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Chapter 3. Thermal History
(The first 3 minutes in the history of the Universe)



The Hot Big Bang

❖ Rate of interactions Γ ≫ Rate of expansion 𝐻
➢ Timescale of particle interactions ≪ characteristic expansion time scale

➢ Local thermal equilibrium is reached before effect of expansion becomes relevant

❖ Natural units: 𝑐 = ℏ = 𝑘B = 1, Planck mass 𝑀Pl =
ℏ𝑐

8𝜋𝐺
= 2.4 ⋅ 1018 GeV

❖ Rate of interactions Γ = 𝑛𝜎𝑣
➢ Velocity of particles 𝑣 ≈ 1

➢ Number density of particles 𝑛 = 𝑓׬ 𝑝, 𝑇 d3𝑝

➢ Interaction cross-section 𝜎 ~

𝐸 = 𝑚2 + 𝑝2 ≈ 𝑝

~ e−𝐸/𝑇׬ 4𝜋𝑝2 d𝑝 ∝ ׬ e− Τ𝑝 𝑇 𝑝2 d𝑝

∝ 𝑇3

∝
𝛼2

𝑇2 𝛼 =
𝑔𝐴
2

4𝜋
~0.01 – structure constant 

associated with the gauge boson A
Γ ∝ 𝑇3 ⋅

𝛼2

𝑇2
∝ 𝛼2𝑇



Local thermal equilibrium

❖ Rate of interactions Γ = 𝑛𝜎𝑣 ∝ 𝛼2𝑇

❖ Hubble rate 𝐻~ 𝜌/𝑀Pl

➢ Density 𝜌 = 𝑓׬ 𝑝, 𝑇 𝐸 d3𝑝

❖ Thus for temperatures below 𝑇~1015 GeV and above 100 GeV
(relativistic limit) all the particles of the Standard model are in thermal 
equilibrium

❖ As 𝑇 drops below the mass of the particles, they become non-relativistic, 
yielding 𝑓 ∝ e−𝑚/𝑇

Γ ≫ 𝐻

∝ −e׬ Τ𝑝 𝑇 ⋅ 𝑝 ⋅ 𝑝2 d𝑝 ∝ 𝑇4

𝐻 ∝
𝑇2

𝑀Pl

Γ

𝐻
∝
𝛼2𝑀Pl

𝑇
∝
1016 GeV

𝑇



Number of total relativistic DOF vs. temperature

All the particles of 
the Standard Model 
are relativistic Interaction rates for some 

particles drops below 𝐻 –
these particle are decoupled 
from the thermal bath
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Only photons 
and (maybe) 
neutrinos are 
relativistic



Decoupling and freeze-out of massive particles

𝑛 ∝ 𝑇3

Deviation from the 
thermal equilibrium



Decoupling of weak scale interactions

❖ Below 𝑇 ≲ 100 GeV (the scale of electroweak symmetry breaking), the 
𝑊± and 𝑍 bosons receive masses (𝑀𝑊 = 80 GeV and 𝑀𝑍 = 90 GeV)

❖ The cross-section associated with the weak force

❖ Particles interacting with the primordial plasma only through the weak 
interaction should decouple at ~1 MeV

𝐺𝐹~ Τ𝛼 𝑀𝑊
2 ~10−5 GeV−2 (Fermi’s constant)

Γ

𝐻
∝
𝛼2𝑀Pl𝑇

3

𝑀𝑊
4

∝
𝑇

1 MeV

3

𝜎~ ~𝐺𝐹
2𝑇2~

𝛼2𝑇2

𝑀𝑊
4

Γ ∝ 𝐺𝐹
2𝑇5

𝐻 ∝
𝑇2

𝑀Pl



History of the Universe
Models to explain overabundance of 
matter over anti-matter w/o assuming 
primordial matter-antimatter asymmetry

Particles receive masses through the 
Higgs mechanism

Strong interaction between quarks 
and gluons leads to the formation of 
baryons and mesons

Is expected to decouple relatively early

Interact with the rest of the primordial 
plasma through the weak interaction

Energies of the e– and e+ are transferred 
to the photons, but not the neutrinos

Formation of light chemical elements

Formation of neutral H atoms

Small number of remaining free e leads 
to the decoupling of photons and CMB

UV radiation from the first stars 
reionized the Universe



Equilibrium Thermodynamics

❖ Equilibrium distribution function for a particle to have a momentum 𝐩:

𝑓 𝐩, 𝑇 =
1

exp
𝐸 𝑝 − 𝜇

𝑇
± 1

❖ Particle has 𝑔 internal degrees of freedom

❖ Density of states in 3D is 
𝑔

2𝜋ℏ 3 ≡
𝑔

2𝜋 3:

𝑛 = 𝑔 ⋅෍

𝐩

𝑓 𝐩, 𝑇 ≡
𝑔

2𝜋 3
නd3𝑝 𝑓 𝐩, 𝑇

𝜌 =
𝑔

2𝜋 3
නd3𝑝 𝑓 𝐩, 𝑇 ⋅ 𝐸(𝑝)

“+” : Fermi–Dirac distribution
“–” : Bose–Einstein distribution
𝜇 – chemical potential describing 

the response to a change in 
particle number

Number density 
of particles

Energy density 𝐸 𝑝 = 𝑚2 + 𝑝2



Pressure

❖ Total number of particles with energy 𝐸 within 
the solid angle dΩ, that will hit this area d𝐴
within the time interval between 𝑡 and 𝑡 + d𝑡:

d𝑁𝐴 =
𝑔

2𝜋 3
𝑓 𝐸 ⋅

d𝐀 ⋅ 𝐯d𝑡 dΩ

4𝜋

❖ Elastic hits transfer the momentum 2 𝐩 ⋅ ෝ𝐧

❖ The contribution of the particles with velocity 𝐯 = 𝐩 /𝐸 to the 
pressure is

d𝐀 = ෝ𝐧 d𝐴

𝐯

𝜗
dΩ

d𝑁

𝑃 𝐸 =ඵ
2 𝐩 ⋅ ෝ𝐧

d𝐴d𝑡
d𝑁𝐴 =

𝑔

2𝜋 3
𝑓 𝐸 ⋅

𝑝2

2𝜋𝐸
න
0

𝜋
2
cos2 𝜗 sin 𝜗 d𝜗න

0

2𝜋

d𝜑

𝑃 =
𝑔

2𝜋 3
නd3𝑝 𝑓 𝐩, 𝑇 ⋅

𝑝2

3𝐸

= 1/3



Chemical potential

❖ Entropy d𝑆 =
d𝑈+𝑃d𝑉−𝜇d𝑁

𝑇

❖ For a general reaction 𝐴 + 𝐵 ↔ 𝐶 + 𝐷 particles flow to the side of the 
reaction, where the total chemical potential (𝜇𝐴 + 𝜇𝐵 or 𝜇𝐶 + 𝜇𝐷) is 
lower

❖ In equilibrium, when forward and backward reaction total rates are 
equal, 𝜇 remains constant: 𝜇𝐴 + 𝜇𝐵 = 𝜇𝐶 + 𝜇𝐷

❖ Number of photons is not conserved        𝜇𝛾 = 0

❖ In the annihilation reaction: 𝑋 + ത𝑋 ↔ 𝛾 + 𝛾

𝜇 = −𝑇
𝜕𝑆

𝜕𝑁
𝑈,𝑉

𝜇𝑋 = −𝜇 ത𝑋

𝜇 =
𝜕𝑈

𝜕𝑁
𝑆,𝑉

or, alternatively



Particle and energy densities

❖ At early times, the chemical potentials of all particles are very small, 𝜇 ≈ 0

❖ Particle density

❖ Energy density

𝑛 =
𝑔

2𝜋 3
නd3𝑝 𝑓 𝐩, 𝑇 =

𝑔

2𝜋 3
න
0

∞ 4𝜋𝑝2 d𝑝

exp
𝑝2 +𝑚2

𝑇
± 1

𝑥 =
𝑚

𝑇
, 𝜉 =

𝑝

𝑇

=
𝑔

2𝜋2
𝑇3 ⋅ 𝐼±(𝑥)

𝐼± 𝑥 = න
0

∞ 𝜉2 d𝜉

exp 𝜉2 + 𝑥2 ± 1

𝜌 =
𝑔

2𝜋 3
නd3𝑝 𝐸𝑓 𝐩, 𝑇 =

𝑔

2𝜋 3
න
0

∞ 4𝜋𝑝2 𝑝2 +𝑚2 d𝑝

exp
𝑝2 +𝑚2

𝑇
± 1

=
𝑔

2𝜋2
𝑇4 ⋅ 𝐽±(𝑥)

