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Kinetic theory and the moment equations

• There are a lot of particles in a plasma.
• Description of the motion of each individual particle is not practical.
• We will use a statistical description – kinetic theory.



The distribution function

• The distribution function is defined by

dN = f
(
®r, ®v, t

)
d3rd3v

being the number of particles in a phase space volume d3rd3v.
• We have to assume that the number of particles is large, so that even in a

quite small phase space volume there are enough particles for the
statistical description to hold.
• The distribution function is normalized so that

N =

∫
d3r

∫
d3v f

(
®r, ®v, t

)
is the total number of particles.
• We will use fs

(
®r, ®v, t

)
for each particle species s in the plasma.



Averages

• We can calculate various averages:

ns =

∫
d3v fs

(
®r, ®v, t

)
;

Us,i =
1
ns

∫
d3v vifs

(
®r, ®v, t

)
;

Ws =

∫
d3v

1
2

msv2fs
(
®r, ®v, t

)
;

Ps,ij =

∫
d3v ms

(
v − Us,i

) (
v − Us,j

)
fs

(
®r, ®v, t

)
;



Examples
• A Maxvellian velocity distribution

f = n0

(
m

2𝜋kBT

)3/2
exp

−
m

(
®v − ®U0

)2

2kBT


results in a pressure tensor

Pij = n0kBT𝛿ij .

• A bi-Maxvellian distribution

f = n0

(
m

2𝜋kBT⊥

) (
m

2𝜋kBT∥

)1/2
exp

[
−

mv2
⊥

2kBT⊥

]
exp

[
−

mv2
∥

2kBT∥

]
results in a pressure tensor

←→
P =


P⊥ 0 0
0 P⊥ 0
0 0 P∥

 .



The continuity equation

• Let us assume that 𝜌
(
®z, t

)
describes a distribution function with ®z being

an abstract n-dimensional vector. Then∫
V

dnz 𝜌
(
®z, t

)
= N

is the total number of particles in a phase space volume V .
• If states in the phase space neither appear nor disappear out of nowhere,

then
𝜕

𝜕t

∫
ΔV

dnz 𝜌
(
®z, t

)
= −

∮
d®S · ¤®z𝜌 = −

∫
ΔV

dnz∇ ·
(
¤®z𝜌

)
.

Since ΔV is arbitrary, then

𝜕

𝜕t
𝜌

(
®z, t

)
+ ∇ ·

(
¤®z𝜌

)
= 0.



The Boltzmann and Vlasov equations

• Let us assume that 𝜌
(
®z, t

)
describes a distribution function with ®z being

an abstract n-dimensional vector. Then∫
V

dnz 𝜌
(
®z, t

)
= N

is the total number of particles in a phase space volume V .
• If states in the phase space neither appear nor disappear out of nowhere,

then
𝜕

𝜕t

∫
ΔV

dnz 𝜌
(
®z, t

)
= −

∮
d®S · ¤®z𝜌 = −

∫
ΔV

dnz∇ ·
(
¤®z𝜌

)
.

Since ΔV is arbitrary, then

𝜕

𝜕t
𝜌

(
®z, t

)
+ ∇ ·

(
¤®z𝜌

)
= 0.



The Boltzmann and Vlasov equations

• Taking 𝜌 → f , ®z→ ®r, ®v, ¤®r = ®v, ¤®v = ®F/m and assuming that ®Fdoes not
depend on ®v we obtain

𝜕f
𝜕t
+ ®v · ∇f +

®F
m
· ∇®vf = 0.

• The Vlasov equation results if we ignore collisions and use the Lorentz
force:

𝜕f
𝜕t
+ ®v · ∇f + q

m

(
®E +

[
®v × ®B

] )
· ∇®vf = 0.

• The Boltzmann equations results if we additionally account for short
range interactions as collisions:

𝜕f
𝜕t
+ ®v · ∇f +

®F
m
· ∇®vf =

𝛿cf
𝛿t

.



