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Recap

• We started this book last school year (2023 09 29 to be exact).
• We had 26 seminars, with 16 of them covering the material from the

chapters and 10 devoted to the exercises.
• We covered 5 chapters that comprise 185 pages of the book.
• We did 54 exercises.
• All the information about the seminars is in the seminar webpage, in

either English (https:
//web.vu.lt/ff/a.gelzinis/plasma-physics-seminars/) or
Lithuanian (https:
//web.vu.lt/ff/a.gelzinis/plasmos-fizikos-seminarai/).

https://web.vu.lt/ff/a.gelzinis/plasma-physics-seminars/
https://web.vu.lt/ff/a.gelzinis/plasma-physics-seminars/
https://web.vu.lt/ff/a.gelzinis/plasmos-fizikos-seminarai/
https://web.vu.lt/ff/a.gelzinis/plasmos-fizikos-seminarai/


Introduction

• A plasma is an ionized gas with approximately equal number of
positively and negatively charged particles.

• Plasmas can be produced by ionization, which occurs at high
temperatures (thousands of K), thus a plasma could be said to be the
“fourth” state of matter.

• Though a plasma is taken to be neutral overall, local deviations from
charge neutrality can occur, which induces local electric fields and
currents.

• In plasmas the charged particles are usually in an unbound gaseous state,
thus their kinetic energy is much larger than the potential energy. In such
a plasma, long-range forces are the most important.



Chapter 2: key parameters

• The 2nd Chapter is focused on the key parameters of a plasma.
• Plasmas usually consist of electrons and one or more species of ions,

thus the parameters are related to a specific species s.
• The key parameters are the number density ns, which is the number of

particles in a unit volume, and the temperature Ts, which is related to the
average kinetic energy by

〈 1
2msv2〉 = 3

2kBTs.
• A very important concept is the velocity distribution function fs

(
®v
)
. It

was discussed more in Chapter 5.
• In thermal equilibrium, the velocities are distributed according to the

Maxwellian distribution

fs
(
®v
)
= ns

(
ms

2𝜋kBTs

)3/2
exp

(
− msv2

2kBTs

)
.



Chapter 2: Debye length

• There is a fundamental length-scale in plasmas, which characterizes the
shielding of test charges.

• A negative test charge Q in a plasma is described by a potential

Φ =
1

4𝜋𝜖0

Q
r

e−r/λD .

• Here λD is the Debye length, which is given by

λ2
D =

𝜖0kBTe

n0e2 ,

with n0 being the ion density.



Chapter 2: plasma frequency

• If the electrons are displaced in a plasma, a restoring force arises. The
restoring force is given by Hooke’s law.

• Therefore, the system acts like a harmonic oscillator.
• The oscillation frequency is the plasma frequency

𝜔2
pe =

n0e2

𝜖0me
.

• For multiple species in a plasma,

𝜔p =

√︄∑︁
s
𝜔2

ps, 𝜔2
ps =

nse2
s

𝜖0ms
.

• Note also that

𝜔psλDs = Cs, Cs =

√︂
kBTs
ms

.



Chapter 2: cyclotron frequency

• A charged particle in a static magnetic field moves in a circular motion.
• The frequency of this motion is the cyclotron frequency

𝜔cs =
esB
ms

.



Chapter 2: collisions

• Collisions provide a means for a plasma to reach equilibrium. Also they
tend to damp some phenomena, like oscillations or waves.

• Collision frequency 𝜈rs is the average rate at which r particles collide
with s particles.

• Collisions of charged particles with neutral particles are often described
using the hard sphere model. Then

𝜈ns = nnCs𝜎n,

with 𝜎n being the collision cross section with neutral atoms.
• Collisions between charged particles are more difficult to describe. The

key parameter is the scattering cross section 𝜎C (𝜒). Here

𝜎C (𝜒) dΩ =
number of particles scattered into dΩ

incident beam intensity



Chapter 2: number of electrons per Debye cube

• ND = n0λ
3
D plays a fundamental role in plasma physics.

• Plasma can be considered continuous only if ND ≫ 1.
• The ratio of the average kinetic energy to the average potential energy

can be estimated by

kinetic energy
potential energy

= 6𝜋N2/3
D .

• ND also related the ratio of collective to discrete interactions, since

𝜔pe

𝜈ei
=

√︂
𝜋

2
128ND

ln (12𝜋ND)
.



Chapter 2: quantum effects

• Classical description is valid when the product of momentum and
position uncertainties is large. This can be written as

(3mekBTe)1/2

n1/2
e

≫ ℏ.



Chapter 3: motions of a single particle

• Particles move in a configuration of electric and magnetic fields.
• The motion of said particles induces electric and magnetic fields.
• The circle closes due to the self-consistency requirement. The problem

becomes difficult.
• For now, we will assume that the fields are fixed. This will simplify the

analysis.



Chapter 3: motion in a static uniform magnetic field

• The Newton’s second law reads as

m
d
dt
®v = q

[
®v × ®B

]
.

• It is convenient to divide the motion into parallel to the magnetic field,
described by ®v∥ , and into perpendicular to the field, described by ®v⊥.