“+” : Fermi–Dirac distribution
“–” : Bose–Einstein distribution

𝐽± 𝑥 = න
0

∞ 𝜉2 𝜉2 + 𝑥2d𝜉

exp 𝜉2 + 𝑥2 ± 1

[Ex. to show that for electrons]



Particle and energy densities

𝑥 =
𝑚

𝑇
, 𝜉 =

𝑝

𝑇

𝐼± 𝑥 = න
0

∞ 𝜉2 d𝜉

exp 𝜉2 + 𝑥2 ± 1

“+” : Fermi–Dirac distribution
“–” : Bose–Einstein distribution

𝐽± 𝑥 = න
0

∞ 𝜉2 𝜉2 + 𝑥2d𝜉

exp 𝜉2 + 𝑥2 ± 1

2.404

1.803

6.494

5.682

Riemann zeta function 𝜁 𝑥 = 1 + 2−𝑥 + 3−𝑥 + 4−𝑥 +⋯



Relativistic limit

❖ 𝑚 ≪ 𝑇, 𝑥 → 0, 𝐼± 0 𝐽± 0

❖ Relic photons:  𝑔 = 2, 𝑇0 = 2.73 K

➢ Photon density 𝑛𝛾,0 =
𝜁(3)

𝜋2
2𝑇0

3 ≡
𝜁 3

𝜋2
2

𝑘B𝑇0

ℏ𝑐

3
≈ 410 photons/cm3

➢ Mass density 𝜌𝛾,0 =
𝜋2

30
2𝑇0

4 ≡
𝜋2

30
2

𝑘B𝑇0
4

ℏ3𝑐5
≈ 4.64 ⋅ 10−34 g/cm3

➢ Dimensionless density Ω𝛾,0ℎ
2 =

𝜌𝛾,0

𝜌crit,0
= 2.5 ⋅ 10−5

➢ Pressure 𝑃𝛾 =
𝑔

2𝜋 3 ׬ d
3𝑝 𝑓 𝐩, 𝑇 ⋅

𝑝2

3𝐸

= 0׬
∞ 𝜉2 d𝜉

exp 𝜉 ±1
= ቐ

3

2
𝜁 3 , " + ",

2𝜁 3 , " − ",

𝑛 =
𝜁(3)

𝜋2
𝑔𝑇3 ⋅ ൝

1,
3
4
,

bosons

fermions

= ቐ
21

4
𝜁 4 , " + "

6𝜁 4 , " − "

𝜁 4 =
𝜋4

90

𝜌 =
𝜋2

30
𝑔𝑇4 ⋅ ൝

1,
7
8
,

bosons

fermions

=
𝑔

2𝜋2
0׬
∞ 𝑝2

3𝑝

𝑝2 d𝑝

exp
𝑝

𝑇
−1
=

1

3
𝜌𝛾



Non-relativistic limit: 𝑚 ≫ 𝑇, 𝑥 ≫ 1

❖ Particle density 𝑛 =
𝑔

2𝜋2
𝑇3 ⋅ 𝐼± 𝑥

❖ Energy density 𝜌 =
𝑔

2𝜋 3 d׬
3𝑝 𝐸𝑓 𝐩, 𝑇

❖ Pressure 𝑃 =
𝑔

2𝜋 3 d׬
3𝑝 𝑓 𝐩, 𝑇 ⋅

𝑝2

3𝐸

𝐼± 𝑥 = න
0

∞ 𝜉2 d𝜉

exp 𝜉2 + 𝑥2 ± 1
≈ න

0

∞ 𝜉2 d𝜉

exp 𝑥 +
1
2
𝜉2

𝑥

= e−𝑥න
0

∞

𝜉2 exp −
1

2

𝜉2

𝑥
d𝜉

=
𝜋

2
𝑥 Τ3 2=

𝜋

2
𝑥 Τ3 2e−𝑥

= 𝑔
𝑚𝑇

2𝜋

3/2
e−𝑚/𝑇

𝐸 ≈ 𝑚

≈ 𝑚𝑛

≈
1

3

𝑝2

𝑚

≈
𝑔𝑇3

2𝜋2
𝑇

3𝑥
0׬
∞ 𝜉4 d𝜉

exp 𝑥+
1

2

𝜉2

𝑥

= 3
𝜋

2
𝑥 Τ5 2e−𝑥

= 𝑔𝑇
𝑚𝑇

2𝜋

3/2
e−𝑚/𝑇

𝑥 =
𝑚

𝑇
, 𝜉 =

𝑝

𝑇

= 𝑛𝑇 (pressureless dust, 𝑃 = 𝑛𝑇 ≪ 𝜌 = 𝑛𝑚)

