However, it is 
obvious that the widths of those peaks are 
different. The larger width corresponds to 
worse energy resolution. A large width of a 
maximum means that the spread (uncertainty) 
of pulse heights was large, even though each 
interaction of a particle with the detector 
caused the same amount of energy to be 
transferred to the detector material. The 
energy resolution is defined as the ratio of the 
width at half-maximum to the average pulse 
height: 

0

HR
H
Δ

= .                                                                  (4.24) 

Energy resolution of semiconductor detectors that are used in alpha particle spectroscopy is less than 1 %. 
Energy resolution of scintillation detectors that are used in gamma ray spectroscopy is significantly 
worse: 5 % to 10 %. A smaller (better) energy resolution means that the detector can resolve two close 
peaks of the spectrum more easily. If the radiation is composed of particles with two values of energy, 
then the smallest difference of those two energies that can be resolved by a detector is approximately 
equal to RE0, where E0 is the arithmetic average of those two energies. 

4.7. Energy straggling of heavy charged particles 
 As particles pass through matter, their energy distribution becomes wider. Therefore, the 
distribution of pulse heights caused by interaction of those particles with a detector material becomes 
wider, too. However, this does not imply that detector energy resolution deteriorates: energy resolution 
defines detector’s response to particles with a precisely defined energy, and it is characterizes the 

Fig. 7. Detector response function and definition of energy resolution
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detector, not the incident radiation. As mentioned above, detector’s energy resolution is important in 
situations when it is necessary to resolve two close peaks of the particles’ energy spectrum. In this 
experiment, the analyzed energy spectrum has a roughly Gaussian shape (as in Fig. 7), and its width is 
much larger than the width of the detector response function. Under those conditions, the detector’s 
energy resolution has practically no effect on the shape of the pulse height spectrum. I. e., it may be 
assumed that the width of the detector’s response function approaches zero (this corresponds to the ideal 
detector). Then the detector pulse height distribution is determined only by distribution of particle 
energies. Thus, in this case the width of pulse height distribution can not be used to define energy 
resolution as in Fig. 7; instead, it defines the fluctuations of particle energies. 
 The widening of particles’ energy distribution as they pass through matter is called energy 
straggling. The reason of energy straggling is the random nature of a particle’s interaction with an atom 
of the medium. This randomness means that the amount of energy that the particle loses due to its 
interaction with an atom of the material is random. This is evident from the model of the interaction 
described in Section 4.1: the energy transferred to an electron of the atom depends on distance b between 
the electron and the particle (see Fig. 1), and this distance is a random quantity. The stopping power S 
(also defined in Section 4.1) defines the rate of decrease of average energy (corresponding to the average 
pulse height, which is denoted H0 in Fig. 7), but does not provide any information about the change of the 
width of the energy distribution. In earlier sections, the average energy was denoted E. Now, we will use 
this notation to denote the exact energy of a particle, whereas the statistical average of the energy will be 
denoted 〈E〉. The average energy 〈E〉 depends on distance x that the particles have passed through the 
medium. If the initial energy of all particles was E0, then their average energy after traveling the distance 
x in a given material is equal to 

0
0

( ) ( ( ) )d
x

E x E S E x x〈 〉 = − 〈 〉∫ ,                                                      (4.25) 

where S(〈E〉) is the stopping power (it depends on the average energy). The particles with smaller energy 
have traveled a larger distance x, therefore they have experienced a larger number of collisions with 
atoms of the material, therefore their energy has a larger random component. It has been proven 
theoretically [4] that in the case of relatively large energy decrease (when the decrease E0 − 〈E〉 is not 
much less than the initial energy E0) the energy spectrum of heavy non-relativistic charged particles is 
roughly Gaussian in shape: 

2
0

2
( ( ) )( ; ) exp

2 ( )( ) 2π EE

N E E xf E x
xx σσ

⎡ ⎤− 〈 〉
= −⎢ ⎥

⎣ ⎦
.                                         (4.26) 

