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Visual material for the course “Nuclear Physics” 
 

Lecture 1 
 

1. Basic facts and definitions 
 

1.1. The nucleus and its constituents 
 
Atomic nucleus consists of Z protons and N neutrons (they are collectively called nucleons). 
Z is called the atomic number, and the total number of nucleons (A = Z + N) is called the mass 
number. 
 
The size of the nucleus is of the order of 10−15 m. 
 
The basic properties of the atomic constituents: 
 
  charge  mass (u) spin (h) magnetic moment (J T−1) 
proton  e  1.007276 1/2  1.411 × 10−26 
neutron 0  1.008665 1/2  −9.66 × 10−27 
electron −e  0.000549 1/2    9.28 × 10−24 
 
Here, the mass is given in atomic mass units (symbol: “u”), which is defined as one twelfth of the 
mass of an unbound neutral atom of carbon-12: 
    1 u = 1.660538921 × 10−27 kg. 
 
 

1.2. Isotopes, isotones and isobars 
 
Common notation of a nucleus: X,A

Z  where X is a symbol of a chemical element (for example, 

notation of a nucleus of carbon-12 is 12
6C ). Isotopes are atoms whose nuclei have the same Z, but 

different N. For example, carbon has three naturally occurring isotopes: 12 13 14
6 6 6C, C and C . 

Isotones are atoms whose nuclei have the same N, but different Z. Isobars have the same mass A, 
but different Z and N. 
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1.3. Nuclear mass and energy 
The very existence of a nucleus means that nucleons are bound together by a force that is strong 
enough to counteract the Coulomb repulsion of protons. The binding energy (B) of a nucleus is 
the energy (i.e., the work by external forces) required to separate it into its constituent nucleons. 
 
The binding energy is the opposite of the total mechanical energy of the nucleons. Since the 
nucleons are bound together, the total mechanical energy is negative. Hence, B > 0. 
 
Relationship between mass and energy: 

2E mc=  
Hence, the negative term −B in the total energy of a nucleus means that the mass of the nucleus is 
less than the sum of masses of the constituent nucleons by the amount equal to B / c2: 

2
p n( , ) ( ) /M A Z Zm A Z m B c= + − −  

The shape of this curve is a result of the combined effect of the nuclear and electrostatic 
(Coulomb) forces. The nuclear force is short-range (~10−15 m), hence it binds a nucleon only to 
its nearest neighbours. The Coulomb force is long-range (each proton interacts with all other 
protons of the nucleus). 
 
Decrease of B / A with increasing A at large values of A reflects an increase of the relative weight 
of the Coulomb interaction in larger nuclei. This decrease of B / A means that energy could be 
released by breaking a heavy nucleus into two, roughly equal fragments (fission). 
 
Decrease of B / A with decreasing A at small values of A reflects the fact that in smaller nuclei a 
larger fraction of nucleons are on the surface of the nucleus. This decrease of B / A means that 
energy could be released by combining two light nuclei into a single nucleus (fusion). 

Fig. 1.1. Binding energy per nucleon as a function of mass number A 
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2. Nuclear potential and energy levels 

2.1. Nucleon states in a nucleus 
A nucleon inside a nucleus is inside a potential well: 
 

 
 
Near the edge of the nucleus, the proton potential energy has a maximum B. Such a type of 
potential energy dependence on coordinate is called a potential barrier. This particular potential 
barrier is called the Coulomb barrier. 
 
Quantum mechanics proves that the total mechanical energy E (i.e., potential energy + kinetic 
energy) of a particle inside a potential well can only be equal to discrete values called energy 
levels. This statement is the result of solving the Schrödinger equation: 

2
2

2 [ ( , , )] 0.m E U x y zψ ψ∇ + − =
h

 

Here, 
2 2 2

2
2 2 2x y z
ψ ψ ψψ ∂ ∂ ∂

∇ ≡ + +
∂ ∂ ∂  

The solutions of this equation are called wave functions of a particle. The meaning of a wave 
function: it is a complex-valued function whose absolute value squared is equal to probability 
density of finding a particle at a given point of space x, y, z: 

2 d| |
d

P
V

ψ =  

This implies the following normalization condition: 
2| | d 1Vψ

∞

=∫  

Fig. 2.1. Schematic representation of the potential energy experienced by (a) a neutron and (b) a 
proton, as a function of distance r from the center of a nucleus. Outside the nucleus, the proton 
experiences the electric force only and its potential energy is Ze2 / (4πε0r). 

Potential energy Potential energy 
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“Standard conditions” that must be satisfied by the wave function: 
(1) the wave function must be finite; 
(2) the wave function must be one-valued; 
(3) the wave function must be continuous. 

When a particle is inside a potential well, the Schrödinger equation only has such solutions at 
particular values of E. Those values are the particle energy levels, and the corresponding 
solutions ψ are the particle wave functions when it is in a given energy level. 
 
The simplest example of a potential well is a one-dimensional box. In this case, |ψ|2 is 
one-dimensional probability density, i.e.,  

2

0

| | d 1.
w

xψ =∫  

Potential energy: 
0,    0 ;

( )
,   0  ir  .

x w
U x

x x w
≤ ≤⎧

= ⎨∞ < >⎩
 

The corresponding Schrödinger equation: 
2

2 2
d 2 0       (0 ).
d

m E x w
x
ψ ψ+ = ≤ ≤

h
 

The boundary conditions follow from the continuity requirement: 
ψ(0) = 0,   ψ(w) = 0. 