Exponential drop of 
particle number –
annihilation of particles 
and anti-particles



Effective number of relativistic species

❖ The total energy density of all the particles is

𝜌 =෍

𝑖

𝑔𝑖
2𝜋2

𝑇𝑖
4𝐽± 𝑥𝑖

❖ It is common to write 𝜌 in terms of the “Temperature of the Universe”, 
which is typically chosen as the photon temperature:

𝜌 =
𝜋2

30
𝑔∗ 𝑇 𝑇4, 𝑔∗ 𝑇 =෍

𝑖

𝑔𝑖
𝑇𝑖
𝑇

4 𝐽± 𝑥𝑖
𝐽−(0)

➢ Due to exponential drop-out it is sufficient to include only relativistic species

➢ For 𝑇𝑖 ≫ 𝑚𝑖, we have 𝐽± 𝑥𝑖 ≪ 1 ≈ const

𝜌 r =
𝜋2

30
𝑔𝑇4 ⋅ ൝

1,
7
8,

bosons

fermions

𝑔∗
dec

𝑇 = ෍

𝑖∈bos

𝑔𝑖
𝑇𝑖
𝑇

4

+
7

8
෍

𝑖∈fer

𝑔𝑖
𝑇𝑖
𝑇

4

𝑔∗
th

𝑇 = ෍

𝑖∈bos

𝑔𝑖 +
7

8
෍

𝑖∈fer

𝑔𝑖

Relativistic particles in thermal 
equilibrium with photons, 𝑇𝑖 = 𝑇:

Relativistic particles decoupled from the thermal bath 
(neutrinos after e+e– annihilation):



Degrees of freedom
Mass Spin 𝑔

quarks

leptons

Particle and anti-particle
2 spin states

3 colors

Particle and anti-particle
2 spin states

neutrinos

Mass Spin 𝑔

gluons
2 polarization states

gauge 
bosons

2 polarization states

3 spin states

Higgs 
boson

Either
Particle = anti-particle

or
a single spin state exists

At 𝑇 > 100 GeV, all particles are relativistic, hence

𝑔∗ = 3 ⋅ 3 + 2 + 16 + 1

+
7

8
⋅ 6 ⋅ 12 + 3 ⋅ 4 + 3 ⋅ 2 = 106.75

𝑔∗
th

𝑇 = ෍

𝑖∈bos

𝑔𝑖 +
7

8
෍

𝑖∈fer

𝑔𝑖



Number of total relativistic DOF vs. temperature

neutrino
decoupling

106.75 − 7
8 ⋅ 12 = 96.25

96.25 − 3 ⋅ 3 + 1 = 86.25

86.25 − 7
8 ⋅ 12 = 75.75

75.75 − 7
8
⋅ 12 + 4 = 61.75

Only pions (spin-0), electrons, 
muons, neutrinos, and photons 
are left relativistic

𝑔∗ = 3 + 2 + 7
8 ⋅ 4 + 4 + 6

= 17.25

17.25 − 3 − 7
8 ⋅ 4 = 10.75



Conservation of entropy

❖ Total entropy of the Universe only increases or stays constant

❖ 𝑇 d𝑆 = d𝑈 + 𝑃 d𝑉

❖ Entropy density 𝑠 = 𝑆/𝑉

❖ 𝑠 and 𝜌 do not depend on volume, thus 𝑇𝑠 − 𝜌 − 𝑃 = 0

❖ Total entropy:

𝑇𝑠 d𝑉 + 𝑇𝑉 d𝑠 = 𝜌 d𝑉 + 𝑉 d𝜌 + 𝑃 d𝑉

𝑠 =
𝜌 + 𝑃

𝑇

= −3𝐻 𝜌 + 𝑃

𝑇𝑠 − 𝜌 − 𝑃 d𝑉 + 𝑉 𝑇d𝑠 − d𝜌 = 0

=
𝑉

𝑇

d𝜌

d𝑡
+
𝜌 + 𝑃

𝑇

d𝑉

d𝑡
= 0

=
d 𝑎3

d𝑡
= 3𝑎2 ሶ𝑎 = 3𝐻𝑉from the continuity equation

𝑠 =෍

𝑖

𝜌𝑖 + 𝑃𝑖
𝑇𝑖

𝜌 =
𝜋2

30
𝑔∗ 𝑇 𝑇4

𝑔∗𝑆
dec

𝑇 = ෍

𝑖∈bos

𝑔𝑖
𝑇𝑖
𝑇

3

+
7

8
෍

𝑖∈fer

𝑔𝑖
𝑇𝑖
𝑇

3

≠ 𝑔∗
th

𝑇𝑔∗𝑆
th

𝑇 = ෍

𝑖∈bos

𝑔𝑖 +
7

8
෍

𝑖∈fer

𝑔𝑖 = 𝑔∗
th

𝑇 ,

d𝑆

d𝑡
=
1

𝑇

d

d𝑡
𝜌𝑉 +

𝑃

𝑇

d𝑉

d𝑡

Effective number of 
degrees of freedom of 
entropy

≡
2𝜋2

45
𝑔∗𝑆 𝑇 𝑇3

Particles in thermal equilibrium with photons: Particles decoupled from the thermal bath:

=෍

𝑖

𝜌𝑖 +
1
3𝜌𝑖

𝑇𝑖



Conservation of entropy

❖ 𝑆 = 𝑠𝑉 = const 𝑠 ∝ 𝑎−3

➢ Number of particles in a comoving volume 𝑁𝑖 =
𝑛𝑖

𝑠

❖ 𝑠 ∝ 𝑔∗𝑆 𝑇 ⋅ 𝑇3 𝑔∗𝑆 𝑇 ⋅ 𝑇3 ⋅ 𝑎3 = const, or  𝑇 ∝ 𝑔∗𝑆
− Τ1 3𝑎−1

➢ Whenever a particle species becomes non-relativistic, its entropy is transferred to 
the remaining relativistic species, causing the temperature to decrease slightly 
slower than ∝ 𝑎−1

➢ Hubble constant for the radiation-dominated universe (𝜌 =
𝜋2

30
𝑔∗ 𝑇 𝑇4):

𝐻2 =
ሶ𝑎

𝑎

2

=
𝜌

3𝑀pl
2 =

𝜋2

90
𝑔∗ 𝑇

𝑇4

𝑀pl
2



Electron–positron annihilation, 𝑒+ + 𝑒− ↔ 𝛾 + 𝛾

❖ Energy density and entropy of 
electrons and positrons is 
transferred to the photons
➢ Photons are heated – their 

temperature decreases slower 
than that of the already de-
coupled neutrinos

➢ 𝑔∗𝑆
th

= ൝
2 + 7

8
⋅ 4 = 11

2
, 𝑇 ≳ 𝑚e

2, 𝑇 < 𝑚e

➢ After 𝑒+𝑒− annihilation,

𝑇𝜈 =
4

11

1/3

𝑇𝛾

➢ Current  temperature of the 
cosmic neutrino background
𝑇𝜈,0 = 1.95 K 𝑇0 = 2.73 K



Neutrino density

➢ 𝑔∗ = 2 + 7

8
⋅ 2𝑁eff

4

11

Τ4 3

= 3.36

➢ 𝑔∗𝑆 = 2 + 7

8
⋅ 2𝑁eff

4

11
= 3.94

➢ Number density:
𝑛𝜈 =

3
4𝑁eff ⋅

4
11𝑛𝛾

➢ Energy density:

𝑚𝜈 = 0: 𝜌𝜈 =
7
8𝑁eff ⋅

4
11

Τ4 3
𝑛𝛾

Ω𝜈ℎ
2 ≈ 1.7 ⋅ 10−5

𝑚𝜈 ≠ 0: 𝜌𝜈 = σ𝑖𝑚𝜈,𝑖 𝑛𝜈,𝑖

Ω𝜈ℎ
2 ≈

σ𝑖𝑚𝜈,𝑖

94 eV
< 0.02

𝑔∗ 𝑆
dec

𝑇 = ෍

𝑖∈bos

𝑔𝑖
𝑇𝑖
𝑇

4 3

+
7

8
෍

𝑖∈fer

𝑔𝑖
𝑇𝑖
𝑇

4 3

,
𝑇𝜈
𝑇𝛾

=
4

11

1/3

(𝑁eff = 3)

