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The aim of the experiment 
Measure alpha particle energy distribution with a semiconductor spectrometer; test some properties of 
alpha energy spectrum (discrete character of alpha particle spectrum, typical energies of alpha particles 
emitted by radioactive nuclides, proportionality of detector pulse height to energy of incident particle), 
investigate influence of interaction of alpha particles with matter on the shape of their energy spectrum. 

1. Tasks 
1. Measure energy spectrum of alpha particles emitted by a sealed source containing the isotope of 

radium 226Ra, which is in radioactive equilibrium with its decay products. 
2. Measure the calibration spectrum using an unsealed source containing the isotope of americium 

241Am, under the same conditions as in Task 1. 
3. Calculate particle energies corresponding to the peaks of the 226Ra spectrum. 
4. Calculate the differences of alpha particle energies corresponding to various pairs of peaks in the 

226Ra spectrum. 
5. Compare the obtained differences of energies with differences of true (initial) energies corresponding 

to various pairs of nuclides in the decay chain of 226Ra. Under the assumption that all alpha particles 
lose the same energy amount in the source cover, the measured energy differences should be equal to 
differences of corresponding initial energies. Based on this comparison, determine the nuclides 
corresponding each peak in the measured 226Ra spectrum. 

6. Discuss the shape of the spectra (difference of peak widths in 241Am and 226Ra spectra, positions of 
peaks in the 226Ra spectrum, similarities and differences of peak integrals), explain the observed 
features of the spectra on the basis of the theory of alpha particle interaction with matter (i.e., with the 
cover of the 226Ra source) and the theory of radioactive equilibrium. 

2. Control questions 
1. What are the types of ionizing radiation? 
2. Define the concept of radioactivity. Formulate the law of radioactive decay. Derive the expression of 

activity of a radioactive nuclide. 
3. Define the concept of a decay chain. What is radioactive equilibrium? How are amounts of 

radioactive nuclides related to each other under conditions of radioactive equilibrium? 
4. What is alpha decay? What are its main properties? 
5. Formulate the Geiger-Nuttall law, explain it qualitatively. 
6. What is the origin of energy losses of alpha particles in matter? Define the concept of energy 

straggling. 
7. Explain the concept of detector pulse height spectrum and its relation to the particle energy spectrum. 

Define energy resolution of a detector. 
 
Recommended reading: 
1. Krane K. S. Introductory Nuclear Physics. New York: John Wiley & Sons, 1988. p. 160 – 165, 

193  198, 246  254. 
2. Lilley J. Nuclear Physics: Principles and Applications. New York: John Wiley & Sons, 2001. p. 14 – 

15, 18 – 22, 84 – 88, 129  136. 
3. Knoll G. F. Radiation Detection and Measurement. 3rd Edition. New York: John Wiley & Sons, 2000. 

p. 30 – 34. 
4. Payne M. G. Energy straggling of heavy charged particles in thick absorbers // Physical Review, vol. 

185, no. 2, 1969, p. 611 – 623. 
5. Laboratory Experiments. Phywe Systeme GmbH, 2005 (compact disc). 
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3. The types of ionizing radiation 
Ionizing radiation is a flux of subatomic particles (e. g. photons, electrons, positrons, protons, 

neutrons, nuclei, etc.) that cause ionization of atoms of the medium through which the particles pass. 
Ionization means the removal of electrons from atoms of the medium. In order to remove an electron 
from an atom, a certain amount of energy must be transferred to the atom. According to the law of 
conservation of energy, this amount of energy is equal to the decrease of kinetic energy of the particle that 
causes ionization. Therefore, ionization becomes possible only when the energy of incident particles (or 
of the secondary particles that may appear as a result of interactions of incident particles with matter) 
exceeds a certain threshold value – the ionization energy of the atom. Ionization energies of isolated 
atoms are usually of the order of a few electronvolts (eV). 1 eV = 1,6022∙10 19 J. The ionization energies 
of molecules of most gases that are used in radiation detectors are between 10 eV and 25 eV. 

Ionizing radiation may be of various nature. The directly ionizing radiation is composed of high-
energy charged particles, which ionize atoms of the material due to Coulomb interaction with their 
electrons. Such particles are, e. g., high-energy electrons and positrons (beta radiation), high-energy 4He 
nuclei (alpha radiation), various other nuclei. Indirectly ionizing radiation is composed of neutral 
particles, which do not directly ionize atoms or do that very infrequently, but due to interactions of those 
particles with matter high-energy free charged particles are occasionally emitted. The latter particles 
directly ionize atoms of the medium. Examples of indirectly ionizing radiation are high-energy photons 
(ultraviolet, X-ray and gamma radiation) and neutrons of any energy. Particle energies of various types of 
ionizing radiation are given in the two tables below. 

Table 1. The scale of wavelengths of electromagnetic radiation 

Spectral region Approximate wavelength 
range 

Approximate range of 
photon energies 

Radio waves    100000 km – 1 mm      1∙10 14 eV – 0,001 eV 
Infrared rays     1 mm – 0,75 m        0,001 eV – 1,7 eV 
Visible light   0,75 m – 0,4 m            1,7 eV – 3,1 eV 

Ionizing electromagnetic radiation: 
Ultraviolet light        0,4 m – 10 nm         3,1 eV – 100 eV 
X-ray radiation         10 nm – 0,001 nm        100 eV – 1 MeV 
Gamma radiation  < 0,1 nm    > 10 keV 

Table 2. Particle energies corresponding to ionizing radiation composed of particles of matter 

Radiation type Approximate range of particle 
energies 

Alpha ( ) particles (4He nuclei)              4 MeV  – 9 MeV 
Beta ( ) particles (electrons and positrons)              10 keV  – 10 MeV 
Thermal neutrons < 0,4 eV 
Intermediate neutrons               0,4 eV – 200 keV 
Fast neutrons > 200 keV 
Nuclear fragments and recoil nuclei               1 MeV – 100 MeV 

 
 The mechanism of interaction of particles with matter depends on the nature of the particles 
(especially on their mass and electric charge). According to the manner by which particles interact with 
matter, four distinct groups of particles can be defined: 
1) heavy charged particles (such as alpha particles and nuclei), 
2) light charged particles (such as electrons and positrons), 
3) photons (neutral particles with zero rest mass), 
4) neutrons (neutral heavy particles). 
This experiment concerns only the first mentioned type of particles (heavy charged particles). 
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4. Radioactive decay 

4.1. The concept of radioactive decay 
 In radioactive decay, an unstable nucleus (called “parent”) is transformed into a more stable 
nuclide (called the “daughter”). If the daughter nuclide is also radioactive, the process continues in a 
decay chain until a stable nuclide is reached. 
 Radioactivity is a random process. We cannot know exactly when a given unstable nucleus will 
decay and can only specify a probability per unit time that it will do so. This probability is called the 
decay constant. It is frequently denoted by the Greek letter . Another quantity, which is related to the 
decay constant, is the decay half-life (t1/2). It is the time taken for half the nuclei in a sample to decay: 

1/ 2
ln 2t                                                                  (4.1.1)  

The mean time until the decay of a nucleus is called its mean lifetime: 
1                                                                     (4.1.2) 

 If a given radioactive nuclide is not created (i.e., it is not a daughter of another nuclide, and it is 
not created in any nuclear reaction), then its amount decreases exponentially with time: 

1/ 2/( ) (0)exp( ) (0)2 t tN t N t N                                            (4.1.3) 
Decay rate dN / dt is called activity. Unit of activity is becquerel (Bq): 1 Bq = 1 s 1. As evident from the 
previous equation, 

d ( )
d
N N t
t

                                                             (4.1.4) 

I.e., activity of a given nuclide is equal to its decay constant times the current number of atoms of this 
nuclide. The equality (4.1.4) is the differential form of the radioactive decay law (expression (4.1.3) is the 
solution of the differential equation (4.1.4)). 
 All naturally occurring, and the majority of artificially produced, radioactive nuclei are either  
active,  active, or both, and emit a combination of ,  and  radiation. Artificially produced unstable 
nuclei may also decay by emitting protons, neutrons or even heavy ions. 