By solving this equation with given boundary conditions, we obtain the energy levels: 
2 2 2

2 2
2 2

π      ( 1,2,3,...).
2 8n

hE E n n n
mw mw

= = = =
h

 

and the corresponding wave functions: 
2 π( ) ( ) sin .n

nx x x
w w

ψ ψ= =  

 

x = 0 x w = 

U = 0 U = 8U = 8

88

Fig. 2.2. A one-dimensional rectangular potential well 
and a physical example – a bead sliding without friction 
on a wire and bouncing elastically from the walls 
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Fig. 2.3. Energy levels, wave functions (solid lines) and probability densities (dashed lines) of a 
particle inside a one-dimensional rectangular potential well. Energy E0 is equal to h2/(8mw2) 
 

x = 0 x w = 
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states 
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The simplest model of a nucleon in a nucleus is that of a particle inside a cubic box of side w. The 
solution of the corresponding Schrödinger equation is similar to the one-dimensional case. The 
energy levels corresponding to a particle inside a cubic box: 

( )
2

2 2 2
2        ( , , 1,2,3,...),

8n x y z x y z
hE E n n n n n n
mw

= = + + =  

 
The dimensionless quantities nx, ny, nz are the example of so-called quantum numbers, which are 
used in quantum mechanics to identify quantum states of a system. Each quantum number 
corresponds to a quantity that is conserved when there are no external influences. One of such 
conserved quantities is energy (E). Another one is angular momentum (L, a vector quantity). 
When a particle is inside a spherical potential well (as a nucleon inside a nucleus, or an electron 
inside an atom), then the possible absolute values of the angular momentum vector are given by 

( 1)       ( 0,1,2,...)l l l= + =| | hL  
Here, l is the quantum number of the angular momentum. The projection of the angular 
momentum vector to any given axis (Lz) is conserved, too: 

      ( , 1,... 1, )z l lL m m l l l l= = − − + −h  
The states with l = 0, 1, 2, 3, … are denoted by letters s, p, d, f, … 

The quantum numbers l and ml quantize the orbital angular momentum (i.e., the angular 
momentum that is related to spatial motion of a nucleon around the center of the nucleus). In 
addition to the orbital angular momentum, a nucleon has an intrinsic angular momentum (S), 
which is called spin. The nucleon’s spin quantum number is s = 1 / 2, i.e., 

3| | ( 1)
2

s s= + =S h h  

    ( 1/ 2)z s sS m m s= = ± = ±h  
If nucleon’s orbital angular momentum and the direction of its spin were independent, then the 
quantum state of a nucleon would be completely characterized by four numbers: 

n – the energy quantum number (the number of a state among all states whose other three 
numbers are equal, in the direction of increasing energy), 

l – the orbital momentum quantum number, 
ml – the orbital momentum projection quantum number, 
ms – the spin projection quantum number. 

However, because of spin-orbit interaction, the projections of orbital and spin angular momenta 
of a nucleon are not conserved. The conserved quantities are the total angular momentum 
(J = L + S) and its projection (Jz). The corresponding two quantum numbers are j and mj: 

( 1)j j= +J h| |  
      ( , 1,... 1, )z j jJ m m j j j j= = − − + −h  

a) when l > 0,    1
2j l= ± ; 

b) when l = 0,    1
2j =  

The quantum states of a nucleon are identified using the following four quantum numbers: 
n, l, j, mj. 

The quantum number j is specified as a subscript. For example, “2p3/2” means a nucleon with 
n = 2, l = 1 and j = 3/2. 
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2.2. Energy levels of nuclei 
 
Neutrons and protons in a nucleus occupy energy states subject to the exclusion principle: 
 

No two identical nucleons can have the same set of quantum numbers. 
 
In absence of external fields, nucleon’s energy does not depend on mj. Therefore, each energy 
level can contain up to 2j + 1 nucleons, each having a different value of mj. There are two 
independent systems of energy levels – proton levels and neutron levels. 
 
Each arrangement of nucleons among the energy levels corresponds to a particular energy level 
of the nucleus as a whole. 
 
The spin of the nucleus is defined as its total angular momentum (J), which is a sum of orbital 
and spin momenta of the constituent nucleons. As any other angular momentum, the nuclear spin 
is defined by a quantum number J: 

( 1)J J= +J h| |  
 
Nuclear energy levels are characterized by corresponding energies and spin quantum numbers J: 

 
A nucleus in an excited state normally remains there for a very short time. It loses the excess 
energy by emitting a particle or several particles. Usually the emitted particle is a photon (a 
quantum of electromagnetic radiation). This is the gamma radiation. However, if the energy of 
the state is high enough, the nucleus may emit a heavy particle, such as an α particle (a 4He 
nucleus). 
 
A nuclide is an atomic species characterized by: 1) chemical symbol (or Z); 2) atomic mass A; 
3) energy level of the nucleus. Thus, if isotopes of the same element are in different energy 
levels, they are considered to be different nuclides. 

Fig. 2.4. Lowest energy levels of 12C; each level is labeled by its energy in MeV and total 
angular momentum (or spin) quantum number. Also shown on the same energy scale is the state 
corresponding to separating 12C into an α particle and a 8Be nucleus. 
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2.3. Occurrence and stability of nuclei 
 For each value of the mass number A, there is a particular value of Z corresponding to the 
smallest mass of the nucleus. This value corresponds to the stable nucleus. If Z is larger (a 
“proton-rich” nucleus) or smaller (a “neutron-rich” nucleus), then the nucleus is unstable 
(radioactive). Such a nucleus eventually transforms into a stable nucleus by series of decays. 
There are various types of decays. For example, a proton may be converted into a neutron, or vice 
versa (such a type of radioactivity is called beta radioactivity). Alternatively, the nucleus may 
emit an α particle (alpha radioactivity). 

 
 
 
 
Additional reading for Lecture 1: 
 
[1], p. 6 – 14, 
[2], p. 4 – 7, 9 – 15, 20 – 22, 34 – 37, 65 – 67. 