𝑁eff = 3.046



Beyond Equilibrium

❖ Boltzmann equation
➢ In the absence of interactions the number of particles is conserved:

1

𝑎3
d 𝑛𝑖𝑎

3

d𝑡
= 0

➢ To account for the interactions, we include the collision term:
1

𝑎3
d 𝑛𝑖𝑎

3

d𝑡
= 𝐶𝑖 𝑛𝑖

❖ Example: 𝐴 + 𝐵 ↔ 𝐶 + 𝐷
1

𝑎3
d 𝑛𝐴𝑎

3

d𝑡
= −𝛼𝑛𝐴𝑛𝐵 + 𝛽𝑛𝐶𝑛𝐷

➢ In (chemical) equilibrium: 𝛼𝑛𝐴𝑛𝐵 eq = 𝛽𝑛𝐶𝑛𝐷 eq

1

𝑎3
d 𝑛𝐴𝑎

3

d𝑡
= − 𝜎𝑣 𝑛𝐴𝑛𝐵 −

𝑛𝐴𝑛𝐵
𝑛𝐶𝑛𝐷 eq

𝑛𝐶𝑛𝐷

Boltzmann equation

𝛼 = 𝜎𝑣 – thermally averaged cross-section

𝛽 = 𝛼 ⋅
𝑛𝐴𝑛𝐵
𝑛𝐶𝑛𝐷 eq



History of the Universe



Dark matter relics

❖ Assumptions:
➢ Dark matter consists of weakly interacting massive particles (WIMPs)

➢ Heavy dark matter particle 𝑋 and its antiparticle ത𝑋 can annihilate to produce two 
light (≈massless) particles ℓ and തℓ:

𝑋 + ത𝑋 ↔ ℓ + തℓ

➢ ℓ are tightly coupled to the cosmic plasma 

➢ No asymmetry 𝑋 and ത𝑋, i.e. 𝑛𝑋 = 𝑛 ത𝑋

𝑛ℓ ≈ 𝑛ℓ
eq



Dark matter relics

❖ Boltzmann  equation:
1

𝑎3
d 𝑛𝑋𝑎

3

d𝑡
= − 𝜎𝑣 𝑛𝑋

2 − 𝑛𝑋
eq 2

➢ Let’s introduce new quantities: 

❑ 𝑌𝑋 =
𝑛𝑋

𝑇3
(∝ 𝑁𝑋 =

𝑛𝑋

𝑠
, the number of particles in a comoving volume)

❑ 𝑥 =
𝑀𝑥

𝑇

➢ During radiation-dominated era: 

❖ Riccati equation:

d𝑥

d𝑡
= −

𝑀𝑋

𝑇2
d𝑇

d𝑡
= −

𝑥

𝑇

d𝑇

d𝑡
=

𝑥

𝑎

d𝑎

d𝑡
= 𝐻𝑥

d𝑌𝑥
d𝑥

= −
𝜆

𝑥2
𝑌𝑋
2 − 𝑌𝑋

eq 2

𝐻 = 𝐻 𝑇 = 𝑀𝑋 ⋅
𝑎 𝑇 = 𝑀𝑋

𝑎

2

= 𝐻 𝑀𝑋 ⋅
𝑇

𝑀𝑋

2

=
𝐻 𝑀𝑋

𝑥2

𝑇 ∝ 𝑎−1

𝑇 ∝ 𝑎−1

𝜆 =
𝑀𝑋
3

𝐻 𝑀𝑋
𝜎𝑣



Dark matter relics

❖ Boltzmann  equation:
1

𝑎3
d 𝑛𝑋𝑎

3

d𝑡
= − 𝜎𝑣 𝑛𝑋

2 − 𝑛𝑋
eq 2

➢ Let’s introduce new quantities: 

❑ 𝑌𝑋 =
𝑛𝑋

𝑇3
(∝ 𝑁𝑋 =

𝑛𝑋

𝑠
, the number of particles in a comoving volume)

❑ 𝑥 =
𝑀𝑥

𝑇

➢ During radiation-dominated era: 