4.2. Radioactive decay chains. Radioactive equilibrium 
 The daughter nucleus, which is formed due to decay of the parent nucleus, is frequently 
radioactive, too. Its decay product can also be radioactive, etc. Such a sequence of radioactive decays is 
called a decay chain. Let us assume that the decay chain consists of decays A → B → C → ..., whose 
members‘ decay constants are A, B, C, etc. Since the nuclide A is not replenished, the number of nuclei 
of type A decreases exponentially with time according to (4.1.3) 

A
A A( ) (0)e tN t N .                                                        (4.2.1) 

Since nuclei of the type B do not only decay, but are also created (due to decay of the parent nuclide A), 
the differential equation describing the time variation of the number of nuclei of type B has an additional 
positive term, which reflects the decay of the nuclide A: 

B
B B A A

d
d
N N N
t

.                                                    (4.2.2) 

The time function NB(t) can be derived as follows. The first term on the right-hand side of Equation 
(4.2.2) is transferred to the left-hand side, and then both sides of the equation are multiplied by Be t . 
According to the rule of calculating the derivative of a product of two functions, the expression on the 
left-hand side of the resulting equation is the time derivative of B

Be tN : 

B B
B A A

d ( e ) e
d

t tN N
t

.                                                         (4.2.3) 

By substituting (4.2.1) for NA(t), we obtain: 
B B A( )

B A A
d ( e ) (0)e
d

t tN N
t

.                                                  (4.2.4) 

After integrating, 
B B A B A( ) ( )A

B A A A
B A

e (0) e d (0)e ,t t tN N t N K                           (4.2.5) 
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where K is the integration constant. It depends on initial conditions. If there were no nuclei of type B at 
the initial moment of time (i.e., NB(0) = 0), then it follows from (4.2.5) that 

A
A

B A

(0)K N .                                                         (4.2.6) 

By substituting (4.2.6) for K in (4.2.5), the final result is obtained: 
A BA

B A
B A

( ) (0)(e e )t tN t N .                                             (4.2.7) 

 Differential equations similar to Equation (4.2.3) describe the time dependences of all subsequent 
members of the decay chain, too. Fig. 4.1 shows time dependences of the numbers of nuclides of type A, 
B and C when A = B = , and C is a stable nuclide. 
 If the half-life of the daughter nuclide is much larger than the half-life of the parent nuclide (i.e., 
the decay constant is much less: B << A), then it may be assumed that the decay of the mixture of the 
two nuclides is a two-stage process. First, almost all nuclei of type A decay rapidly, transforming into 
nuclei of type B (A → B), and then nuclei of type B decay slowly (B → C). In this case, after a time that 
is much longer than 1 / A, it follows from Equation (4.2.7) that 

B
B A( ) (0)e tN t N .                                                             (4.2.8) 

In another case, when the parent nuclide has a longer half-life than the daughter nuclide ( A < B), the 
number NB at first increases, and finally (after a time that is long enough to ensure that A Be >>et t ), the 
following approximate equality becomes true: 

AA A
B A A

B A B A
( ) (0)e ( )tN t N N t                                          (4.2.9) 

(the larger the value of t, the more precise this approximate equality). Thus, if the parent nuclide is 
longer-lived than the daughter nuclide, the so-called radioactive equilibrium is eventually established: the 
ratio of quantities of both nuclides is constant and equal to 

B A

A B A

N
N

.                                                             (4.2.10) 

If A << B, then 
B A B

A B A

N T
N T

,                                                             (4.2.11) 

where TB and TA are half-lives of nuclides A and B. The latter equality can be rewritten as ANA ≈ BNB. 
According to (4.1.4), the products ANA and BNB are activities of nuclides A and B, respectively. Thus, if 
the half-life of the parent nuclide is much longer than the half-lives of all radioactive daughter nuclides, 
than the condition of radioactive equilibrium can be formulated as follows: at radioactive equilibrium, 
activities of all radioactive nuclides belonging to the same decay chain are equal. 
 If the half-life of the starting nuclide of a decay chain is much longer than half-lives of all 
daughter nuclides, then under conditions of radioactive equilibrium the equality (4.2.11) is true for any 
two nuclides of the same decay chain (with the condition that there is no “branching” of the decay chain, 

Fig. 4.1. Variation with time of the amount of nuclides A, B and C in a decay chain 
A → B → C, where A = B =  and C is stable. Note that NA  NB  NC = 1 at any time. 
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i.e., there are no alternative decay channels, or the probability of one decay channel is much greater than 
probabilities of all other channels). This can be explained as follows. If nuclide B is in equilibrium with 
nuclide A, then, as it follows from Eq. (4.2.11), the rate of decay of B (i.e., BNB) is equal to the rate of its 
production (i.e., ANA). This means that NB decreases with the same decay constant (and half-life) as NA. 
If the half-life of nuclide A is much longer than the duration of an experiment, then NA and NB (as well as 
activities ANA and BNB) are practically constant during the experiment. If the rate of production of any 
radioactive nuclide is constant, then the rate of its decay increases, asymptotically approaching the rate of 
production (this can be proven mathematically by solving Eq. (4.2.2) with ANA replaced by an arbitrary 
positive constant, which has the meaning of the production rate of nuclide B). This means that its quantity 
will eventually become practically constant, too, regardless of its decay half-life. Since the third member 
of the decay chain (nuclide C) is produced by decay of nuclide B, the rate of production of C is equal to 
the rate of decay of B, i.e., to BNB. Since the latter is practically constant, the rate of decay C (i.e., CNC) 
will also eventually become equal to BNB. Thus, the following equation is obtained: 

C CB

B C B

N T
N T

.                                                             (4.2.12) 

The reasoning leading to this result is based only on the assumption that TA >> TB and TA >> TC, but there 
is no restriction on the value of TB / TC (for example, TB may be less than TC). By applying the same 
reasoning to the further members of the decay chain, the relations similar to (4.2.12) are obtained for any 
other pair of nuclides (for example, C and D, D and E, etc.), including non-neighboring members of the 
decay chain (for example, B and D, A and C, A and D, etc.), as long half-lives of all daughter nuclides (B, 
C, D, etc.) are much less than TA. The values of TB, TC, TD, etc. determine only the time needed for a 
particular daughter nuclide (B, C, D, etc.) to attain radioactive equilibrium with nuclide A: this time can 
be approximately obtained by multiplying the maximum half-life of all daughter nuclides starting with 
nuclide B and ending with the current nuclide (B, C, D, etc.) by a factor of 4 or 5. 
 The most frequently encountered types of radioactive decay are alpha decay and beta decay. 
Among those types of radioactive decay, only the alpha decay causes a change of the mass of the nucleus 
(the mass number decreases by 4). Therefore, by expressing the mass numbers of nuclei as A = 4n + k, the 
term k will be the same for all members of a given decay chain (the possible values of k are 0, 1, 2 and 3). 
This means that there are four types of decay chains, each one corresponding to a particular value of k. 
Accordingly, all radioactive nuclides can be grouped into four categories, which are called radioactive  
families or decay families. The starting isotope of each radioactive family is defined as the nuclide which 
has the longest half-live (although this nuclide itself may be a product of decay of other nuclides). Only 
three of the mentioned four decay families have been found in nature. The starting isotopes of those 
families have not completely decayed since formation of Earth. Those are the thorium series (A = 4n, 
starting isotope  the isotope of thorium 232Th), the uranium series (A = 4n + 2, starting isotope  the 
isotope of uranium 238U), and the actinium series (A = 4n + 3, starting isotope – the isotope of uranium 
235U). The final nuclides of those three families are stables isotopes of lead (208Pb, 206Pb and 207Pb, 
respectively). The fourth family – the neptunium series (A = 4n + 1, starting isotope – the isotope of 
neptunium 237Np) – does not naturally occur, because half-lives of all its members are much shorter than 
the age of Earth (e.g., half-life of 237Np is 2.14∙106 years). The final nuclide of the neptunium series can 
be assumed to be the isotope of bismuth 209Bi, because its half-life is so long that it is practically stable 
(this half-life is 2 ∙ 1019 years). The main nuclides of each series are listed in Tables 4.1a d. 
 Equations (4.2.11) and (4.2.12) can be applied to the decay chain starting with the isotope of 
radium 226Ra. Its half-live is 1622 years, whereas the half-live of the longest-lived daughter nuclide 
(isotope of lead 210Pb) is 22 years (see Table 4.1b). Consequently, if the time that passed since formation 
of the source material (containing 226Ra) is much longer than 22 years and if the source is hermetically 
sealed (so that radon 222Rn, which is an inert gas, does not escape to the environment), then all nuclides of 
this decay chain are at equilibrium and the quantity of each nuclide is directly proportional to its half-life, 
i.e., inversely proportional to its decay constant (according to (4.2.11) and (4.2.12)). If the age of the 
source material is not much longer than 22 years, then only the nuclides that are between 226Ra and 210Pb 
are at equilibrium (see Table 4.1b). Table 4.1e is a part of Table 4.1b containing only the main members 
of the 226Ra decay chain (this table omits nuclides 218At, 218Rn, 210Tl and 206Tl, which are formed by 
alternative decay channels, whose probability is very low). 
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Table 4.1a. Thorium series (A = 4n) 