Interpretation of the energy spectrum f(E; x) is similar to interpretation of the pulse height spectrum 
defined in Section 4.5. The main difference is that the argument of the energy spectrum is the particle 
energy E. The distance x is the parameter of the function (4.26), i. e. the quantity that determines the 
position and width of the Gaussian peak. The area (integral) of the energy spectrum is equal to the total 
number of particles. The width of the peak at half-maximum is equal to 

( ) 2.35 ( )EE x xσΔ = , 
where σE(x) is the standard deviation of particles’ energy after traveling distance x in the material. It has 
been shown [4] that when both the initial energy E0 and the average energy 〈E(x)〉 of alpha particles are 
between 1 MeV and 4 MeV, in the case of sufficiently large energy decrease (so that the Gaussian 
approximation (4.26) is valid) the following approximate expression of the squared standard deviation 
(variance) of the alpha particle energy can be used: 

31.331
2 2 e e 0 0

0
0

2 4 ( )( ) ln 1
3 ( )E
m m E E E xx E
M MI E x E

σ
− ⎧ ⎫⎡ ⎤⎡ ⎤⎡ ⎤ 〈 〉⎛ ⎞ ⎪ ⎪≈ −⎨ ⎬⎢ ⎥⎢ ⎥⎜ ⎟⎢ ⎥ 〈 〉⎝ ⎠⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎪ ⎪⎩ ⎭

.                      (4.27) 

 We can see that both the expression of the stopping power (4.8) and the expression of the energy 
variance (4.27) include only one parameter that depends on elemental composition of the material (the  
“elemental composition” is a set of percent quantities equal to the ratio of the number of atoms of each 
element to the total number of atoms of the material). That parameter is the mean excitation energy I . 
This quantity is usually determined empirically. One of empirical formulas that relate I  to the atomic 
number of the element is the following: 

 I ≈ 9.2 · Z + 4.5 · Z1/3   [eV].                                                 (4.28) 



 13

If the material is composed of several chemical elements, then I  can be expressed in terms of the mean 
excitation energies of constituent elements as follows: 

1

K

k k
k

I c I
=

=∑ ,                                                              (4.29) 

where the sum is over all elements, K is the number of elements in the material, kI  is the mean excitation 
energy of element No. k, and ck is the relative number of atoms of element No. k (i. e. the ratio of the 
number of atoms of that element to the total number of atoms of the material). For example, if the 
material is carbon dioxide (CO2), then the relative number of C atoms is 1/3, and the relative number of O 
atoms is 2/3. 
 

5. Experimental setup and procedure 

5.1. Introduction to the investigation technique 
 In this experiment, the energy spectrum of alpha particles is measured. The detector used for 
those measurements is a semiconductor detector (a silicon surface barrier detector), which generates a 
voltage pulse each time when an alpha particle strikes its front surface. The energy resolution of that 
detector is good enough, and the pulse height is proportional to particle energy (see Eq. 4.22), so that it 
can be assumed that the shape of the detector pulse height spectrum (discussed in Sections 4.5 and 4.6) 
accurately reflects the shape of the alpha particle energy spectrum (discussed in Section 4.7). The pulse 
height spectrum is measured using a device called a multichannel analyzer (MCA). It can be described as 
a number of counters with a common input, with each counter counting only the pulses whose heights 
belong to a specific narrow interval. This narrow interval of pulse heights is called a channel. Channels 
are of equal width, they do not overlap and there are no gaps between them. Therefore, when a voltage 
pulse is applied to the input of the analyzer and when the height of that pulse is between the smallest and 
largest values that can be measured, that pulse is counted by one (and only one) of the mentioned 
counters. Thus, the MCA sorts the pulses by their height. After measuring a large enough number of 
pulses, the pulse height spectrum is obtained. More precisely, the result of measurements is a set of 
numbers, one number per channel. Each number is the number of pulses whose height belongs to that 
channel. Let us denote that number δN. Bearing in mind the definition of the pulse height spectrum given 
in Section 4.5 (as the ratio dN/dH), it may seem that this set of numbers is not exactly the spectrum. 
However, it may be easily written in the conventional form: δN = δN / δH, where δH = 1. In other words, 
the channel width δH should be chosen as the unit of pulse height. 
 In order to determine the particle energy spectrum from the pulse height spectrum, the detector 
has to be calibrated. The aim of calibration is determining the proportionality constant in the relation 
between particle energy and pulse height (4.22). In order to determine that constant, one has to measure 
the average pulse height when the detector is exposed to alpha particles of known energy Ecal. Then the 
energy E of alpha particles that cause pulses of height H can be calculated as follows: 

cal

cal

EE H
H

= ⋅ .                                                              (5.1) 