Solutions based on constants of the motion

• The Vlasov equation can be written as dfs
dt

1.
• Then any function of the constants of the motion,

fs
(
C1

(
®r, ®v

)
,C2

(
®r, ®v

)
, . . .

)
, satisfies the Vlasov equation.

• For example, for particles moving in a stationary electrostatic potential
Φ

(
®r
)

we obtain that the Maxvell-Boltzmann distribution satisfies the
Vlasov equation:

f
(
®r, ®v

)
= n0

(
m

2𝜋kBT

)3/2
exp

[
−

1
2mv2 + qΦ

(
®r
)

kBT

]
.

1Formally we would need the material derivative, as here we interchange ®v from a velocity
field to a velocity of a particle.



The moment equations

• The idea is to multiply the Boltzmann equation by powers of the velocity
and integrating over the velocity space.
• Involves some writing and using of the Gauss’ theorem to discad the

“surface” terms.
• For the zeroth moment,

𝜕ns
𝜕t
+ ∇ ·

(
ns ®Us

)
= 0.

For the first moment,

msns

(
𝜕

𝜕t
®Us +

(
®Us · ∇

)
®Us

)
= nses

(
®E +

[
®Us × ®B

] )
− ∇ · ←→P + 𝛿c®ps

𝛿t
.

Here 𝛿c®ps
𝛿t is the average rate of change of the momentum per unit volume

due to collisions.



The moment equations

• For the second moment, the issue is complicated since we would need
equations for the entire pressure tensor.
• If we restrict ourselves to the trace, we obtain

𝜕Ws
𝜕t
+ ∇ · ®Qs − ®E · ®Js =

∫
d3v

1
2

msv2 𝛿cfs
𝛿t

.

Here
®Qs =

∫
d3v

1
2

mv2®v

is the kinetic energy flux.



The closure problem

• Consider again the Boltzmann equation

𝜕f
𝜕t
+ ®v · ∇f +

®F
m
· ∇®vf =

𝛿cf
𝛿t

.

• The term ®v · ∇f has ®v, thus the equation for the nth moment will involve
the (n + 1)st moment.
• There will always be more unknowns than equations.
• To close the system of equations, we need to specify the (n + 1)st

moment in terms of the lower moments.
• Usually, this is done by relating the pressure tensor

←→
P s to the number

density ns.



The cold plasma equation of state

• The temperature is assumed to be so low that the pressure is negligible,
thus
←→
P s = 0 for any ns.

• Then

msns

(
𝜕

𝜕t
®Us +

(
®Us · ∇

)
®Us

)
= nses

(
®E +

[
®Us × ®B

] )
+ 𝛿c®ps

𝛿t
.

• If the collision term is zero, then

msns

(
𝜕

𝜕t
®Us +

(
®Us · ∇

)
®Us

)
= nses

(
®E +

[
®Us × ®B

] )
.



The cold plasma equation of state



The adiabatic equation of state

• Assuming no heat flows, from the ideal gas law, PV = NkBT and the first
law of thermodynamics, dQ = dU + PdV , we can obtain a relationship
PV 𝛾 = const.
• Here 𝛾 = CP/CV.
• The adiabatic equation of state applies to situations where the gas is

compressed so rapidly that there is not enough time for heat to flow.
• For this equation of state, it is assumed that the pressure tensor is

isotropic,
←→
P s =

←→
1 Ps.

• From statistical mechanics it is known that 𝛾 = (f + 2) /2, with f being
the number of degrees of freedom.



The Chew–Goldberger–Low (CGL) equation of state

• If collision rate an a magnetized plasma is too small to transfer
momentum effectively between the parallel and perpendicular directions,
an isotropic velocity distribution cannot be maintained.
• CGL equation of state assumes that

←→
P s =


Ps⊥ 0 0
0 Ps⊥ 0
0 0 Ps∥


with

d
dt

(
Ps⊥
nsB

)
= 0,

d
dt

(
Ps∥B2

n3
s

)
= 0.

• The CGL equation of state can be motivated by the first and second
adiabatic invariants.