• In such configuration, the particle moves in a circle around the direction
of ®B. This motion is characterized by the cyclotron radius 𝜌c =

mv⊥
|q |B and

the cyclotron frequency 𝜔c =
v⊥
𝜌c

=
|q |B
m .



Chapter 3: magnetic moment

• Charged particle moving in a circle has a magnetic moment.
• In general, the magnetic moment is a product of the current and the area

of the loop,
𝜇 = IA.

• In case of the static magnetic field,

𝜇 =
mv2

⊥
2B

=
w⊥
B

.



Chapter 3: motion in static and uniform ®E and ®B
• The Newton’s second law reads as

m
d
dt
®v = q®E + q

[
®v × ®B

]
.

• There is a new feature in the motion of the particle. It begins to drift with
the so-called

[
®E × ®B

]
drift velocity

®vE =

[
®E × ®B

]
B2 .



Chapter 3: gradient and curvature drifts
• Gradient drift arises if the magnetic field has a gradient.
• The gradient drift velocity can be expressed as

®vG =
w⊥
qB

[
B̂ × ∇B

]
B

.

with w⊥being the perpendicular kinetic energy, w⊥ = mv2
⊥/2.



Chapter 3: gradient and curvature drifts

• Curvature drift arises if the magnetic field lines are curved.
• The curvature drift velocity can be expressed as

®vC =
2w∥
qB

[
B̂ × R̂C

]
RC

.

with R̂C being a unit vector in the direction of the instantaneous radius of
curvature.

• Note that the gradient and curvature drift velocities depend on the charge
of the particle, thus they induce a current, whereas the

[
®E × ®B

]
drift does

not.
• The gradient and and curvature drift affects high energy particles more

strongly.
• Also, the gradient and curvature drifts can cause energy gain and losses

as the particles drift onto different electrostatic potential contours.



Chapter 3: motion in a magnetic mirror field

• A magnetic mirror field is characterized by a spatial variation in the
magnetic field strength along the magnetic field lines.



Chapter 3: motion in a magnetic mirror field

• It can be shown that the magnetic moment is constant.
• The motion along the field lines can then be described by

d
ds

(
1
2

mv2
∥ + 𝜇B

)
= 0 ⇒ 1

2
mv2

∥ + 𝜇B = 𝜇Bm



Chapter 3: motion in a time varying magnetic field

• If the magnetic field varies in time, from Faraday’s law
[
∇ × ®E

]
= −𝜕®B

𝜕t
we see that there is a non-conservative electric field present.

• The total energy of the particle is not conserved.
• It can be shown that the magnetic moment is constant.



Chapter 3: polarization drift

• If the field configuration is time-dependent, an additional drift is
produced in the direction of d

dt
®E.

• The polarization drift velocity can be shown to be

®vP =
m

qB2
d®E
dt

.



Chapter 3: ponderomotive force

• A charged particle that is placed in an inhomogeneous rapidly oscillating
electric field experiences a force that repels it from the region of the
strongest field.

• The force can be expressed as

®FP = − q2

4m𝜔2∇
(
E2

0

)
with 𝜔 being the oscillation frequency of the field.



Chapter 3: adiabatic invariants
• In a nearly periodic system with slowly varying parameters, the action

integral
J =

∮
dq p

is an approximate constant of motion.
• An action integral exists for each degree of freedom that exhibits a

periodicity.
• For an axially symmetric magnetic mirror we have



Chapter 3: adiabatic invariants

• Adiabatic invariants for an axially symmetric magnetic mirror:
• the first adiabatic invariant is related to the cyclotron motion and is the

magnetic moment

𝜇 =
|q|
2
𝜔c𝜌

2
c .

• the second adiabatic invariant is related to the parallel bounce motion
along the magnetic field line and is

J =
√︁

2𝜇m
∮

ds
√︁

Bm − B (s).

• the third adiabatic invariant is related to the azimuthal gradient and
curvature drift around the symmetry axis and corresponds o the magnatic
flux

ΦB = 𝜋R2B.



Chapter 3: the Hamiltonian method

• If there is a symmetry in a system, there is a corresponding constant of
motions.

• This can be approached using the Hamiltonian method.
• The Hamiltonian is defined as

H (q, p, t) =
∑︁

i
¤qip − L (q, ¤q, t)

with pi =
𝜕L
𝜕¤qi

.
• The Hamiltonian equations are

¤qi =
𝜕H
𝜕pi

, ¤pi = −𝜕H
𝜕qi

,
𝜕H
𝜕t

= −𝜕L
𝜕t

.



Chapter 3: the Hamiltonian method

• For a charged particle in an electromagnetic field

L =
m
2
¤®r2 − q

(
Φ − ®A · ¤®r

)
.

• The conjugate momentum is

®p = m¤®r + q®A.

• The Hamiltonian is

H =
1

2m

(
®p − q®A

)2
+ qΦ.

• For specific situations we can use a suitable coordinate system and see if
H is independent of some qi or pj .



Chapter 3: Hamiltonian chaos

• Chaotic trajectories can exist in plasma...