In this experiment, an open 241Am source is used for calibration. Here, the term “open source” means that 
that the emitted alpha particles do not lose energy in the source cover, hence the energy of alpha particles 
that reach the detector is equal to the energy of particles emitted from the 241Am nuclei (that energy is 
equal to 5.486 MeV). However, the 241Am source used for measuring the alpha particle energy loss in 
gases is covered by a 2 μm-thick foil of gold and palladium alloy, where the alpha particles lose a part of 
their energy before entering the medium that surrounds the source. This is one of the reasons why the 
measured energies of alpha particles are significantly smaller than 5.486 MeV and the width of their 
spectrum is relatively large. Another factor that contributes to decrease of the average energy of alpha 
particles and to widening of their energy spectrum is the alpha particle energy loss in the gas that 
separates the source and the detector. 
 In addition to voltage pulses caused by alpha particles, the detector generates a large number of 
small pulses, which may be caused by external illumination and by thermal noise in the detector 
electronics. Besides, the 241Am nuclei emit low-energy gamma photons (20 keV and 60 keV), which may 
also cause small pulses. In the measured pulse height spectra, those small pulses show up as a high peak 
in the region of small channel numbers (near the left edge of the spectrum). This peak has to be 
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eliminated. This can be achieved by increasing the so-called discrimination level Hd – the smallest pulse 
height that can be registered by the counting circuit. The same effect can be achieved in a slightly 
different way: by decreasing the height of all pulses by a constant small amount. Then the heights of the 
smallest pulses become negative. Those pulses are not registered. The MCA manufactured by the German 
company “PHYWE Systeme” has a software-controlled parameter “Offset”, which defines the mentioned 
decrease of pulse height. The increase of this parameter causes a shift of the pulse height spectrum to the 
left (the part of the spectrum that shifts into the region of negative pulses is eliminated). In the case of the 
mentioned MCA, at the highest gain, a unit of “Offset” corresponds to 40 channels. I. e., when Offset = 1, 
the spectrum shifts by 40 channels; when Offset = 2, the spectrum shifts by 80 channels, etc. Accordingly, 
when the “Offset” parameter is non-zero, Eq. 5.1 has to be modified as follows: 

cal
cal

40 Offset
40 Offset

HE E
H

+ ⋅
= ⋅

+ ⋅
,                                                           (5.2) 

where H and Hcal are channel numbers corresponding to “shifter” spectrum (it is assumed that the 
“Offset” parameter is the same both for the calibration spectrum and for the investigated spectrum). 
 One of the aims of this experiment is investigation of dependence of alpha particle energy on 
distance x traveled by the particle in air at standard pressure (1013 hPa). In order to decrease 
measurement errors and eliminate the need to take into account the change of measurement geometry 
when x is changed, the measurements are done at a constant distance s between the source and the 
detector. Instead, air pressure p is varied. The distance x that the particle has to travel in air at standard 
pressure in order to lose the same amount of energy that it loses after traveling the distance s a pressure p 
can be determined from the formula 

1013 hPa
px s= .                                                                 (5.3) 