 
 

Fig. 2.5. Stable and unstable nuclei plotted according to proton number Z and neutron number 
N. Regions of known proton-rich and neutron-rich nuclei are indicated on either side of the band 
of stable nuclei (and very long-lived unstable nuclei), which are represented as black squares. 
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Lecture 2 
 

3. Radioactive decay 
 In radioactive decay, an unstable nucleus (called “parent”) is transformed into a more 
stable nuclide (called the “daughter”). If the daughter nuclide is also radioactive, the process 
continues in a decay chain until a stable nuclide is reached. 
 Radioactivity is a random process. We cannot know exactly when a given unstable nucleus 
will decay and can only specify a probability per unit time that it will do so. That probability is 
called the decay constant. It is frequently denoted by the Greek letter λ. Another quantity, which 
is related to the decay constant, is the decay half-life (t1/2), which is the time taken for half the 
nuclei in a sample to decay: 

1/ 2
ln 2t
λ

=  

The mean time until the decay of a nucleus is called its mean lifetime: 
1τ
λ

=  

 If a given radioactive nuclide is not created (i.e., it is not a daughter of another nuclide, 
and it is not created in any nuclear reaction), then its amount decreases exponentially with time: 

1/ 2/( ) (0)exp( ) (0)2 t tN t N t Nλ −= − ≡  
Decay rate −dN / dt is called activity. Unit of activity is becquerel (Bq): 1 Bq = 1 s−1. 
 All naturally occurring, and the majority of artificially produced, radioactive nuclei are 
either α active, β active, or both, and emit a combination of α, β and γ radiation. Artificially 
produced unstable nuclei may also decay by emitting protons, neutrons or even heavy ions. 

3.1. Alpha decay 
3.1.1. Main properties of alpha decay 
 During α emission, the parent nucleus loses both mass and charge: 

(A, Z) → (A − 4, Z − 2). 
A generalized equation of α decay: 

4 4
2 2X Y HeA A

Z Z
−
−→ +  

An example: 
226 222 4

88 86 2Ra Rn He→ +  
Main properties of α decay: 

1. Z > 82. 
2. Discrete energies of α particles emitted by a particular nuclide. 
3. Narrow energy range of emitted α particles: E = (4 – 8,7) MeV. 
4. Very strong dependence of the decay half-life on the particle energy E. It is given by the 

Geiger and Nuttall law of alpha decay: 

1/ 2lg Dt C
E

= +  

Property No. 1 is related to the fact that α decay is caused by Coulomb repulsion of protons. 
The emitted particle is an α particle (and not, e.g., a proton), because, when an α particle is 
emitted from a nucleus, the total rest mass of the system decreases. The decay energy (Qα) is 
released in the form of kinetic energies of the daughter nucleus and the α particle: 

2
P D D( )Q m m m c E Eα α α= − − = +  
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As evident from the table below, the decay energy is only positive for the case when the emitted 
particle is an α particle, hence this is the only possible type of spontaneous decay. 

Table 3.1 Decay energy for various types of decay of the 232U nucleus 

Emitted 
particle 

Decay energy 
(MeV) 

Emitted 
particle 

Decay energy 
(MeV) 

n 
1H 
2H 
3H 
3He 

−7,26 
−6,12 
−10,70 
−10,24 
−9,92 

4He 
5He 
6He 
6Li 
7Li 

+5,41 
−2,59 
−6,19 
−3,79 
−1,94 

 
Property No. 2 is caused by discrete energy levels of the 
daughter nucleus 
 
Properties No. 3 and 4 are explained by the semi-classical 
theory of α decay by G. Gamow (1928). 
 
Potential energy of the alpha particle: 

2
0

0

/(2π ),        kai ,
( )

0,                  kai .
Ze x x d

U x
U x d

ε⎧ >⎪≈ ⎨
< ≤⎪⎩

 

Height of the Coulomb potential barrier: 
2

max
0

( )
2π

ZeU U d
dε

≈ =  

Fig. 3.2. Dependence of the potential energy of the α particle and daughter nucleus on distance 

dx 

x1 and x2 are solutions of the equation E = U(x). 
d is the sum of the radii of the daughter nucleus and the α particle.   
x1 ≈ d 

Distance 

En
er

gy
 

Fig. 3.1. Explanation of the discrete 
character of α particle velocity 
distribution 

α2( )E2

α1( )E1

α0 0( )E

γ1 γ2

γ3

A

B2

B1

B0



 11

3.1.2. Wave function of a free particle and quantum tunneling 

 
 
One-dimensional Schrödinger equation: 

2

2 2
d 2 ( ( ) )
d

m U x E
x
ψ ψ= −

h
 

In the case of a rectangular potential barrier (see Fig.), the Schrödinger equation is: 
2

21
1 12

2
22
2 22

2
23
1 32

d 0      (I region),
d
d 0     (II region),
d

d 0     (III region).
d

k
x

k
x

k
x

ψ ψ

ψ ψ

ψ
ψ

+ =

− =

+ =

 

1
2 ,mEk =
h

    
0

2
2 ( )m U E

k
−

=
h

 

The general solution: 
1 1 1

2 2 2

3 1 1

exp(i ) exp( i )     (I region),
exp( ) exp( )     (II region),
exp(i ) exp( i )    (III region).

A k x B k x
C k x D k x
F k x G k x

ψ
ψ
ψ

= + −
= + −
= + −

 

 
If the particle source is at x = −∞, then 

G = 0 
 
A is the amplitude of the incident wave, B is the amplitude of the reflected wave, and F is the 
amplitude of the transmitted wave. 
 