Nuclide Decay type Half-life Decay energy (MeV) Daughter nuclide 
232Th  1.405ꞏ1010 y. 4.081 228Ra 
228Ra  5.75 y. 0.046 228Ac 
228Ac  6.25 h 2.124 228Th 
228Th  1.9116 y. 5.520 224Ra 
224Ra  3.6319 d. 5.789 220Rn 
220Rn  55.6 s 6.404 216Po 
216Po  0.145 s 6.906 212Pb 
212Pb  10.64 h 0.570 212Bi 
212Bi  (64.06 %) 

  (35.94 %) 60.55 min 2.252 
6.208 

212Po 
208Tl 

212Po  299 ns 8.955 208Pb 
208Tl  3.053 min 4.999 208Pb 
208Pb – stable – – 

 

Table 4.1b. Uranium series (A = 4n + 2) 

Nuclide Decay type Half-life Decay energy (MeV) Daughter nuclide
238U  4.468ꞏ109 y. 4.270 234Th 

234Th  24.10 d. 0.273 234Pa 
234Pa  6.70 h 2.197 234U 
234U  245500 y. 4.859 230Th 

230Th  75380 y. 4.770 226Ra 
226Ra  1602 y. 4.871 222Rn 
222Rn  3.8235 d. 5.590 218Po 
218Po  (99.98 %) 

 (0.02 %) 3.10 min 6.115 
0.265 

214Pb 
218At 

214Pb  26.8 min 1.024 214Bi 
218At  (99.90 %) 

 (0.10 %) 1.5 s 6.874 
2.883 

214Bi 
218Rn 

218Rn  35 ms 7.263 214Po 
214Bi  (99.98 %) 

 (0.02 %) 19.9 min 3.272 
5.617 

214Po 
210Tl 

214Po  0.1643 ms 7.883 210Pb 
210Tl  1.30 min 5.484 210Pb 
210Pb  22.3 y. 0.064 210Bi 
210Bi  (99.99987 %) 

 (0.00013 %) 5.013 d. 1.426 
5.982 

210Po 
206Tl 

210Po  138.376 d. 5.407 206Pb 
206Tl  4.199 min 1.533 206Pb 
206Pb – stable – – 
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Table 4.1c. Actinium series (A = 4n + 3) 

Nuclide Decay type Half-life Decay energy (MeV) Daughter nuclide 
235U  7.04ꞏ108 y. 4.678 231Th 

231Th  25.52 h 0.391 231Pa 
231Pa  32760 y. 5.150 227Ac 
227Ac  (98.62 %) 

 (1.38 %) 21.772 y. 0.045 
5.042 

227Th 
223Fr 

227Th  18.68 d. 6.147 223Ra 
223Fr  22.00 min 1.149 223Ra 
223Ra  11.43 d. 5.979 219Rn 
219Rn  3.96 s 6.946 215Po 
215Po  (99.99977 %) 

 (0.00023 %) 1.781 ms 7.527 
0.715 

211Pb 
215At 

215At  0.1 ms 8.178 211Bi 
211Pb  36.1 min 1.367 211Bi 
211Bi  (99.724 %) 

 (0.276 %) 2.14 min 6.751 
0.575 

207Tl 
211Po 

211Po  516 ms 7.595 207Pb 
207Tl  4.77 min 1.418 207Pb 
207Pb – stable – – 

Table 4.1d. Neptunium series (A = 4n + 1) 
Nuclide Decay type Half-life Decay energy (MeV) Daughter nuclide 

237Np  2.14ꞏ106 y. 4.959 233Pa 
233Pa  27.0 d. 0.571 233U 
233U  1.592ꞏ105 y. 4.909 229Th 

229Th  7.54ꞏ104 y. 5.168 225Ra 
225Ra  14.9 d. 0.36 225Ac 
225Ac  10.0 d. 5.935 221Fr 
221Fr  4.8 min 6.3 217At 
217At  32 ms 7.0 213Bi 
213Bi  45.6 min 5.87 209Tl 
209Tl  2.2 min 3.99 209Pb 
209Pb  3.25 h 0.644 209Bi 
209Bi  1.9ꞏ1019 y. 3.14 205Tl 
205Tl – stable – – 

Table 4.1e. The main nuclides of the 226Ra decay chain 
Nuclide Decay type Half-life Energy of  particles (MeV) 

226Ra  1602 y. 4.78 
222Rn  3.825 d. 5.49 
218Po  3.05 min 6.00 
214Pb β  26.8 min – 
214Bi β  19.7 min – 
214Po  1.6 ∙ 10 4 s 7.68 
210Pb β  22 y. – 
210Bi β  5.01 d. – 
210Po  138.4 d. 5.30 
206Pb stable   
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5. Alpha decay 

5.1. Main properties of alpha decay 
 During  emission, the parent nucleus loses both mass and charge: 

(A, Z)  (A  4, Z  2). 
A generalized equation of  decay: 

4 4
2 2X Y HeA A

Z Z  
An example: 

226 222 4
88 86 2Ra Rn He  

Main properties of  decay: 
1. Z > 82. 
2. Discrete energies of  particles emitted by a particular nuclide. 
3. Narrow energy range of emitted  particles: E = (4 – 8,7) MeV. 
4. Very strong dependence of the decay half-life on the particle energy E. It is given by the Geiger 

and Nuttall law of alpha decay: 

1/ 2lg Dt C
E

 

Property No. 1 is related to the fact that  decay is caused by Coulomb repulsion of protons. 
The emitted particle is an  particle (and not, e.g., a proton), because, when an  particle is emitted from 
a nucleus, the total rest mass of the system decreases. The decay energy (Q ) is released in the form of 
kinetic energies of the daughter nucleus and the  particle: 

2
P D D( )Q m m m c E E  

As evident from the table below, the decay energy is only positive for the case when the emitted particle 
is an  particle, hence this is the only possible type of spontaneous decay. 

Table 5.1 Decay energy for various types of decay of the 232U nucleus 

Emitted particle Decay energy (MeV) Emitted particle Decay energy (MeV) 

n 
1H 
2H 
3H 
3He 

7.26 
6.12 

10.70 
10.24 

9,92 

4He 
5He 
6He 
6Li 
7Li 

+5.41 
2.59 
6.19 
3.79 
1,94 

Property No. 2 is caused by discrete energy levels of the 
daughter nucleus (see Fig. 5.1). 
 
Properties No. 3 and 4 are explained by the semi-classical 
theory of  decay by G. Gamow (1928). 
 
Potential energy of the alpha particle (see Fig. 5.2): 

2
0

0

/(2π ),        kai ,
( )

0,                  kai .
Ze x x d

U x
U x d

 

Height of the Coulomb potential barrier: 
2

max
0

( )
2π

ZeU U d
d

 
Fig. 5.1. Explanation of the discrete character of  
particle velocity distribution 

2( )E2

1( )E1

0 0( )E

1 2

3

A

B2

B1

B0
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5.2. Wave function of a free particle and quantum tunneling 

 
 
One-dimensional Schrödinger equation: 

2

2 2
d 2 ( ( ) )
d

m U x E
x

 

In the case of a rectangular potential barrier (see Fig. 5.3), the Schrödinger equation is: 
2

21
1 12

2
22
2 22

2
23
1 32

d 0      (I region),
d
d 0     (II region),
d

d 0     (III region).
d

k
x

k
x

k
x

 

1
2 ,mEk     0

2
2 ( )m U E

k  

The general solution: 
1 1 1

2 2 2

3 1 1

exp(i ) exp( i )     (I region),
exp( ) exp( )     (II region),
exp(i ) exp( i )    (III region).