Both the source and the detector are inside a glass vacuum vessel. 
 As mentioned in Section 4.1, interaction of heavy charged particles (such as alpha particles) with 
atoms of matter have a very weak effect on the direction of motion of incident particles (it only decreases 
their velocity, i. e. average kinetic energy, and causes energy straggling). Consequently, the paths of alpha 
particles in matter are practically straight. Therefore, an increase of the pressure p causes only the 
decrease of velocity of the particles that strikes the detector and widening of their energy spectrum, but 
the total number of particles reaching the detector per unit time remains practically the same. The latter 
number is equal to the integral of the measured pulse height spectrum (if the duration of spectrum 
measurement is equal to the mentioned unit of time). Thus, energy straggling (i. e. increase of the width 
of the maximum in the measured spectrum) should be accompanied by a decrease of the height of the 
maximum in the measured spectrum (so that the area of the maximum stays the same). Examples of pulse 
height spectra caused by alpha particles at different air pressures and at constant duration of spectrum 
measurement are shown in Fig. 9 (those spectra have been measured using equipment that is different 
from the equipment used in this experiment, therefore the results of this experiment may different from 
those presented in Fig. 9). 
 Using the pulse height spectra measured at different pressures (such as the spectra shown in 
Fig. 9) and the relations (5.2) and (5.3), it is possible to determine the dependence of the alpha particle 
average energy E, stopping power S and energy distribution width W on distance x traveled by the 
particles in air. Let us assume that the total number of measured spectra is L. The quantities pertaining to 
different spectra (such as distribution widths) will be marked by a subscript equal to the number of the 
corresponding spectrum. For example, the average pulse height corresponding to the spectrum No. l 
(l = 1, 2, …, L) will be denoted Hl, and the corresponding width of the pulse height distribution will be 
denoted WHl. Those two quantities should be determined in the following way. First, a horizontal line 
should be drawn at the height of the half-maximum of the investigated spectrum. The abscissas of the two 
points where it intersects with the curve representing the spectrum will be denoted (1)

lH  and (2)
lH (here, 

(2) (1)
l lH H> ). Then 

(1) (2)

2
l l

l
H HH +

= ,                                                                (5.4) 

(2) (1)
Hl l lW H H= − .                                                               (5.5) 
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Fig. 10. Dependence of alpha particle average energy and stopping power −dE/dx on the path in air at standard 
pressure (from [5]) 

Fig. 9. Alpha particle pulse height spectra corresponding to different values of air pressure (from [5]). The 
measurement duration is the same for all spectra. Spectra No. 1 – 10 correspond to pressure values from 0 to 
225 hPa (the pressure is varied in increments of 25 hPa) 
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The average energy El of alpha particles corresponding to the l-th spectrum is obtained from Eq. 5.2 after 
replacing H with its expression (5.4). In the same way, we obtain energies (1)

lE  and (2)
lE  corresponding 

to values of the spectrum at half-maximum. Thus, the width of the alpha particle energy distribution 
corresponding to the l-th spectrum is equal to 

(2) (1)
(2) (1)

cal
cal 40 Offset

l l
l l l

H HW E E E
H

−
= − = ⋅

+ ⋅
.                                               (5.6) 

Then it is necessary to calculate the effective distance xl corresponding to each value of pressure pl. If the 
intervals between adjacent values of xl are small enough, then it can be assumed that dependence E(x) is 
approximately linear in the interval xl < x < xl+1. In other words, its derivative dE/dx (which is opposite to 
the stopping power) is approximately constant. The value of the stopping power corresponding to the 
alpha particle energy (El + El+1) / 2 can be calculated as follows: 

1

1 1

1
2

d
2 d l l

l l l l
E EE l l

E E E EES
x x x+

+ +

+
= +

+ −⎛ ⎞ ≡ − ≈⎜ ⎟ −⎝ ⎠
.                                           (5.7) 

Fig. 10 shows examples of dependences of average energy and stopping power on x calculated in this 
way. 
 If the gas pressure does not exceed several atmospheres, then the ideal gas law can be applied: 

mp n kT= ,                                                                  (5.8) 
where nm is concentration of gas molecules, k is the Boltzmann constant, and T is the absolute 
temperature. According to Eq. 5.8, concentration of gas molecules does not depend on the nature of the 
gas (it only depends on pressure and temperature). However, the expression of the stopping power (4.8) 
contains not the molecule concentration nm, but electron concentration n, which is equal to the product of 
molecular concentration nm and the average number of electrons in a molecule 〈N〉: 

mn n N= 〈 〉 .                                                                (5.9) 
If the gas is composed of J types of molecules, then 

