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Waves in cold plasmas

• We will consider small-amplitude waves (so everything can be
linearized).
• A cold plasma means that particles are initially at rest, no thermal

motions. Thus, Doppler shifts caused by thermal motion can be ignored.
• I guess that cold plasma is a rather limited model, since we should assume

energetic particles in plasmas.
• A cold plasma has no pressure, thus no sound waves. Also there are no

instabilities.



Fourier representation of functions

• In this book the Fourier transform convention is

f (x) = 1
√

2𝜋

∞∫
−∞

dk f̃ (k) eikx .

• A function of spatial coordinates and time can thus be represented as

f
(
®r, t

)
=

1
(2𝜋)2

∫
d3k

∞∫
−∞

dt f̃
(
®k, 𝜔

)
ei

(
®k ·®r−𝜔t

)
.

• ®k is the wave vector. Plane of constant phase is described by
®k · ®r − 𝜔t = const. The velocity with which the planes of constant phase
move is called the phase velocity is ®vp = 𝜔

k k̂.



Dispersion relation

• Using the Fourier transform a linear differential equation can be
transformed to a linear algebraic equation by

𝜕

𝜕t
→ −i𝜔,

∇ → i®k.
• Thus,

D (∇, 𝜕/𝜕t) f = 0 ⇒ D
(
i®k,−i𝜔

)
f̃ = 0.

• Non-trivial solution for f̃ exists only if D
(
i®k,−i𝜔

)
= 0. This condition,

then written as D
(
®k, 𝜔

)
= 0 is called the dispersion relation. It gives a

relationship between 𝜔 and ®k. In many cases there are multiple discrete
roots: 𝜔 = 𝜔𝛼 with 𝛼 = 1, 2, . . . ,N . The roots represent the normal
modes.



Dispersion relation

• For a simple wave equation, we have

𝜕2f
𝜕x2 −

1
c2

𝜕2f
𝜕t2

= 0 ⇒
[
−k2 + 𝜔2

c2

]
f̃ = 0.

Thus D (k, 𝜔) = 0 has two roots, 𝜔 = ±ck.
• In general,

f
(
®r, t

)
=

1
(2𝜋)3/2

N∑︁
𝛼=1

∫
d3k f̃𝛼

(
®k
)

exp
(
i
[
®k · ®r − 𝜔𝛼

(
®k
)

t
] )

.

The roots 𝜔𝛼

(
®k
)

determine the propagation speed of the individual
plane waves. Since they tend to propagate at different speeds, the wave
packet tends to spread out in space with increasing time. This spreading
is called dispersion.



Dispersion relation

• For a vector wave field ®f , we have a linear system of homogeneous
differential equations

D̂ (∇, 𝜕/𝜕t) · ®f = 0 ⇒ D̂
(
i®k,−i𝜔

)
· ®̃f = 0.

• A non-trivial solutions exists if and only if the determinant of the matrix
is zero:

D
(
®k, 𝜔

)
= Det

[
D̂

(
i®k,−i𝜔t

)]
= 0.

• Each root of the dispersion relation has a corresponding eigenvector ®̃f ,
which characterizes the field geometry of the propagating wave.



Group velocity

• If the Fourier image of the wave is sharply peaked around a particular
wave number, the shape of the wave envelope of the wave packet is
preserved to a first approximation. The velocity at which the envelope
moves is called the group velocity.
• Consider

exp
(
i
[
®k · ®r − 𝜔

(
®k
)

t
] )

≈ exp
(
i
[
®k · ®r −

(
𝜔0 + ∇®k𝜔 ·

(
®k − ®k0

))
t
] )

= exp
(
i
[
®k0 · ®r − 𝜔0t

] )
exp

(
i
[(
®k − ®k0

)
·
(
®r − ∇®k𝜔 · t

) ] )
.

• Thus, ®vg = ∇®k𝜔.



Group velocity

• We can write
A

(
®r − ®vgt

)
ei

(
®k0 ·®r−𝜔0t

)
.

• Sometimes it will be useful to deal with a dimensionless index of
refraction, ®n = c®k/𝜔. We will often express it as ®n (𝜃) with 𝜃 being the
wave normal angle, between the wave vector and some preferred axis of
symmetry.



Maxwel’s equations

Microscopic Macroscopic[
∇ × ®B

]
= 𝜇0®J + 𝜖0𝜇0

𝜕®E
𝜕t

[
∇ × ®H

]
= ®Jr + 𝜕 ®D

𝜕t[
∇ × ®E

]
= −𝜕®B

𝜕t

[
∇ × ®E

]
= −𝜕®B

𝜕t

∇ · ®E =
𝜌q
𝜖0

∇ · ®D = 𝜌r

∇ · ®B = 0 ∇ · ®B = 0

• The charge is divided into a real charge and a polarization charge,
𝜌q = 𝜌r + 𝜌p.

• The current is divided into a real current and a magnetization current,
®J = ®Jr + ®Jm.