The amplitude (A, B, or F) defines the particle flux density. E.g., if a particle is incident on the 
potential barrier, then its flux density is 

2| | .ki N A
m

=
h

 

The transmission probability is defined as the ratio of transmitted and incident flux densities: 
2

2
| | .
| |
FS
A

≡  

Fig. 3.3. Wave function of a particle when there is a potential barrier, whose height exceeds 
the particle energy E 

E

x = 0 x w= 
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By applying the continuity conditions to the functions ψ1, ψ2 and ψ3 and assuming that 
2 1,k w >>  

(i.e., a high and wide potential barrier), the following expression of S is obtained: 

0
2exp 2 ( ) 1S m U E w⎡ ⎤≈ − − ⋅ <<⎢ ⎥⎣ ⎦h

 

Such effect when a particle tunnels through a potential barrier that it classically can not surmount 
is called quantum tunneling. 
 A wide potential barrier of any shape can be constructed as a sequence of a large number 
N of thin potential rectangular barriers. Hence, the transmission probability of such a barrier is 

2

11

2lim exp 2 ( ( ) )d
xN

nN n x

S S m U x E x
→∞ =

⎡ ⎤
≈ ≈ − −⎢ ⎥

⎢ ⎥⎣ ⎦
∏ ∫h  

3.1.3. Derivation of the Geiger-Nuttall law from the expression for S 

 Solutions of equation U(x) = E: 
x1 ≈ d ≈ 10−14 m 

2

2
02π

Zex
Eε

=  

We can imagine the α particle moving back and forth inside the nucleus with a speed v and 
presenting itself at the barrier with a frequency (v / d). Then the decay constant λ can be obtained 
by multiplying that frequency and the transmission probability S: 

S
d

λ ≈
v

 

E = Mv2/2. When E = 10 MeV, v ≈ 2⋅107 m/s. Therefore, 
21 110   [s ]Sλ −≈ ⋅  

Since 

1/ 2
ln2 ,t
λ

=  

we obtain 
1/ 2lg 0.434ln ,t B S≈ −  

where t1/2 is expressed in seconds, and B ≈ –21. Dependence of ln S on E is obtained on the basis 
of the simplifying assumption that E << U inside the barrier: 

2 2 2

1 1 1

2

1 2
0

12 ( ( ) )d 2 ( )d 2 d ( ) ~
2π

x x x

x x x

Zem U x E x mU x x m x const x x
x Eε

− − ≈ − = − = − −∫ ∫ ∫  

(because x2 ~ 1/E, and x1 is approximately constant). Hence, 

1/ 2lg Dt C
E

= +  
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3.2. Gamma emission 

3.2.1. The concepts of gamma radiation and internal conversion 
 The gamma (γ) radiation is electromagnetic radiation whose wavelength is much less than 
the distance between atoms of a solid material, i.e., much less than 10−10 m (1 Å). 
 The most common physical mechanism of γ radiation is a quantum transition of a nucleus 
from an energy level Ea to a lower energy level Eb in the same nucleus. When this occurs, the 
transition energy (Ea − Eb) may appear in the form of a γ-ray photon: 

,a bE h E Eν= = −  
where ν is the radiation frequency. Typical energies of γ-ray photons:  (0.01 – 5) MeV. 
 
Two other physical mechanisms by which a nucleus may lose excitation energy: 
 
In the case of internal conversion, an electron is ejected from one of the atomic orbits. The 
energy of the ejected electron is equal to the difference between the excitation energy E and the 
binding energy εr of the electron:  

Ee = E – εr. 
 
In the case of internal pair formation, an electron-positron pair is created. In this case, the 
excitation energy is converted into the rest energy of two new particles – an electron and a 
positron – and to their kinetic energy. This process is usually weak, except for very high 
transition energies, and can only occur if the available energy exceeds that needed to create the 
pair, which is 2m0c2 = 1.022 MeV, where m0 is the rest mass of an electron. 
 
 Typical lifetimes of excited nuclei: (10−14−10−6) s. However, long-lived excited states with 
lifetimes in excess of 1 min are also possible. They are called metastable states. 
 
 Gamma radiation can also be emitted during annihilation reactions. The most common 
example of such a reaction is annihilation of an electron and a positron: 

e− + e+ → γ + γ + 1.022 MeV 

Fig. 3.4. The decay diagram of 57Co (decay 
type – electron capture). During this decay, 
excited nuclei of 57Fe are formed, which emit 
γ-ray photons of three energies 
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3.2.2. The concept of multipole radiation, its angular momentum and parity 
 
 Notation: 
Ja – the spin quantum number of the initial quantum state of a nucleus; 
Jb – the spin quantum number of the final quantum state of a nucleus; 
l – the angular momentum quantum number of the photon emitted during transition a → b. 
The corresponding vectors of angular momenta will be denoted using bold font: Ja, Jb, l. 
 

| | ( 1)l l= +l h  
(similarly for the other angular momenta). 
 
Conservation of angular momentum:      l = Ja – Jb 
 
According to the general rule of addition of two angular momenta, the following values of l are 
possible: 

| | | |        (excluding 0)a b a bJ J l J J l− ≤ ≤ + =  
Another quantum number (m) gives the projection of the vector l to a given coordinate axis: 

      ( , 1,..., 1, )zl m m l l l l= = − − + −h  

Ja Jbm m m= −  
The possible values of m are: 

, 1,..., 1,m l l l l= − − + −  
If both mJa and mJb are precisely known, then m is uniquely defined by 

Ja Jbm m m= −  
 
 Usually, only the value of l is of interest (m is undefined). The quantum number l is 
referred to as multipolarity of the photon. Electromagnetic radiation having a definite value of l is 
called multipole radiation. Specifically, radiation with l = 1 is called dipole radiation (2l = 2), 
radiation with l = 2 is called quadrupole radiation (2l = 4), radiation with l = 3 is called octupole 
radiation (2l = 8), etc. The same term is applied to a transition that leads to the corresponding 
radiation (e.g., “dipole transition”, etc.). 
 
 The quantum numbers l and m are not sufficient to define electromagnetic radiation 
completely (i.e., to describe the spatial distribution of electric and magnetic field vectors). For 
complete definition, the parity of the radiation field must be given. 
 
 The concept of parity is used to describe symmetry of any function f(r) relative to the 
operation of inversion in which all coordinates are reflected through the origin, i.e., r → −r: 
 even parity:  f(−r) = f(r) 
 odd parity:  f(−r) = −f(r) 
 
 Multipole radiation has a definite parity. The parity of the radiation field is usually treated 
as an additional quantum number, which can be either +1 (even parity), or −1 (odd parity). 
 