1

J

j j
j

N c N
=

〈 〉 =∑ ,                                                            (5.10) 

where cj is the ratio of the concentration of j-th type of molecules to the total molecular concentration nm, 
and Nj is the number of electrons in molecules of j-th type. For example, 78.08 % of dry air molecules are 
the molecules of nitrogen (chemical formula N2; electron number N1 = 14), 20.95 % are the molecules of 
oxygen (O2; electron number N2 = 16), 0.93 % are the molecules (atoms) of argon (Ar, electron number 
N3 = 18) and 0.038 % are the molecules of carbon dioxide (CO2, electron number N4 = 22). Thus, the 
average number of electrons in a molecule of air is 

air 0.7808 14 0.2095 16 0.0093 18 0.00038 22 14.46N〈 〉 = ⋅ + ⋅ + ⋅ + ⋅ ≈ . 
We see that the average number of electrons in a molecule of air is approximately equal to the number of 
electrons in a molecule of nitrogen. Therefore, energy loss of alpha particles in air should be very similar 
to their energy loss in nitrogen of the same pressure. 
 Fig. 11 shows pulse height spectra obtained using three different gases of the same pressure 
(measurement duration was the same in all cases). Obviously, the spectrum corresponding to helium (He) 
is very similar to the spectrum obtained at vacuum (i. e., the particle energy loss is relatively small). The 
largest energy loss corresponds to CO2. This is because the helium molecule (atom) has the smallest 
number of electrons of the three gases (in the case of helium, N = 2) and the CO2 molecule has the largest 
number of electrons (N = 22). 
 From Eq. 5.8 and Eq. 5.9 it follows that electron concentration (n) is equal to p〈N〉 / (kT). This 
means that, at a given pressure and temperature, the factor in front of the logarithm in the expression of 
stopping power (4.8) is proportional to the average number of electrons in a molecule of the gas (〈N〉). 
This is the only property of the gas that appears in the mentioned factor. Therefore, if the values of the 
logarithm in Eq. 4.8 were the same for all gases, then the ratio S / 〈N〉 would be also the same for all gases 
of equal pressure and temperature. However, the mean excitation energy I of different gases is different, 
therefore values of the logarithm in Eq. 4.8 for different gases are slightly different, hence values of 
S / 〈N〉 are also different. 
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 In this experiment, the composition of the investigated gas is changed by first evacuating the 
vacuum vessel and then by filling the vessel with the investigated gas. However, since the ideal vacuum 
can not be achieved, the final composition of the gas includes air, too. This fact must be taken into 
account when calculating the average electron number in a molecule 〈N〉 and the mean excitation energy 
I . If the residual air pressure is pair and the final pressure (after filling the vessel with the investigated 
gas) is p, then, after applying equations (5.8) – (5.10), we obtain the following expression of the average 
electron number in one molecule of the gas that fills the vessel: 

air air
air g

p p pN N N
p p

−
〈 〉 = 〈 〉 + ,                                                   (5.11) 

where Ng is number of electrons in one molecule of the investigated pure gas (in this experiment, the 
investigated pure gases are helium, nitrogen and carbon dioxide). 

5.2. Equipment 
 For this experiment, a set of educational equipment manufactured by a German company “Phywe 
Systeme” is used. The main components of the equipment are the following: 

1) alpha detector (semiconductor silicon surface barrier detector), 
2) pre-amplifier for the alpha detector, 
3) open 241Am source for calibration of the alpha detector (activity 3.7 kBq), 
4) covered 241Am source (activity 370 kBq), 
5) container for nuclear physics experiments, 
6) hand-held mano-/barometer, 
7) two-stage diaphragm pump, 
8) multichannel analyzer, 
9) personal computer, 
10) three compressed gas cylinders (helium, nitrogen and CO2), 
11) fine control valve. 

Fig. 11. Pulse height spectra corresponding to different gases of the same pressure (130 hPa). Measurement 
duration was the same for all spectra (from [5]) 
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The general view of the equipment is shown in Fig. 12. The radioactive source must be screwed to the 
adjustable source holder, which is at the right-hand side of the glass vessel (the “preparation side”). The 
detector is at the opposite end of the vessel. The multichannel analyzer has a built-in power supply for the 
detector. The fine control valve (seen at the end of a rubber hose in Fig. 12) is used for two purposes: it is 
necessary for attaching a compressed gas cylinder to the glass vessel as shown in Fig. 13 and for slow 
increase of air pressure during investigation of alpha particle energy loss as a function of air pressure (in 
the latter case the fine control valve must not be attached to the gas cylinder, as shown in Fig. 12). 