A k x B k x
C k x D k x
F k x G k x

 

Fig. 5.3. Wave function of a particle when there is a potential barrier, whose height exceeds the particle energy E 

E

x = 0 x w= 

Fig. 5.2. Dependence of the potential energy of the  particle and daughter nucleus on distance 

dx 

x1 and x2 are solutions of the equation E = U(x). 
d is the sum of the radii of the daughter nucleus and the  particle.   x1  d 

Distance En
er

gy
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If the particle source is at x = , then 

G = 0 
 
A is the amplitude of the incident wave, B is the amplitude of the reflected wave, and F is the amplitude 
of the transmitted wave. 
 
The amplitude (A, B, or F) defines the particle flux density. E.g., if a particle is incident on the potential 
barrier, then its flux density is 

2| | .ki N A
m

 

The transmission probability is defined as the ratio of transmitted and incident flux densities: 
2

2
| | .
| |
FS
A

 

By applying the continuity conditions to the functions 1, 2 and 3 and assuming that 

2 1,k w  
(i.e., a high and wide potential barrier), the following expression of S is obtained: 

0
2exp 2 ( ) 1S m U E w  

Such effect when a particle “tunnels” through a potential barrier that it classically can not surmount is 
called quantum tunneling. 
 A wide potential barrier of any shape can be constructed as a sequence of a large number N of 
thin potential rectangular barriers. Hence, the transmission probability of such a barrier is 

2

11

2lim exp 2 ( ( ) )d
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5.3. Derivation of the Geiger-Nuttall law from the expression for transmission probability 
 Solutions of equation U(x) = E: 
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We can imagine the  particle moving back and forth inside the nucleus with a speed v and presenting 
itself at the barrier with a frequency (v / d). Then the decay constant  can be obtained by multiplying this 
frequency and the transmission probability S: 

S
d
v  

E = Mv2/2. When E = 10 MeV, v  2 107 m/s. Therefore, 
21 110   [s ]S  

Since 

1/ 2
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we obtain 
1/ 2lg 0.434ln ,t B S  

where t1/2 is expressed in seconds, and B  –21. Dependence of ln S on E is obtained on the basis of the 
simplifying assumption that E << U inside the barrier: 
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(because x2 ~ 1/E, and x1 is approximately constant). Hence, 
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6. Detecting heavy charged particles 

6.1. Interaction of heavy charged particles with matter 
 In nuclear physics, the term “heavy particles” is applied to particles with mass that is much larger 
than electron mass (me = 9,1ꞏ10 31 kg). Examples of heavy particles are the proton (charge e, mass 
mp = 1,67ꞏ10 27 kg) and various nuclei (for example, 4He nucleus, which is composed of two protons and 
two neutrons). 
 When radiation is composed of charged particles, the main quantity characterizing interaction of 
radiation with matter is the average decrease of particle kinetic energy per unit path length. This quantity 
is called the stopping power of the medium and is denoted S. An alternative notation is dE/dx or |dE/dx| 
(such notation reflects the mathematical meaning of the stopping power: it is opposite to the derivative of 
particle energy E relative to the traveled path x). 
 The main mechanism of the energy loss of heavy charged particles (and electrons with energies 
of the order of a few MeV or less) is ionization or excitation of the atoms of matter (excitation is the 
process when internal energy of the atom increases, but it does not lose any electrons). All such energy 
losses are collectively called ionization energy losses (this term is applied to energy losses due to 
excitation, too). Atoms that are excited or ionized due to interaction with a fast charged particle lie close 
to the trajectory of the incident particle (at a distance of a few nanometers from it). The nature of the 
interaction that causes ionization or excitation of atoms is the 
so-called Coulomb force which acts between the incident 
particles and electrons of the matter. When an incident 
charged particle passes by an atom, it continuously interacts 
with the electrons of the atom. For example, if the incident 
particle has a positive electric charge, it continuously “pulls” 
the electrons (whose charge is negative) toward itself (see 
Fig. 6.1). If the pulling force is sufficiently strong and if its 
time variation is sufficiently fast (i. e. if the incident particle‘s 
velocity is sufficiently large), then some of the electrons may 
by liberated from the atom (i. e., the atom may be ionized). 
Alternatively, the atom may be excited to higher energy 
levels without ionization. 
 Coulomb interaction of the incident particles with 
atomic nuclei is also possible, but it has a much smaller effect 
on the motion of the incident charged particles, because the 
nuclei of the material occupy only about 10 15 of the volume 
of their atoms. 
 Using the laws of conservation of energy and momentum, it can be proved that the largest energy 
that a non-relativistic particle with mass M can transfer to an electron with mass me is equal to 4meE/M, 
where E is kinetic energy of the particle. Using the same laws, it can be shown that the largest possible 
angle between the direction of particle motion after the interaction and its direction prior to the interaction 
is equal to me / M. Since M exceeds me by three orders of magnitude (see above), we can conclude that the 
decrease of energy of a heavy charged particle due to a single excitation or ionization event is much 
smaller than the total kinetic energy of the particle and the incident particle practically does not change its 
direction of motion when it interacts with an atom (i. e., the trajectories of heavy charged particles in 
matter are almost straight). Note: The change of the direction of particle motion is called scattering. 
 The quantum mechanical calculation of the mentioned interaction gives the following expression 
of the stopping power due to ionization energy losses: 

22 4
2e

2 2 2
0 e

21 ln
4π (1 )

mz e nS
m I

v
v

,                                              (6.1.1) 

where v is the particle velocity, z is its charge in terms of elementary charge e (“elementary charge” e is 
the absolute value of electron charge), n is the electron concentration in the material, me is electron mass, 

0 is the electric constant ( 0 = 8,854  10-12 F/m),  is the ratio of particle velocity and velocity of light c 
(i. e.   v / c), and the parameter I  is the mean excitation energy of the atomic electrons (i. e., the mean 

Fig. 6.1. The classical model of ionization of 
an atom due to Coulomb interaction of its 
electrons with an incident heavy charged 
particle. ze is the electric charge of the 
incident particle, e is the electron charge 
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value of energies needed to cause all possible types of excitation and ionization of the atom). This 
formula is applicable when v exceeds 107 m/s (this corresponds to alpha particle energy of 2 MeV). 
 The strong dependence of the stopping power (6.1.1) on particle velocity v, its charge z and 
electron concentration n can be explained as follows. The decrease of particle energy during one 
interaction is directly proportional to the square of the momentum transferred to the atomic electron (this 
follows from the general expression of kinetic energy via the momentum). This momentum is 
proportional to duration of the interaction (this follows from the second Newton’s law), and the latter 
duration is inversely proportional to v. Therefore the mean decrease of particle energy in one interaction, 
(and the stopping power) is inversely proportional to v2. The proportionality of the stopping power to z2 
follows from the fact that the mentioned momentum transfer is directly proportional to Coulomb force, 
which is proportional to z according to the Coulomb’s law. The proportionality of the stopping power to n 
follows from the fact that the mean number of collisions per unit path is proportional to n. 
 The expressions of stopping power (6.1.1) does not include the mass of the incident particle. This 
means that ionization stopping powers of different particles with equal velocity and equal absolute values 
of electric charge z (for example, electron and proton) are equal. However, stopping powers of electrons 
and protons with equal energies are very different. This is because velocity of a particle with a given 
energy is strongly dependent on the particle mass. For example, velocity v and kinetic energy E of a non-
relativistic particle are related as follows: 

2 2E
M

v ,                                                                      (6.1.2) 

where M is the particle mass. After replacing v2 in Eq. (6.1.1) with the expression (6.1.2) and taking into 
account that for non-relativistic particles  << 1, we obtain: 
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We see that ionization energy losses of non-relativistic particles are directly proportional to the mass of 
the particle. Therefore, ionization stopping power of heavy charged particles (e. g. protons) is much larger 
than ionization stopping power of electrons with the same energy. For example, the stopping power for 
0,5 MeV protons is about 2000 times larger than the stopping power for 0,5 MeV electrons. Hence, a 
heavy charged particle is able to travel a much smaller distance in a material than an electron with the 
same energy. 