 For each value of l, two types of multipole radiation are possible, one having even parity 
and another having odd parity. Parity of electric field is opposite to parity of magnetic field. By 
convention, parity of radiation is synonymous with parity of magnetic field strength H: 
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even-parity radiation:       ( ) ( ),
odd-parity radiation:        ( ) ( ).

− = +
− = −

H r H r
H r H r  

 
 An equivalent way to specify parity is by specifying the type of multipole radiation: 
electric or magnetic. Electric (E) radiation is generated by oscillating electric charge (in the 
context of a nucleus, it is the charge of protons). Magnetic (M) radiation is generated by varying 
electric current (in the context of a nucleus, it is the current caused by orbital motion of protons). 
In addition, magnetic radiation can be caused by oscillating internal magnetic moments of the 
nucleons (i.e., spin magnetic moments). 
 
 Relation between parity and type (i.e., “E” or “M”): 

Parity of electric radiation with multipolarity :          ( 1) ,

Parity of magnetic radiation with multipolarity :    ( 1) .

l

l

l

l

−

− −
 

 
 The parity of dipole radiation is the same as the parity of its source, which can be either 
oscillating charge (for E radiation), o alternating current (for M radiation). 

 Wave functions of a nucleus that is in a definite quantum state also have a definite parity 
Π. In energy diagrams, it is usually indicated to the right of the spin quantum number of the 
nucleus (e.g., “3−” or “2+”). Conservation of parity:  

 
Table 3.2 Selection rules for gamma emission 

Multipolarity Dipole Quadrupole Octupole … 
Type of radiation E1 M1 E2 M2 E3 M3 … 
Parity change Yes No No Yes Yes No … 
 
Transition rate (i.e., radiation intensity) decreases rapidly with increasing multipolarity l. 
Transitions with the smallest allowed l are therefore the most likely. 

if Πa = Πb, then only even-parity radiation is emitted 
if Πa = −Πb, then only odd-parity radiation is emitted 

Fig. 3.5. (a) Electric dipole moment formed by positive and negative charges separated by a
distance r. The dipole moment is equal to qr. (b) Magnetic dipole moment created by a charge q
moving with speed v in a circular loop of radius r. The dipole moment μ is proportional to qr×v 
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3.3. Beta emission and electron capture 
 During β emission, the atomic number changes by ±1, and the mass number does not 
change: 

(A, Z) → (A, Z ± 1). 
There are three types of β decay: 

β − decay: an electron is emitted from the nucleus, Z increases by 1, 
β + decay: a positron is emitted from the nucleus, Z decreases by 1, 
electron capture: an atomic electron is captured into the nucleus, Z decreases by 1. 

 
Fig. 3.6. Energy spectrum of β particles emitted by 210Bi 

 
 Unlike the energy spectrum of α particles or gamma photons, the β particle energy 
spectrum is continuous. However, it is known that the total decay energy is uniquely defined (it is 
equal to the difference of the rest energies of the parent nucleus and daughter nuclei). This means 
that a part of the decay energy is carried away by another particle. That particle is neutrino or 
antineutrino. 
 
 During β − or β + decay, one neutron inside the nucleus transforms into a proton or vice 
versa: 

n p e ,            p n eν ν− +→ + + → + +  
During electron capture, one proton inside the nucleus transforms into a neutron (as in β + decay): 

p e n ν−+ → +  
 

3.4. Radioactive decay chains. Radioactive dating 
… see [1], p. 19 – 22. 
 
Additional reading for Lecture 2: 
[1], p. 14 – 22, 65 – 67, 84 – 88. 
[2], p. 160 – 165, 170 – 184, 246 – 254, 272 – 277. 
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Lecture 3 
 

4. Nuclear reactions 

4.1. Introduction. The concept of a nuclear reaction 
 A nuclear reaction is any transformation of a nucleus caused by interaction (“collision”) 
with an incident particle. If a nucleus X is bombarded with a particle “a” and transforms into a 
nucleus Y, emitting a particle “b”, then such a reaction is written as follows: 

a X Y b+ → +     or     X (a, b) Y 
A group of reactions which have the same incident and emitted particles (“a” and “b”, 
respectively) is called “(a,b) reactions”. Reaction energy, or Q value: 

2
a X b Y( )Q m m m m c= + − −  

If Q > 0, then the reaction is exothermic, and if Q < 0, then it is endothermic. 

4.2. The concept of the reaction cross-section 
 Reaction cross-section σ is an area whose value is chosen on the basis of this requirement: 
the geometric probability for an incident particle to strike that area must be equal to the 
probability that the incident particle will induce the nuclear reaction. 

dd dSP n x
S

σ
′

= =  

When several types of collision outcomes are possible, 

i
i

σ σ=∑  

(σi is the cross-section of the reaction with i-th outcome). 
When several types of targets are present, 

i i
i

pσ σ=∑  

(σi is the cross-section of the reaction with targets of i-th 
type, and pi is the fraction of those targets). Cross-
sections are usually measured in barns. 1 b = 10−28 m2. 

Mean free path is the average distance traveled 
by the incident particle until the reaction event: 

1l
nσ

=  

(n is the target concentration). Derivation of the mean 
free path expression: number of targets (e.g., atoms) 
inside the cylinder shown in Fig. 4.2 is 

,N xnσ=  
1 .x xl

N xn nσ σ
= = =  

If several types of collisions are possible, 
1 1

i il l
=∑  

Fig. 4.1. Explanation of the 
reaction cross-section σ 

dx

S

Fig. 4.2. For derivation of the mean free path 

x
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Macroscopic cross-section is the reaction cross-section corresponding to unit volume of the 
target material: 

d 1
d
P n
x l

Σ σ= = =  

Reaction rate R is the number of reaction events per unit time in a given volume V. Derivation of 
the expression for R: from expression of dP it follows that 

d d
d d
P xn n
t t

σ σ= ≡ v  

inc inc inc
d ,
d
PR n V n n V N n N j Vj
t

σ σ σ Σ= = = = =v v  

where v is velocity of incident particles, ninc is concentration of incident particles, N = nV is the 
number of targets inside volume V, and j = nincv is the flux density of incident particles (i.e., 
number of particles per unit time and unit area). 