• We will count all charges as polarization charges, thus ®D = 𝜖0 ®E + ®P. All
the currents are included in 𝜕 ®D

𝜕t . We also usually assume that ®B = 𝜇0 ®H.



Conductivity and dielectric tensors
• We need to specify the relationship between ®D and ®E.
• We can solve the equations of motion for the particles and relate ®̃v with
®̃E. Then

®̃J =
∑︁

s
nses®̃vs

can be reorganized to the form

®̃J =
←→𝜎 · ®̃E.

• Assuming that ®̃D = 𝜖0
←→
K · ®̃E we can use the Maxwell equations and

obtain
←→
K =

←→
1 −

←→𝜎
i𝜔𝜖0

.

• We can obtain a homogeneous equation for the electric field:[
®k ×

[
®k × ®̃E

] ]
+ 𝜔2

c2
←→
K · ®̃E = 0.



Waves in a cold uniform unmagnetized plasma

• Assumptions:

ns = ns0 + ns1, ®vs = ®vs1, , ®E = ®E1, ®B = ®B1.

• We obtain

←→𝜎 =
←→
1

∑︁
s

ns0e2
s

(−i𝜔) ms
,

←→
K =

←→
1

(
1 −

𝜔2
p

𝜔2

)
.

Here 𝜔2
p =

∑
s 𝜔

2
ps =

∑
s

ns0e2

𝜖0ms
.

• Assuming ®k = k®nz, we get
−c2k2 + 𝜔2 − 𝜔2

p 0 0
0 −c2k2 + 𝜔2 − 𝜔2

p 0
0 0 𝜔2 − 𝜔2

p



Ẽx
Ẽy
Ẽz

 = 0.



Transverse and longitudinal modes

• For the transverse mode,

𝜔2 = 𝜔2
p + c2k2, ®̃E =

(
Ẽx, Ẽy, 0

)
.

Waves can exist only for |𝜔| > 𝜔p.
• For the longitudinal mode

𝜔2 = 𝜔2
p, ®̃E =

(
0, 0, Ẽz

)
.

This mode corresponds to the electron plasma oscillations, which we
used to motivate 𝜔p.



Waves in a cold uniform magnetized

• Now we consider a situation with an externally imposed static uniform
magnetic field, ®B = ®B0 + ®B1.
• The situation becomes much more difficult, as the equations couple (we

take ®B to point in the z direction):

−i𝜔msṽsx = es
(
Ẽx + ṽsyB0

)
,

−i𝜔msṽsy = es
(
Ẽy − ṽsxB0

)
,

−i𝜔msṽsz = esẼz .

• Expressions for←→𝜎 and
←→
K are complicated.



Waves in a cold uniform magnetized

• Choosing the coordinate system so that ®n = (n sin (𝜃) , 0, n cos (𝜃)) after
some manipulations we can obtain

S − n2 cos2 (𝜃) −iD n2 sin (𝜃) cos (𝜃)
iD S − n2 0

n2 sin (𝜃) cos (𝜃) 0 P − n2 sin2 (𝜃)



Ẽx
Ẽy
Ẽz

 = 0.

Here S = 1
2 (R + L), D = 1

2 (R − L), and P being some functions of 𝜔.



Propagation parallel to the magnetic field

• We take 𝜃 = 0, thus ®n = (0, 0, n). Then there are the following roots and
eigenvectors:

P = 0, ®̃E = (0, 0,E0) ,

n2 = R, ®̃E = (E0, iE0, 0) ,

n2 = L, ®̃E = (E0,−iE0, 0) .



n2 = R mode

n2 = R = 1 −
∑︁

s

𝜔2
ps

𝜔 (𝜔 + 𝜔cs)



n2 = L mode

n2 = L = 1 −
∑︁

s

𝜔2
ps

𝜔 (𝜔 − 𝜔cs)



Whistlers



Ion cyclotron whistlers

• Ion cyclotron whistlers exhibit polarization reversal.



Faraday rotation

• For frequencies above 𝜔R=0 both left-hand and right-hand polarized free
space modes can propagate. The phase velocities are different for both
modes. Due to this, the axis of the electric field polarization rotates as
the wave propagates.



Propagation perpendicular to the magnetic field

• We take 𝜃 = 𝜋/2, thus ®n = (n, 0, 0). Then there are the following roots
and eigenvectors:

n2 = P, ®̃E = (0, 0,E0) , ordinary mode.

n2 =
RL
S
, ®̃E =

(
iD
S

E0,E0, 0
)
, extraordinary mode.



Resonances



Oblique wave propagation

• For 0 < 𝜃 < 𝜋/2, the situation is complicated. n goes to infinity at the
resonance angle 𝜃Res.



Oblique wave propagation



The Clemmow–Mullaly–Allis (CMA) Diagram

• A CMA diagram consists of a diagram with one coordinate for each
parameter of the plasma, such as ns and B0. Within this parameter space
a set of bounding surfaces is constructed defined by the equations R = 0,
L = 0, P = 0, S = 0, R = ∞, and L = ∞.



Ray paths in inhomogeneous plasmas

• It is complicated...