6.2. Detector pulse height spectrum 
 The most common method of 
measuring particle kinetic energy is based on 
the fact that the number of free charge carriers 
created due to absorption of particle’s energy 
in a material is directly proportional to the 
absorbed energy. The mentioned number of 
carriers can be easily measured by applying a 
strong enough electric field which separates 
the opposite charge carriers (such as electrons 
and holes in a semiconductor or electrons and 
positive ions in a gas chamber) and collects 
them on the electrodes of a capacitor. This 
results in a voltage pulse whose height (H) is 
proportional to the collected charge and to the 
absorbed energy. 
 By measuring the heights of a large 
number of voltage pulses, we would notice 
that those heights are not equal to each other. 
In other words, those heights are statistically 
distributed. This distribution may be caused 
by imperfection of the detector (i. e., the pulse 
heights may have a random component even 
when the absorbed energy is exactly the 

Fig. 6.2. Examples of differential and integral pulse height 
spectra 
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same), or it may reflect the distribution of the absorbed energy. Therefore, the pulse height distribution is 
frequently used when investigating the energies of incident particles or when evaluating quality of the 
detector. 
 The statistical distribution of pulse heights is usually represented in the form of a differential 
pulse height spectrum. An example of such a spectrum is shown in Fig. 6.2a. The horizontal axis 
corresponds to pulse height. The vertical axis corresponds to the number of pulses with a particular 
height. Let us denote this number as n. In order to define this number, it is necessary to define a 
particular interval of pulse heights. Let us denote the width of this interval as H. Thus, n is the number 
of pulses with heights between H and H + H. Now, let us take the ratio n / H. If the interval width H 
is small enough, then the ratio n / H would be the same as the ratio of infinitesimal differences 
(differentials) dn/dH. The latter ratio is plotted in Fig. 6.2a. The number of pulses with heights between 
H1 and H2 can be determined by integrating  the differential pulse height spectrum from H1 to H2: 
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.                                                (6.2.1) 

This integral is shown as a hatched area in Fig. 6.2a. The total number of pulses is equal to the integral of 
the entire differential pulse height spectrum: 
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.                                                        (6.2.2) 

The largest pulse height is given by the abscissa (x-coordinate) of the right edge of the spectrum (for 
example, in the case of Fig. 6.2a the largest pulse height is H5). The abscissas of the maxima (peaks) of 
the spectrum (e. g., H4 in Fig. 6.2a) correspond to the most probable pulse heights, i. e. such pulse heights 
that are observed most frequently.  The abscissas of the minima of the spectrum (e. g., H3 in Fig. 6.2a) 
correspond to least probable pulse heights, i. e., pulse heights that are least likely to be observed. 
 The same information that is contained in a differential pulse height spectrum can be presented in 
the form of an integral pulse height spectrum. The integral pulse height spectrum gives the total number 
of pulses with heights greater than a specified value H. In other words, the integral pulse height spectrum 
is the integral of the differential pulse height spectrum from H to : 

d( ) d
dH

nn H H
H

.                                                            (6.2.3) 

n(H) is always a decreasing function. The value of the integral pulse height spectrum at H = 0 is equal to 
the total number of pulses n0. As in the case of the differential pulse height spectrum, the abscissa of the 
rightmost point of the integral pulse height spectrum is equal to the maximum pulse height (e. g., H5 in 
Fig. 6.2b). 
 The differential and integral pulse height spectra are equivalent to each other in terms of the 
information that they provide. The value of the differential pulse height spectrum corresponding to any 
value of pulse height H is equal to the absolute value of the slope (i. e. rate of decrease) of the integral 
spectrum corresponding to the same pulse height. The maxima of the differential spectrum correspond to 
the largest slope of the integral spectrum (e. g., point H4 in Fig. 6.2). The minima of the differential 
spectrum correspond to the smallest slope of the integral spectrum (e. g., point H3 in Fig. 6.2). In practice, 
the differential pulse height spectrum is used more frequently than the integral pulse height spectrum, 
because small changes of the spectrum can be more easily noticed in the differential spectrum than in the 
integral spectrum. 

6.3. Detector energy resolution 
 Radiation detectors are frequently used for measurements of radiation energy spectrum. Such 
measurements comprise the field of radiation spectroscopy. In this section, we will discuss two related 
concepts that are important in radiation spectroscopy – energy response function and energy resolution of 
a detector. 
 Let us assume that energy of all particles that enter the detector is equal to E0. In the ideal case, 
the heights of all pulses caused by those particles should be also equal to each other and proportional to 
E0: 

0 0H const E .                                                           (6.3.1) 
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However, as mentioned in Section 6.2, detector pulse heights are not equal to each other even when the 
incident particles have equal energies. As a result, the relation (6.3.1) only applies to the average pulse 
height. I. e., the average pulse height of a real detector is proportional to particle energy. The heights of 
individual pulses are randomly distributed about the average height. As mentioned, this distribution is 
usually presented in the form of a differential pulse height spectrum. The differential pulse height 
spectrum corresponding to a particular energy E0 of incident particles is called the response function of 
the detector corresponding to particle energy E0. We will denote this function G(H; E0). The pulse height 
H is the argument of the response function, while the particle energy E0 is its parameter. The shape of the 
response function is Gaussian: 

2
0 0 0

0 2
( ( ))( ; ) exp

22π
n H H EG H E ,                                         (6.3.2) 

where H0 is the average pulse height 
(given by (6.3.1)),  is the standard 
deviation of pulse height, and n0 is the 
total number o pulses (i. e. the integral 
of the response function from  to 
+ ). An example of a detector response 
function is shown in Fig. 6.3. The 
statistical uncertainty of pulse height is 
reflected by the width of the response 
function. This width ( H) is usually 
measured at half-height of the peak 
(that is why it is abbreviated FWHM: 
“full width at half maximum”). If the 
peak is Gaussian in shape, then FWHM 
is related to the standard deviation of 
pulse height as follows: 

2,35H . 
Fig. 6.4 shows an example of two response 
functions corresponding to the same particle 
energy E0. Since the particle energy is the 
same in both cases, the position of the 
maximum (H0) is the same, too (H0 is the 
average pulse height). If the total number of 
pulses (n0) is the same, too, then the areas 
(integrals) of both peaks are also equal to 
each other. However, it is obvious that the 
widths of those peaks are different. The 
larger width corresponds to worse energy 
resolution. A large width of a maximum 
means that the spread (uncertainty) of pulse 
heights was large, even though each 
interaction of a particle with the detector 
caused the same amount of energy to be 
transferred to the detector material. The 
energy resolution is defined as the ratio of the width at half-maximum to the average pulse height: 

0

HR
H

.                                                                  (6.3.3) 

Energy resolution of semiconductor detectors that are used in alpha particle spectroscopy is less than 1 %. 
Energy resolution of scintillation detectors that are used in gamma ray spectroscopy is significantly 
worse: 5 % to 10 %. A smaller (better) energy resolution means that the detector can resolve two close 
peaks of the spectrum more easily. If the radiation is composed of particles with two values of energy, 
then the smallest difference of those two energies that can be resolved by a detector is approximately 
equal to RE0, where E0 is the arithmetic average of those two energies. 