A cross-section can be defined for any type of interaction. Usually, the interaction is defined by: 
(1) types and energies of primary particles (e.g., incident and target particles); 
(2) the reaction outcome, i.e., types and energies of secondary particles (“reaction products”). 

However, when defining the reaction outcome, we can be even more specific and analyze only 
the reactions when secondary particles move in specific directions. This is when the concept of 
“differential cross-section” is useful. Let us define dσ(θ, φ) as cross-section of such interaction 
when the secondary particle moves into an infinitesimal solid angle dΩ in direction defined by 
polar and azimuthal angles (θ, φ). Then the differential cross-section is defined by 

d
dΩ
σσ
Ω

=  

Unit of measurement of the differential cross-section is b/sr (barn per steradian). 
Total cross-section: 

2π π

0 0

d d sin dΩ Ωσ σ Ω φ σ θ θ= ≡∫ ∫ ∫  

Usually, σΩ does not depend on 
φ. Then 

π

0

2π sin dΩσ σ θ θ= ∫  

 
 
 
 
 
 
 
 
 
 
 

4.3. Isotope production 
… see [1], p. 25 – 26. 

Fig. 4.3. For explanation of differential cross-section 
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x

y
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r
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w

d
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4.4. Examples of nuclear reactions 

4.4.1. Elastic scattering 
a X X a+ → +  

A separate case of elastic scattering is elastic Coulomb scattering, or Rutherford scattering. 
2

2
0

1
4π

zZeF
rε

= ⋅  

If we assume that the target nucleus is infinitely massive, then the Rutherford scattering 
differential cross-section is given by 

2 22 2

4 4
0

1 1 ,
4π 416sin ( / 2) sin ( / 2)

d zZe
EΩσ εθ θ

⎛ ⎞ ⎛ ⎞= = ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

 

where d is the minimum distance of approach in the case of a central collision between a nucleus 
with charge +Ze and an incident particle with charge +ze and kinetic energy E: 

2

04π
zZed

Eε
=  

 
4.4.2. Direct reactions 
A direct nuclear reaction is a reaction when the incident particle only interacts with a small 
number of nucleons, which are near the surface of the target nucleus. 
Properties of direct reactions: 

a) relatively small exchange of energy, momentum and mass, 
b) extremely short duration of interaction (~10−22 s). 

 
Examples of direct reactions: 
 
Inelastic scattering:  

*a X X a+ → +  
 
Transfer reactions: 

stripping reaction (e.g., (d,p), (α,d) and (16O, 12C)), 
pickup reaction (e.g., (p,d), (p,t) and (16O, 17O)). 

Fig. 4.4. Rutherford scattering: when the 
impact parameter of an incident particle is 
between b and b + db, then the scattering 
angle is between θ and θ + dθ  (db and dθ 
are of opposite sign) 

|d |θ

θb
db

|d |θ
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4.4.3. Compound nucleus reactions 
In the case of a central or near-central collision between an incident particle and the target 
nucleus, a so-called “compound nucleus reaction” is possible. It proceeds in two stages: 
1) Both interacting particles merge into an intermediate (“compound”) nucleus, which is in an 

excited state. 

2) After 10−16 – 10−18 s, the compound nucleus loses the excess energy, emitting one or more 
particles. 

Properties of the emitted particles depend only on properties of the compound nucleus and do not 
depend on the method of its formation. In this respect, the second stage is similar to radioactive 
decay. Sometimes, several decay types (“decay channels”, or “decay branches”) are possible. 
Likewise, several ways to form a given compound nucleus may exist. 
 
The emitted particles may be: 

• nucleons, 
• nuclei, 
• gamma photons, 
• internal conversion electrons. 

Emission of nucleons is similar to evaporation of a hot liquid. However, if excitation energy is 
less than nucleon binding energy or only slightly larger than the latter, then gamma emission or 
internal conversion is more likely. In such a case, the incident particle is “captured” into the 
target nucleus, hence such a reaction is called a capture reaction. 
 
If the incident particle is a nucleus (e.g., a proton), then formation of the compound nucleus is 
inhibited by the Coulomb potential barrier. However, if the incident particle is a neutron, then 
there is no Coulomb barrier, hence formation of the compound nucleus becomes possible even at 
low energies of the incident neutron. In such a case, reaction probability is inversely proportional 
to the neutron velocity (this is the so-called “1 / v  law”). 

Fig. 4.5. Dependence of cross-section of nuclear reaction 6Li(n,α)t on neutron energy. 
A resonance is evident at 250 keV 
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4.4.4. Resonance in compound nuclear reactions 
Frequently, energy dependence of a compound-nucleus reaction cross-section has several 
maxima. They correspond to an increased probability of formation of the compound nucleus. 
Such an increase is observed when the excess energy supplied to the compound nucleus becomes 
exactly equal to the energy that is needed to excite the nucleus into one of its excited energy 
levels (“natural oscillation frequencies”). This phenomenon is called resonance. Near the 
resonance energy, the reaction cross-section is approximately given by 

2 2
r

1( ) ~
( ) ( / 2)

E
E E

σ
Γ− +  

(this is the so-called Lorentz function, or Breit-Wigner function). 

 
 

 

Fig. 4.7. The total cross-section of neutron interaction with an isotope of cadmium 113Cd. A 
pronounced resonance at 0.17 eV is evident. The asymmetry of the peak is mainly a result of 
superposition of two curves: the “1 / v law” and the Breit-Wigner resonance curve. 