Warning: No overpressures are permissible in the vessel in view of the explosion hazard. The three 
knurled nuts on the preparation side of the vessel should therefore be unscrewed on safety grounds (the 
cover will remain tightly sealed as long as vacuum is present in the vessel). 

5.3. Measurement procedure 
1. Connect the equipment as shown in Fig. 12. In the beginning, the multichannel analyzer (MCA) 

must be switched off (i. e., no voltage must be applied to the alpha detector). 
2. Screw the covered 241Am source to the adjustable source holder. In order to do that, the right-

hand side of the glass vessel must be uncovered by removing three nuts. After that, the vessel cover must 
be placed back. 

Warning: The glass vessel must be handled very carefully in order to avoid cracking. At all times, 
the vessel must be in horizontal position, firmly placed on the table. 

3. Switch on the hand-held mano-/barometer. The arrow at the top of the LCD display of the 
manometer must be directed to the symbol “Pext”. Otherwise, it must be directed to that symbol using the 
button „▼“. In this mode, the larger number on the LCD shows the pressure inside the glass vessel and 
the smaller number shows the ambient pressure. The pressure measurement unit is hectopascal 
(1 hPa = 100 Pa). 

Fig. 12. General view of the measurement equipment 
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4. Close the ventilation screw on the left-hand side of the glass vessel. 
5. After checking that the fine control valve is closed, switch on the pump and unscrew the 

pinchcock that is on the rubber hose connected to the pump. Wait until the pressure in the glass vessel 
stops decreasing (if it does not change for more than 2 min, it may be assumed that the lowest pressure 
has been reached). Then close the rubber hose with the pinchcock and switch off the pump. 

6. Set the distance between the covered 241Am source and the detector to 10 cm. 
7. Check that the pre-amplifier switch “α/β” is in the position “α”, the switch “Inv” is in the “Off” 

position (i. e., in the left position), and the switch “Bias” is in the position “Ext” (then the switch “Bias 
Int.” may be in any position). The switch “Bias” that is on the MCA must be in the position “−99 V”. 

8. Switch on the MCA (the mains switch is on its back panel). 
9. Start the program “Measure”. 

10. Prepare the program for the measurements, i. e.: a) click the menu command 
“Gauge/Multi Channel Analyser”, b) select the mode “Spectra recording” and click the button 
“Continue”, c) in the list box “X-Data”, select the item “Channel number” (this means that the quantity 
plotted on the X axis is the channel number), d) enter the number “5” in the text field “Interval width 
[channels]” and press the key “Enter” on the keyboard (then each bar of the graph will correspond to the 
sum of 5 adjacent channels), e) set the slider “Gain” to the rightmost position, f) enter the number “6” in 
the text box that is near the slider “Offset” and press the key “Enter” on the keyboard, g) if the check box 
“Start/Stop” is not checked, then click it, h) click the button “Reset”. Then the program begins measuring 
the pulse height spectrum. 

11. Measure the pulse height spectrum for 5 min. The time should be measured with a precision of 
5 s. In order to stop the measurement, click the check box “Start/Stop” (so that it becomes unchecked). 
Then click the button “Accept data”. Then a new window with the final spectrum opens. 

12. Save the graph. This is done by selecting the menu command “Measurement / Export data…”. 
In the dialog window that pops up, check the boxes “Copy to clipboard” and “Export as metafile”. Then 
create a Microsoft Word file and paste the graph into it. The graph may be additionally edited by inserting 
various labels into. 

13. Save the measurement data in table format for subsequent analysis. In order to do that, select the 
menu command “Measurement / Export data…” again, but in this case check the boxes “Save to file” and 
“Export as numbers”. Then enter the complete file name. Note: In the file, the data will be presented as 
two columns of numbers. The first column contains channel numbers and the second column contains 
corresponding numbers of pulses. Since during the measurements each five adjacent channels were 
merged into a single channel, all channel numbers are multiples of 5. 