Fig. 6.3. Detector response function and definition of energy 
resolution
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6.4. Energy straggling of heavy charged particles 
 As particles pass through matter, their energy distribution becomes wider. Therefore, the 
distribution of pulse heights caused by interaction of those particles with a detector material becomes 
wider, too. However, this does not imply that detector energy resolution deteriorates: energy resolution 
defines detector’s response to particles with a precisely defined energy, and it characterizes the detector, 
not the incident radiation. As mentioned above, detector’s energy resolution is important in situations 
when it is necessary to resolve two close peaks of the particles’ energy spectrum. In this experiment, the 
analyzed energy spectrum has a roughly Gaussian shape (as in Fig. 6.3), and its width is much larger than 
the width of the detector response function. Under those conditions, the detector’s energy resolution has 
practically no effect on the shape of the pulse height spectrum. I. e., it may be assumed that the width of 
the detector’s response function approaches zero (this corresponds to the ideal detector). Then the 
detector pulse height distribution is determined only by distribution of particle energies. Thus, in this case 
the width of pulse height distribution can not be used to define energy resolution as in Fig. 6.3; instead, it 
defines the fluctuations of particle energies. 
 The widening of particles’ energy distribution as they pass through matter is called energy 
straggling. The reason of energy straggling is the random nature of a particle’s interaction with an atom 
of the medium. This randomness means that the amount of energy that the particle loses due to its 
interaction with an atom of the material is random. This is evident from the model of the interaction 
described in Section 6.1: the energy transferred to an electron of the atom depends on distance b between 
the electron and the particle (see Fig. 6.1), and this distance is a random quantity. The stopping power S 
(also defined in Section 6.1) defines the rate of decrease of average energy (corresponding to the average 
pulse height, which is denoted H0 in Fig. 6.3), but does not provide any information about the change of 
the width of the energy distribution. In earlier sections, the average energy was denoted E. Now, we will 
use this notation to denote the exact energy of a particle, whereas the statistical average of the energy will 
be denoted E . The average energy E  depends on distance x that the particles have passed through the 
medium. If the initial energy of all particles was E0, then their average energy after traveling the distance 
x in a given material is equal to 

0
0
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x

E x E S E x x ,                                                      (6.4.1) 

where S( E ) is the stopping power (it depends on the average energy). The particles with smaller energy 
have traveled a larger distance x, therefore they have experienced a larger number of collisions with 
atoms of the material, therefore their energy has a larger random component. It has been proven 
theoretically [4] that in the case of relatively large energy decrease (when the decrease E0  E  is not 
much less than the initial energy E0) the energy spectrum of heavy non-relativistic charged particles is 
roughly Gaussian in shape: 
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Interpretation of the energy spectrum f(E; x) is similar to interpretation of the pulse height spectrum 
defined in Section 6.2. The main difference is that the argument of the energy spectrum is the particle 
energy E. The distance x is the parameter of the function (6.4.2), i. e., the quantity that determines the 
position and width of the Gaussian peak. The area (integral) of the energy spectrum is equal to the total 
number of particles. The width of the peak at half-maximum is equal to 

( ) 2.35 ( )EE x x , 
where E(x) is the standard deviation of particles’ energy after traveling distance x in the material. It has 
been shown [4] that when both the initial energy E0 and the average energy E(x)  of alpha particles are 
between 1 MeV and 4 MeV, in the case of sufficiently large energy decrease (so that the Gaussian 
approximation (6.4.2) is valid) the following approximate expression of the squared standard deviation 
(variance) of the alpha particle energy can be used: 
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7. Experimental setup and procedure 

7.1. Introduction to the investigation technique 
 In this experiment, the energy spectrum of alpha particles is measured. The detector used for 
those measurements is a semiconductor detector (a silicon surface barrier detector), which generates a 
voltage pulse each time when an alpha particle strikes its front surface. The energy resolution of this 
detector is good enough, and the pulse height is proportional to particle energy (see Equation (6.3.1)), so 
that it can be assumed that the shape of the detector pulse height spectrum (discussed in Sections 6.2 and 
6.3) accurately reflects the shape of the alpha particle energy spectrum (discussed in Section 6.4). The 
pulse height spectrum is measured using a device called a multichannel analyzer (MCA). It can be 
described as a number of counters with a common input, with each counter counting only the pulses 
whose heights belong to a specific narrow interval. This narrow interval of pulse heights is called a 
channel. Channels are of equal width, they do not overlap and there are no gaps between them. 
Therefore, if a voltage pulse is applied to the input of the analyzer and if the height of this pulse is 
between the smallest and largest values that can be measured, then this pulse is counted by one (and only 
one) of the mentioned counters. Thus, the MCA sorts the pulses by their height. After measuring a large 
enough number of pulses, the pulse height spectrum is obtained. More precisely, the result of 
measurements is a set of numbers, one number per channel. Each number is the number of pulses whose 
height belongs to that channel. Let us denote this number n. Bearing in mind the definition of the pulse 
height spectrum given in Section 6.2 (as the ratio dn/dH), it may seem that this set of numbers is not 
exactly the spectrum. However, it may be easily written in the conventional form: n = n / H, where 
H = 1. In other words, the channel width H should be chosen as the unit of pulse height. 

 In order to determine the particle energy spectrum from the pulse height spectrum, the detector 
has to be calibrated. The aim of calibration is determining the proportionality constant in the relation 
between particle energy and pulse height (6.3.1). In order to determine this constant, one has to measure 
the average pulse height when the detector is exposed to alpha particles of known energy Ecal. Then the 
energy E of alpha particles that cause pulses of height H can be calculated as follows: 

cal

cal

EE H
H

.                                                              (7.1) 

In this experiment, an unsealed 241Am source is used for calibration. Here, the term “unsealed source” 
means that the emitted alpha particles do not lose energy in the source cover, hence the energy of alpha 
particles that reach the detector is equal to the energy of particles emitted from the 241Am nuclei (this 
energy is equal to 5.486 MeV). However, the 226Ra source is covered by a 2 m-thick foil of gold and 
palladium alloy, where the alpha particles lose a part of their energy before entering the medium that 
surrounds the source. This is one of the reasons why the measured energies of alpha particles are 
significantly smaller than the true energies of particles emitted by 226Ra and its daughter nuclides (see 
Table 4.1e) the width of their spectrum is relatively large. Another factor that contributes to decrease of 
the average energy of alpha particles and to widening of their energy spectrum is the alpha particle energy 
loss in the gas that separates the source and the detector. 
 In addition to voltage pulses caused by alpha particles, the detector generates a large number of 
small pulses, which may be caused by external illumination and by thermal noise in the detector 
electronics. Besides, 241Am and some of the nuclides in the 226Ra decay chain emit gamma photons, which 
may also cause small pulses. In the measured pulse height spectra, those small pulses show up as a high 
peak in the region of small channel numbers (near the left edge of the spectrum). This peak has to be 
eliminated. This can be achieved by increasing the so-called discrimination level Hd – the smallest pulse 
height that can be registered by the counting circuit. The same effect can be achieved in a slightly 
different way: by decreasing the height of all pulses by a constant small amount. Then the heights of the 
smallest pulses become negative. Those pulses are not registered. The MCA manufactured by the German 
company “PHYWE Systeme” has a software-controlled parameter “Offset”, which defines the mentioned 
decrease of pulse height. The increase of this parameter causes a shift of the pulse height spectrum to the 
left (the part of the spectrum that shifts into the region of negative pulses is eliminated). In the case of the 
mentioned MCA, at the highest gain, a unit of “Offset” corresponds to 40 channels. I. e., when Offset = 1, 
the spectrum shifts by 40 channels; when Offset = 2, the spectrum shifts by 80 channels, etc. Accordingly, 
when the “Offset” parameter is non-zero, Eq. 7.1 has to be modified as follows: 
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,                                                           (7.2) 

where H and Hcal are channel numbers corresponding to the “shifted” spectrum (it is assumed that the 
“Offset” parameter is the same both for the calibration spectrum and for the investigated spectrum). 
 During the measurements, the radioactive source and the detector must be inside a vacuum 
chamber. The vacuum is necessary in order to eliminate the systematic error in the measured energy 
caused by energy losses due to collisions of alpha particles with molecules of air. 

7.2. Equipment and measurement procedure 
 For this experiment, a set of educational equipment manufactured by a German company “Phywe 
Systeme” is used. The main components of the equipment are the following: 

1) alpha detector (semiconductor silicon surface barrier detector), 
2) pre-amplifier for the alpha detector, 
3) unsealed 241Am source for calibration of the alpha detector (activity 3.7 kBq), 
4) sealed 226Ra source (activity 3 kBq; the source was manufactured in 2007, but the age of its 

radioactive material is not known), 
5) vacuum container for nuclear physics experiments, 
6) hand-held mano-/barometer, 
7) two-stage diaphragm pump, 
8) multichannel analyzer, 
9) personal computer. 
 