Fig. 4.6. The Breit-Wigner 
resonance curve 
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5. Interaction of radiation with matter 
5.1. Introduction 

 Nuclear radiation is ionizing radiation, i.e., it causes ionization of atoms of the material 
through which it passes. On the one hand, this fact makes nuclear radiation harmful (because 
ionizing action breaks chemical bonds between molecules of the material), but on the other hand, 
this fact facilitates detection of the radiation. 
 According to the manner by which particles interact with matter, four distinct groups of 
particles can be defined: 

1) heavy charged particles (such as alpha particles and nuclei), 
2) light charged particles (such as electrons and positrons), 
3) photons (neutral particles with zero rest mass), 
4) neutrons (neutral heavy particles). 

5.2. Interaction of heavy charged particles with matter 
 Heavy particles are the particles whose mass is much larger 
than the mass of the electron (e.g., protons and nuclei). 
 Charged particles interact with electrons and nuclei of the 
atoms of the material due to Coulomb force. Interaction with 
electrons is much more likely than interaction with nuclei. 
 From conservation of energy and momentum, it follows that 
the maximum energy that can be imparted to an electron (mass me) 
by an incident non-relativistic particle of mass M is 

2e
max e

4 2 ,mE E m E
M

Δ = = <<v  

where E is energy of the incident particle, v is its velocity. 
 Since the number of interaction events is large, and the 
decrease of particle energy after each interaction is small, heavy 
charged particles have a well-defined range in matter (i.e., distance 
traveled until the loss of all initial energy). For the same reason, the 
path of heavy charged particles in matter is straight. 
 Stopping power is defined as the average decrease of 
particle energy after traveling the unit distance (−dE / dx). 
 Formal relation between the range R and stopping power: 

0

0

d
d / d

E ER
E x

=
−∫  

For heavy charged particles, the stopping power is given by the Bethe formula (H. Bethe, 1930): 
22 4

2e
2 2 2
0 e

2d 1 ln ,
d 4π (1 )

mE z e n
x m I

β
ε β

⎡ ⎤
− = −⎢ ⎥

−⎣ ⎦

v
v  

where β = v / c,  z is the charge number of the particle, I is the average ionization energy of the 
material, n is electron concentration: 

,AZ Nn
A
ρ

=  

ρ is density of the material, Z is its atomic number, A is atomic mass of the material. 
 Mass stopping power: −dE/(ρ dx).     Mass range: ρR  (measurement unit is g/cm2). 

Fig. 5.1. The classical model 
of ionization of an atom due to 
Coulomb interaction of its 
electrons with an incident 
heavy charged particle. ze is 
the electric charge of the 
incident particle, −e is the 
electron charge 
 

ze

-e

v

b

x=0

F

F||
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5.3. Interaction of electrons with matter 

 The physical mechanism of electron interaction with matter is the same as in the case of 
heavy charged particles (Coulomb force). However, due to the small mass of the electron, even a 
single collision can change its energy and direction of motion significantly. Therefore, its path in 
matter is random. 
 All charged particles emit electromagnetic radiation when they move with acceleration. 
Since intensity of this radiation is proportional to acceleration squared, it is much more 
pronounced for electrons and positrons than for heavy charged particles. The radiation emitted 
due to sudden changes in direction and speed when electrons or positrons are slowed down in 
matter is called bremsstrahlung (a German term, which means “braking radiation”). Thus, 
electron energy losses consist of two terms: ionization losses and radiation losses. Accordingly, 
two stopping powers can be defined: ionization stopping power and radiation stopping power. 
 At small energies, ionization losses predominate. Radiation losses increase with increasing 
energy of the incident particle, and at higher energies they exceed ionization losses. The critical 
energy, when ionization and radiation losses become equal to each other, is 

2
e

cr
1600 800 MeVm cE

Z Z
≈ ≈  

0,01 0,1 1,0 10
E

MeV

|d /d | / E x ρ
MeV  (g/cm )⋅ 2  1−

0,01

0,1

1,0

10

Pb
Al

Oras

Pb

Al

Oras

Air 

Air 

Fig. 5.2. Mass stopping powers of 
electrons in the air, aluminum and 
lead. Solid lines correspond to 
ionization losses, and dashed lines 
correspond to radiation losses 
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Fig. 5.4. The measured range-
energy relationship for electrons in 
air and in aluminum. This curve is 
approximately the same for any 
other absorber, because in this 
energy range the mass range is 
only weakly dependent on atomic 
number Z of the absorber. 

Aluminum

Air 

Energy (MeV) 

M
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s r
an

ge
 (g

/c
m

2 ) 
Fig. 5.3. Relative transmitted intensity of collimated beams of α particles and electrons as a 
function of absorber thickness. For α particles, the mean range Rα is the point where the 
intensity has fallen to half its initial value; Re is the extrapolated range for electrons. The 
horizontal scale is not the same for the two types of radiation. 
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5.4. Interaction of gamma radiation with matter 
 

Unlike charged particles, photons do not have rest mass, hence they can not be slowed 
down. They can only be scattered or absorbed. In scattering, the photon changes its direction of 
motion (it may also lose a part of its energy, i.e., its wavelength may increase). In absorption, all 
energy of the photon is transferred to the absorber material (i.e., the photon disappears). 

Among the interaction mechanisms of gamma photons with matter, three mechanisms are 
the most important. They are described below. 
 
5.4.1. Compton scattering 
 
 Compton scattering is a type of interaction of a photon with an atom that can be described 
as an elastic collision between the photon and an atomic electron (which can be assumed to be 
free). From the laws of conservation of energy and momentum it follows that the scattered photon 
has a smaller energy (i.e., larger wavelength) than the incident one, because a part of that energy 
is transferred to the electron. The Compton formula gives the increase of wavelength: 

C (1 cos ),λ λ θΔ = −  
where θ is the scattering angle and λC is the Compton wavelength: 

C
e

,h
m c

λ =  

where me is the electron rest mass. 