14. Open carefully the fine control valve and let air flow into the vessel, maintaining constant 
observation of the manometer. When the pressure inside the vessel increases by approximately 25 hPa, 
close the fine control valve and repeat Steps 10 to 13. In this way, 9 spectra have to be measured (in each 
case, the corresponding value of the pressure has to be written down, too). The pressure has to be changed 
in increments of approximately 25 hPa. 

15. Unscrew the three knurled nuts on the 
right-hand side of the vessel. It is not necessary to 
remove them completely; it is enough that a gap of 
about 2 mm is present between each nut and the 
cover. 

16. Ventilate the vessel by unscrewing the 
ventilation screw on the left-hand side of the vessel. 

17. Connect a compressed gas cylinder to the 
fine control valve (see Fig. 13). At this stage, the 
fine control valve must be closed. Otherwise, all 
gas could escape from the gas cylinder and it would 
be impossible to complete this experiment. Since 
the fine control valve can be inadvertently opened 
when connecting the compressed gas cylinder, the 

Fig. 13. Connecting the compressed gas cylinder to the fine 
control valve 
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connection of the compressed gas cylinder must be done by the laboratory supervisor. 
18. Close the ventilation screw on the left-hand cover of the glass vessel. 
19. Repeat Step 5 (the final pressure should be the same as after Step 5). 
20. Open carefully the fine control valve and let the gas flow into the vessel, maintaining constant 

observation of the manometer. When the pressure inside the vessel increases by approximately 
(20 − 60) hPa, close the fine control valve. The final value of the pressure should be equal to one of the 
values that were obtained in Step 14. 

21. Repeat Steps 10 to 13. 
22. Ventilate the vessel by unscrewing the ventilation screw on the left-hand side of the vessel. 
23. Disconnect the compressed gas cylinder. At this stage, the fine control valve must be closed 

(see the explanation in Step 17). Since the fine control valve can be inadvertently opened when 
disconnecting the compressed gas cylinder, the disconnection of the compressed gas cylinder must be 
done by the laboratory supervisor. 

24. Repeat Steps 17 to 23 with other two compressed gas cylinders (the value of the pressure after 
completing Step 20 should be the same in all cases). 

25. Remove the covered 241Am source and place it into its storage container. Screw the open 241Am 
source to the source holder. Close the glass vessel (the three knurled nuts on the right-hand cover may be 
fastened now). Place the source at a distance of about 5 to 10 mm from the detector (the exact value of 
that distance is not important). 

26. a) Close the ventilation screw on the left-hand side of the glass vessel, b) switch on the pump, 
c) unscrew the pinchcock, d) wait until the pressure inside the vessel stabilizes, e)  close the rubber hose 
with the pinchcock, f) switch off the pump. 

27. Repeat Steps 10 to 13. The only change is that measurement duration is not important at this 
stage; it is sufficient that the total number of pulses exceeds 10000 (the total number of pulses is also 
shown in the graph window of the program “Measure”). 

28. Switch off the MCA, ventilate the glass vessel, open it, remove the open 241Am source from the 
source holder and put it into its storage container. Cover the glass vessel. 

29. Print the measurement data in table format. The tables must only include the channels that 
correspond to the observed maxima. The tables must be formatted so that they are clear. Each table must 
have a title and column headers; values of pressure must be included. Various programs may be used for 
formatting the tables (for example, “Microsoft Word” or “Microsoft Excel”). The list of printers in the 
“Print” dialog that pops up after selecting the menu command “File/Print” must contain the printer that is 
present in the laboratory. Notes: 1) The printer that is currently used in the laboratory is not a network 
printer; instead it is connected to a computer that is connected to LAN. If the system can not establish 
connection with the printer, this probably means that the mentioned computer or the printer is not 
switched on. 2) If the mentioned computer and printer are switched on, but there still is an error message 
after an attempt to print, then open the folder “Computers Near Me” using “Windows Explorer”, locate 
the computer with name “605-K3-2” and connect to it (user name is “Administrator”, and the password 
field must be left empty). Then try printing again. 

30. Write your name and surname on the printed sheets with measurement results. Show them to the 
laboratory supervisor for signing. Those sheets will have to be included in the final laboratory report for 
this experiment. 
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