The view of the equipment is shown in Fig. 7.1. The radioactive source must be fastened to the adjustable 
source holder, which is at the right-hand side of the glass vessel (the “preparation side”). The detector is 
at the opposite end of the vessel. The multichannel analyzer has a built-in power supply for the detector. 
 During this experiment, two spectra must be measured: the calibration spectrum (using the 
unsealed 241Am source) and the investigated spectrum (using the investigated 226Ra source). The sequence 
of actions that must be done with each of the sources is the same; only the optimal distance between the 
source and the detector is different. The description of the measurement procedure is given below: 

1. Remove three nuts on the right-hand cover of the glass vessel and remove this cover (together 
with the adjustable source holder). 

2. Fasten the 241Am source to the adjustable source holder. 
3. Place the vessel cover back to the glass vessel and screw the three nuts. 

Warning: The glass vessel must be handled very carefully in order to avoid cracking. At all 
times, the vessel must be in horizontal position, firmly placed on the table. 
Note: The 241Am source, which is used in this experiment for calibration of the detector, is also 
needed for Experiment No. 9 (in the latter experiment, the measurements with this source take 
about 40 min). If it is determined that the 241Am source is already used in another experiment, 
the current experiment must be started from measuring the 226Ra spectrum. 

4. Switch on the hand-held mano-/barometer. It has two pressure sensors – internal and external – 
and consequently displays two values of pressure. The internal sensor measures the ambient pressure at 
all times. The external sensor is connected to the barometer with a cable, and to the vacuum chamber with 
a rubber tube. The arrow at the top of the LCD display of the manometer must be directed to the symbol 
“Pext”. If not, it must be placed beside this symbol using the button „▼“. In this mode, the larger digits on 
the LCD show the pressure measured by the external sensor (i.e., the pressure inside the glass vessel), and 
the smaller digits show the ambient pressure. The unit of pressure is hectopascal (1 hPa = 100 Pa). 

5. Close the ventilation screw on the left-hand side of the glass vessel. Switch on the pump and 
unscrew the black clamp that is on the rubber tube connecting the pressure sensor to the pump, as well as 
the orange clamp that is on the rubber tube connecting the pressure sensor to the vacuum chamber (see 
Fig. 7.1). Wait until the pressure in the glass vessel drops below 10 hPa. Then close the rubber tubes with 
the two clamps (first – the orange one, then the black one) and switch off the pump. Note: After screwing 
the orange clamp, the pressure shown by the barometer will start growing rapidly, but one should keep in 
mind that this is not the pressure inside the vacuum chamber, which is sealed off by the orange clamp at 
this point. 
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6. Check that the pre-amplifier switch “ / ” is in the position “ ”, the switch “Inv” is in the “Off” 

position (i. e., in the left position), and the switch “Bias” is in the position “Ext” (then the switch “Bias 
Int.” may be in any position). 

7. The switch “Bias” that is on the MCA must be in the position “ 99 V”. Switch on the MCA (the 
mains switch is on its back panel). 

8. Start the program “Measure”. 
9. Prepare the program for the measurements, i. e.: a) click the menu command 

“Gauge/Multi Channel Analyser” (if the program then notifies about a failure to establish connection with 
the MCA, even though it is on and connected to the computer with a USB cable, then restart Windows), 
b) select the mode “Spectra recording” and click the button “Continue”, c) in the list box “X-Data”, select 
the item “Channel number” (this means that the quantity plotted on the X axis is the channel number), 
d) enter the number “10” in the text field “Interval width [channels]” and press the key “Enter” on the 
keyboard (then each bar of the graph will correspond to the sum of 10 adjacent channels), e) set the slider 
“Gain” to the rightmost position, f) enter the number “6” in the text box that is near the slider “Offset” 
and press the key “Enter” on the keyboard, g) if the check box “Start/Stop” is not checked, then click it, 
h) click the button “Reset”. Then the program begins measuring the pulse height spectrum. 

10. Decrease the distance between the source and the detector. Attention! The source holder must 
be pushed into the glass vessel carefully and slowly, so that the source housing does not touch the 
detector (otherwise the detector could be damaged). 

11. The distance between the source and the detector determines the average counting rate (i.e., the 
average number of particles detected per unit time). The counting rate during the last two seconds is 
shown at the bottom of the main window of the program “Measure”. This value can be used to adjust the 
distance between the source and the detector. The optimum distance between the source and the detector 
must be chosen on the basis of those two criteria: 

a) The total number of detected particles: In the case of the calibration spectrum (with 241Am), it 
must be at least 20 000, and in the case of the investigated spectrum (with 226Ra), it must be at 
least 200 000 (the total number of detected particles is also shown, at the bottom left of the 
program window). The total number of detected particles must be as large as possible in order to 
improve the quality of the spectrum (because the relative standard error of the number of particles 

Fig. 7.1. General view of the measurement equipment 
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in each channel is approximately equal to inverse square root of this number). It has been 
determined empirically that the mentioned optimal values of the total number of detected 
particles are sufficiently large for subsequent analysis. Thus, in order to ensure that the total 
measurement duration for each spectrum does not exceed 30 min  2  103 s, the average 
counting rate should exceed 20 000 / 2000 = 10 particles per second in the case of 241Am, and it 
should exceed 200 000 / 2000 = 100 particles per second in the case of 226Ra. 

b) The recovery time: In the case of perfect equipment, the shape of the measured spectrum would 
depend only on the total number of detected particles (because it is the main factor that 
determines the statistical errors of the data). For example, the spectrum measured for 2 hours at 
the average counting rate of 500 particles / s would look practically the same as the spectrum 
measured for 20 hours at the average counting rate of 50 particles per second. However, a certain 
time must pass after each detected particle in order to ensure that the pulse of voltage caused by 
the next detected particle is not distorted (i.e., that it does not overlap with the previous pulse). 
This time is called the “recovery time” of the particle counting system. In order to minimize the 
mentioned distortions, the average time between two detected particles (i.e., the inverse average 
counting rate) must be much longer than the recovery time. In the case of the equipment used for 
this experiment, the mentioned distortions are acceptably small when the average counting rate is 
less than 200 particles per second. Thus, the distance between the detector and the source must be 
such that the average counting rate does not exceed 200 particles per second.  

By merging both those requirements, the following condition for the “optimal” distance between the 
source and the detector is obtained: in the case of the calibration spectrum (with 241Am), this distance 
must be such that the counting rate is between 10 and 200 particles per second, and in the case of the 
investigated spectrum (with 226Ra), this distance must be such that the counting rate is between 100 and 
200 particles per second. 
Note: Since radioactive decay is a random process, the counting rate over the last 2 seconds (which is 

shown by the program), fluctuates in a relatively wide range, and it may occasionally be not inside 
the mentioned optimal interval. However, this is not a problem if the majority of the shown values 
belong to this interval. 

12. Wait until the total number of detected particles exceeds the mentioned value (i.e., 20 000 in the 
case of the calibration spectrum, and 200 000 in the case of the investigated spectrum). In order to stop 
the measurement, click the check box “Start/Stop” (so that it becomes unchecked). Then click the button 
“Accept data”. Then a new window with the final spectrum opens. 

13. Check if the pressure inside the chamber has not become too high during the measurements. To 
do this, one has to unscrew the orange clamp. If the smallest pressure shown by the barometer after 
unscrewing the orange clamp is less than 100 hPa, this means that the increase of the pressure is not 
significant and the results of the measurements are not distorted by energy losses of alpha particles in the 
air that is between the radioactive source and the detector. Note: After the orange clamp is unscrewed, the 
pressure inside the chamber will increase due to an influx of the air from the poorly sealed part of the 
vacuum system (between the two clamps), but the initial increase will be relatively small (less than 
10 hPa), because the volume of the part of the system that is between the two clamps is much less than 
the volume of the vacuum chamber. 

14. Save the graph. This is done by selecting the menu command “Measurement / Export data…”. 
In the dialog window that pops up, check the boxes “Copy to clipboard” and “Export as metafile”. Then 
create a Microsoft Word file and paste the graph into it. The graph may be additionally edited by inserting 
various labels into it. 