Electron and ion pressure waves

• We assume the adiabatic equation of state,

←→
P s = Ps0

(
ns
ns0

)𝛾←→
1 ,

and
Ps = Ps0 + Ps1, ns = ns0 + ns1, ®Us = ®Us1, ®E = ®E1.

• We obtain
−c2k2 + 𝜔2 − 𝜔2

p 0 0
0 −c2k2 + 𝜔2 − 𝜔2

p 0

0 0 𝜔2 −∑
s

𝜔2
ps

1−𝛾sC2
s (k2/𝜔2)



Ẽx
Ẽy
Ẽz

 = 0.

Here C2
s = Ps0/(msns0).



The longitudinal mode

• The dispersion relation can be written as

Dℓ (k, 𝜔) = 1 −
∑︁

s

𝜔2
ps

𝜔2 − 𝛾sC2
s k2

• The root associated with the electrons is called the Langmuir mode.



The Langmuir mode
• Since the electron plasma frequency is much greater than the

characteristic frequencies of the ions, we can ignore the ion terms. Then,
after rearranging the terms,

𝜔2 = 𝜔2
pe

(
1 + 𝛾eλ

2
Dek

2
)
.

• The phase velocity is formally identical to that of an acoustic wave in an
ordinary gas, but, apparently, Langmuir waves are strongly damped for
large wavenumbers.



The Ion Acoustic mode

• We assume that the ion temperature is small, thus Ci = 0. We also
assume that the phase velocity is much smaller than the electron thermal
velocity, thus 𝜔2 ≪ 𝛾eC2

e k2. Then

𝜔2 =
1

1 + 𝛾eλ
2
Dek2

(
𝛾ekBTe

mi

)
k2.



Comparison of motion

• For the Lanngmuir mode

Ũe

Ũi
≃ mi

me
.

• For the ion acoustic mode

Ũe

Ũi
≃ 1 + me

mi
.



The Lorentz gas model
• It is assumed that the particles are scattered by fixed immobile scattering

centers. Then we can write
𝛿c®ps
𝛿t

= −𝜈smsns ®Us.

• This model works well for electron scattering by neutral particles.
• For ion-neutral collisions the isotropic approximation is that that good,

since ions transfer some momentum to the neutral particles.
• Using the Lorentz model we can obtain the velocity

msns
𝜕 ®Us
𝜕t

= esns ®E0 − 𝜈smsns ®Us ⇒ ®Us =
es ®E0
ms𝜈s

(
1 − e−𝜈st )

and then the conductivity:

®Js = nses ®Us0 =

(
nse2

s
ms𝜈s

)
︸  ︷︷  ︸

𝜎s

®E0.



Pedersen and Hall Conductivities

• It there is a magnetic field, the situation complicates a bit, but the
conductivity tensor can be obtained,

←→𝜎 =


𝜎⊥ 𝜎H 0
𝜎H 𝜎⊥ 0
0 0 𝜎∥


with

𝜎⊥ =
∑︁

s

𝜎s(
1 + 𝜔2

cs/𝜈2
s
) , 𝜎H =

∑︁
s

𝜎s (𝜔cs/𝜈s)(
1 + 𝜔2

cs/𝜈2
s
) , 𝜎∥ =

∑︁
s
𝜎s.

Here 𝜎∥ and 𝜎⊥ are the parallel and perpendicular Pederson
conductivities and 𝜎H is the Hall conductivity.



Ambipolar diffusion

• We consider the diffusion of electrons and one species of positive ions
using the Lorentz gas model.
• We can combine the continuity equations for electrons and ions:

∇ ·
(
n
(
®Ue − ®Ui

))
= − 𝜕

𝜕t
(ne − ei)

with n = ne ≃ ni. If the plasma is quasi-neutral, then the LHS of this
equation should be 0.
• Often the only solution is given by ®Ue = ®Ui. If this is the case, we have

ambipolar diffusion.
• The ambipolar diffusion is described by

𝜕n
𝜕t

= ∇2 (𝜅an) , 𝜅a =
𝜅e 𝜇̄i + 𝜅i | 𝜇̄e |
𝜇̄i + | 𝜇̄e |

.