 
 The atomic Compton scattering cross-section: 

C Ce ,Zσ σ=  
where Z is the atomic number (i.e., the number of electrons in the atom), and σCe is the electronic 
Compton scattering cross-section, which only depends on photon energy. 
 
5.4.2. Photoelectric absorption 
 
 Photoelectric effect is a type of interaction of a photon with an atom when the atom 
absorbs all energy of the photon (i.e., the photon disappears) and one of atomic electrons is 
removed from the atom. Usually, the electron is removed from the innermost electronic shell of 
the atom (the K shell). 
 When photon energy is of the order of 100 keV, the cross-section of photoelectric effect is 
approximately equal to 

Fig. 5.5. (a) Geometry of Compton scattering; (b) the vector relationship between the three momenta
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37 5 7 / 2
f 10 /( )Z hσ ν−≈ , 

where the cross-section σf is expressed in m2, and hν is the photon energy in MeV. 
 
5.4.3. Electron-positron pair production 
 In the electric field of an atomic nucleus, a photon may stop existing by transforming all 
its energy into relativistic energy of two new particles – a free electron and a positron: 

hν = m+c2 + m–c2, 
where m+c2 are m–c2 the total relativistic energies of the positron and the electron (m+ and m– are 
the total relativistic masses of the positron and the electron). Pair production is only possible 
when photon energy is larger than two rest energies of an electron: 2m0c2 ≈ 1,02 MeV. 
 At photon energies less than 3 MeV, the cross-section of pair production is much smaller 
than the cross-section of Compton scattering. 

 
5.4.4. Attenuation coefficient 
 Change of the beam intensity (i.e., number of photons per second per unit area) after 
passing a layer of the absorber material with thickness dx: 

ad d ,I n I xσ= −  
where na is the concentration of absorber atoms and σ is the total interaction cross-section: 

C f pσ σ σ σ= + +  
By integrating, one obtains: 

0 a 0exp( ) exp( ),I I n x I xσ μ= − = −  
where μ is the attenuation coefficient: 

anμ σ=  
Mass attenuation coefficient: 

m
μμ
ρ

=  

Fig. 1. The relative importance of various processes of gamma radiation interaction with matter 
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6. Measuring particle energies 
6.1. Simplified detector model 

1)  Ionizing radiation creates free charge carrier in the detector medium (e.g., electrons and holes 
in a semiconductor, or electrons and positive ions in a gas); 

2)  due to motion of the created free charge carriers in the electric field (which exists in the 
detector), electric current i(t) flows in the detector load circuit. That current is measured. 

Two main operation modes of a detector are pulse mode and current mode. In pulse mode, each 
detected particle creates a separate pulse of current, which is converted into a voltage pulse by a 
device called “preamplifier”. In current mode, only the average current I(t) over a relatively long 
time interval is measured. 
 In order to measure properties of individual particles (such as particle energy), pulse mode 
must be used. The time integral of the detector current pulse gives the total charge Q created in 
the detector due to ionization: 

0

( ) ,
ct

i t dt Q=∫  

where tc is the charge collection time (i.e., pulse duration). 

 
 In pulse mode, the height of each voltage pulse (H) is proportional to Q: 

,QH
C

=  

where C is the sum of the detector capacitance and the effective capacitance of the load circuit of 
the detector. 
 Thus, the pulse height H can be used to measure the charge Q created in the detector due 
to ionization. The charge Q, in turn, can be used to measure the energy absorbed in the detector 
(see next section). 

Fig. 6.1. Examples of detector current pulses. The dashed line indicates the time average of 
the detector current 

i t( )

ttc0

I t( )
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6.2. Detector pulse height spectrum 
For detectors that are used to measure particle energies, the number of free charge carriers 

created due to absorption of particle’s energy in the detector material is directly proportional to 
the absorbed energy. Since the height of each pulse is directly proportional to the charge of the 
mentioned charge carriers, the distribution of pulse heights approximately reflects the distribution 
of energy absorbed in the detector material. The distribution of pulse heights or energies is called 
the spectrum of pulse heights or energies, respectively. 

The number of pulses with heights between H1 and H2 can be determined by integrating the 
differential pulse height spectrum from H1 to H2: 

2

1

1 2
d( ) d .
d

H

H

NN H H H H
H

< < = ∫  

The total number of pulses is equal to the integral of the entire differential spectrum: 

0
0

d d .
d

NN H
H

∞

= ∫  

Fig. 6.2. Examples of differential and integral pulse height spectra 
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6.3. Detector energy resolution 
The pulse height H0 of an ideal detector is proportional to the absorbed energy E0: 

0 0H const E= ⋅  
In the case of real detectors, even when the absorbed energy is the same for all particles, detector 
pulse heights will not be exactly equal to each other. The relation written above only applies to 
the average pulse height. The heights of individual pulses are randomly distributed about the 
average height. That distribution (when E0 is exactly defined) is called the detector response 
function corresponding to the particle energy E0. It is usually Gaussian in shape: 

2
0 0 0

0 2
( ( ))( ; ) exp ,

22π
N H H EG H E

σσ
⎛ ⎞−

= −⎜ ⎟
⎝ ⎠

 

where H0 is the average pulse height, σ is the standard deviation of pulse height, and N0 is the 
total number of pulses. The width of the response function at half maximum (FWHM: “full width 
at half maximum”) is the measure of the detector’s ability to resolve two close peaks in the 
spectrum. In the case of a Gaussian response function, FWHM is related to σ as follows: 

2.35 .H σΔ =  

Additional reading for Lecture 3: 
[1], p. 22 – 32, 129 – 131, 134 – 142. 
[2], p. 378 – 380, 392 – 394, 192 – 204. 
[3], p. 103 − 115. 

Fig. 6.4. Examples of response 
functions for detectors with 
relatively good resolution and 
relatively poor resolution 
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Fig. 6.3. Detector response 
function and definition of 
energy resolution 
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