15. Save the measurement data in table format for subsequent analysis. In order to do that, select the 
menu command “Measurement / Export data…” again, but now check the boxes “Save to file” and 
“Export as numbers”. Then enter the complete file name. Note: In the file, the data will be presented as 
two columns of numbers. The first column contains channel numbers and the second column contains 
corresponding numbers of pulses. Since during the measurements each ten adjacent channels were 
merged into a single channel, all channel numbers are multiples of 10. 

16. Switch off the MCA. 
17. In order to make it easier to open the vessel after ventilating it, loosen the three nuts on the 

preparation side (i.e., right-hand side) of the vessel. 
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18. Ventilate the vessel by unscrewing the ventilation screw on the left-hand side of the vessel. 
19. Open the vessel (on the preparation side, i.e., the right-hand side). 
20. Replace the radioactive source and repeat all measurements (Steps 3 to 20). 
21. Remove the radioactive source and place it into its storage container. Cover the glass vessel. 
22. Print the measurement data in table format. The tables must include only the channels that 

correspond to the observed peaks of the spectrum. The tables must be formatted so that they are clear. 
Each table must have a title and column headers; values of pressure must be included. Various programs 
may be used for formatting the tables (for example, “Microsoft Word” or “Microsoft Excel”). The list of 
printers in the “Print” dialog that pops up after selecting the menu command “File/Print” must contain the 
printer that is present in the laboratory. Notes: 1) The printer that is currently used in the laboratory is not 
a network printer; instead it is connected to a computer that is connected to LAN. If the system can not 
establish connection with the printer, this probably means that the mentioned computer or the printer is 
not switched on. 2) If the mentioned computer and printer are switched on, but there still is an error 
message after an attempt to print, then open the folder “Computers Near Me” using “Windows Explorer”, 
locate the computer with name “605-K3-2” and connect to it (user name is “Administrator”, and the 
password field must be left empty). Then try printing again. 

23. Write your name and surname on the printed sheets with measurement results. Show them to the 
laboratory supervisor for signing. Those sheets will have to be included in the final laboratory report for 
this experiment. 

7.3. Analysis of measurement data 
1. Determine the channel number Hcal corresponding to the peak in the 241Am pulse height spectrum, 

and channel numbers corresponding to peaks of the 226Ra pulse height spectrum. If an isolated peak 
is visible at the left edge of the spectrum, it must be ignored, because it corresponds to “noise” pulses 

2. Estimate errors of the obtained channel numbers. This estimate is based on the fact that the number 
of pulses corresponding to each channel is distributed according to the Poisson distribution. One of 
the properties of this distribution is that the standard deviation of a particle number is equal to the 
square root of the statistical average (in the case of a single measurement, this average is 
approximately equal to the result of this measurement). Hence, the square root of the number of 
pulses n in channel H is approximately equal to the standard deviation of this number n(H), and the 
95 % confidence interval of the number of pulses is from ( ) 2 ( ) ( ) 2 ( )nn H H n H n H  to 

( ) 2 ( ) ( ) 2 ( )nn H H n H n H . It follows that the confidence interval of the channel number 
corresponding to a given peak in the spectrum can be defined as the interval of H values such that 
95 % confidence intervals of the numbers of pulses (n(H)) in all channels of this interval overlap 
with the 95 % confidence interval of the maximum number of pulses corresponding to the same peak 
(see Fig. 7.2). In addition, this interval should be slightly expanded by adding two channels that are 
outside this interval (in the case of Fig. 7.2, those two channel numbers are 720 and 790). If the 
current peak overlaps with an adjacent peak, then only half of the width of the confidence interval 
must be measured. In such a case, the half-width of the confidence interval must be measured in the 
direction away from the interfering adjacent peak. For example, if the experimental spectrum is 
similar to the example shown in Fig. 7.3, then the half-width of the first peak must be measured to 
the left of the maximum, and the half-width of the third peak must be measured to the right of the 
maximum. The total width of the confidence interval is twice the measured half-width (i.e., it is 
assumed that the half-width measured in the other direction would be approximately equal to the 
current result, if there was no overlapping peak that interferes with the measurement).  

3. Using formula (7.2), calculate energies of alpha particles emitted by 226Ra and their confidence 
intervals. 

4. Calculate energy differences between the leftmost peak in the 226Ra spectrum and each of the other 
peaks of the same spectrum. Calculate confidence intervals of those energy differences. The 
uncertainty (standard error) of the difference of two energies must be calculated by applying the 
following general rule: the variance (i.e., squared standard error) of a difference or a sum of two 
random quantities is equal to the sum of variances of those two quantities. 

5. Present results of Steps 3 and 4 of this section in the form of a table. 
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Fig. 7.2. Determination of the channel number Hmax corresponding to the maximum number of detected particles 
and its error. The vertical bars are the error indicating the 95 % confidence interval of each count (two standard 
deviations upwards from a point and two standard deviations downwards). The hatched area indicates the 95 % 
confidence interval of the maximum number of particles (in this example, the maximum number of particles 
corresponds to channel No. 750). This interval overlaps with 95 % confidence intervals of five additional points: 
two points to the left of the maximum and three points to the right of it (all those points are between the two 
vertical dash-dotted lines). After adding a point on each side, the 95 % confidence of Hmax is obtained. In this 
example, this interval is from H = 720 to H = 790 (see the two vertical solid lines), i.e., Hmax = 755  35. 

Fig. 7.3. An example of an experimental spectrum of the sealed 226Ra source. Blue dashed lines indicate the 
positions of maxima of peaks No. 1, 3 and 4 (the corresponding channel numbers are 660, 980, and 1430, 
respectively). Red dash-dotted lines indicate the endpoints of the summation intervals (the corresponding channel 
numbers are 210, 1200, and 1590). 
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6. Compare the obtained energy differences with the corresponding differences of the initial energies, 
which are given in Table 4.1e. On the basis of this comparison, identify the radioactive nuclides 
corresponding to each peak of the 226Ra spectrum. Ideally, the true energy differences should be 
inside the confidence intervals of the experimental energy differences (this would indicate that the 
nuclides were identified correctly). 

7. Determine the integrals (areas) of the peaks of the 226Ra spectrum. The term “integral” will be further 
used to mean the total number of pulses (i.e., detected particles) corresponding to a particular peak, 
or to a group of overlapping peaks (it is not integral in the strict mathematical sense, because 
integration would involve multiplication by channel width, i.e., by 10). The endpoints of the 
summation interval must be determined using the following rules. The left endpoint of the 
summation interval of peak No. 4 corresponds to the channel whose number is equal to the average 
of the channel numbers corresponding to the maxima of peaks No. 3 and No. 4 (in the case of 
Fig. 7.3, this channel number is 1200), and the right endpoint corresponds to the leftmost channel 
where the number of pulses is less than 1/100 of the height of peak No. 4 (in the case of Fig. 7.3, this 
channel number is 1590). Since the remaining three peaks overlap with each other, it is impossible to 
determine their integrals separately. Instead, the total integral of those three peaks must be 
determined. The left endpoint of the corresponding summation interval is equal to half the channel 
number where the maximum of peak No. 1 is, after subtracting the correction equal to half of the 
leftward “shift” of the spectrum (see also end of Section 7.1), i.e., 40  Offset / 2 = 20  Offset (in the 
case of Fig. 7.3, Offset = 6, so that this endpoint is equal to 330  20  6 = 210), and the right 
endpoint coincides with the left endpoint of the summation integral of peak No. 4 (in the case of 
Fig. 7.3, this channel number is 1200). The results of this step of the analysis are the two values of 
the mentioned integrals: one of them corresponds to peak No. 4, and the other one corresponds to 
peaks No. 1 – 3. 

8. Discuss the results. This discussion should include the conclusion regarding the validity of the 
mentioned assumption that all alpha particles lose the same amount of energy in the cover of the 
226Ra source. In addition, the ratio of the two integrals calculated in the previous step should be used 
to determine if the nuclides of the decay chain of 226Ra are in radioactive equilibrium with each 
other. The theoretical value of the mentioned ratio in the case of radioactive equilibrium can be 
determined using the known number of alpha-emitting nuclides in the decay chain of 226Ra (see 
Table 4.1e) and the known fact that activities of all nuclides of this decay chain are equal at 
radioactive equilibrium. 
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