❖ Riccati equation:

d𝑥

d𝑡
= −

𝑀𝑋

𝑇2
d𝑇

d𝑡
= −

𝑥

𝑇

d𝑇

d𝑡
=

𝑥

𝑎

d𝑎

d𝑡
= 𝐻𝑥

d𝑌𝑥
d𝑥

= −
𝜆

𝑥2
𝑌𝑋
2 − 𝑌𝑋

eq 2

𝐻 = 𝐻 𝑇 = 𝑀𝑋 ⋅
𝑎 𝑇 = 𝑀𝑋

𝑎

2

= 𝐻 𝑀𝑋 ⋅
𝑇

𝑀𝑋

2

=
𝐻 𝑀𝑋

𝑥2

𝜆 =
𝑀𝑋
3

𝐻 𝑀𝑋
𝜎𝑣 ≈ const

𝑇 ∝ 𝑎−1

𝑇 ∝ 𝑎−1

Numerical solution

𝑌𝑋 ≈ 𝑌𝑋
eq

=
3𝜁 3

4𝜋2
≈ 0.1

𝑌𝑋
eq

~
𝑥

2𝜋

3/2
e−𝑥

Freeze-out at 𝑥𝑓~10

For 𝑥 ≫ 1: 𝑌𝑋 𝑥 ≫ 𝑌𝑋
eq

, thus
d𝑌𝑥

d𝑥
≃ −

𝜆

𝑥2
𝑌𝑥
2 ⇒

1

𝑌𝑋
∞ −

1

𝑌𝑋
𝑓 =

𝜆

𝑥𝑓

𝑌𝑋
∞

≃ 𝑥𝑓/𝜆

𝑌𝑋
∞

≃ 𝑥𝑓/𝜆



Dark matter density

❖ Let’s relate the freeze-out abundance of dark matter relics to the dark 
matter density today

➢ Number density:

➢ Conservation of entropy: 𝑔∗𝑆 𝑎𝑇 3 = const

❑ 𝑇0 = 2.73 K,  𝐻0 = 70 km s−1 Mpc−1, 𝐻2 𝑀𝑋 =
𝜋2

90
𝑔∗ 𝑀𝑋

𝑀𝑋
4

𝑀pl
2 ,

𝑔∗𝑆 𝑇0 = 3.91, 𝑔∗𝑆 𝑀𝑋 = 𝑔∗ 𝑀𝑋

Ω𝑋 =
𝜌𝑋,0
𝜌crit,0

=
𝑀𝑋𝑛𝑋,0

3𝑀pl
2𝐻0

2

𝑛𝑋,0 = 𝑛𝑋,1
𝑎1
𝑎0

3

= 𝑌𝑋
∞
𝑇1
3

𝑎1
𝑎0

3

𝑌𝑋 =
𝑛𝑋
𝑇3

,

= 𝑌𝑋
∞
𝑇0
3

𝑎1𝑇1
𝑎0𝑇0

3

𝑛𝑋,0 = 𝑌𝑋
∞
𝑇0
3
𝑔∗𝑆 𝑇0
𝑔∗𝑆 𝑀𝑋

=
𝑀𝑋

3𝑀pl
2𝐻0

2 𝑌𝑋
∞
𝑇0
3
𝑔∗𝑆 𝑇0
𝑔∗𝑆 𝑀𝑋

=
𝑀𝑋

3𝑀pl
2𝐻0

2

𝑥𝑓
𝜆
𝑇0
3
𝑔∗𝑆 𝑇0
𝑔∗𝑆 𝑀𝑋

𝜆 =
𝑀𝑋
3

𝐻 𝑀𝑋
𝜎𝑣𝑌𝑋

∞
≃
𝑥𝑓

𝜆
,

Ω𝑋 =
𝐻 𝑀𝑋

𝑀𝑋
2

𝑇0
3

3𝑀pl
2𝐻0

2

𝑥𝑓
𝜎𝑣

𝑔∗𝑆 𝑇0
𝑔∗𝑆 𝑀𝑋

≈ 0.1
𝑥𝑓

𝑔∗ 𝑀𝑋

10−8 GeV−2

𝜎𝑣
≈ 0.27

if 𝜎𝑣 ~10−8 GeV−2, 
a characteristic scale for 
the weak interaction
(WIMP miracle)



History of the Universe



Electron–proton recombination (first H atoms)

❖ When 𝑇 ≳ 1 eV: 𝑒− + 𝑝+ ↔ 𝐻 + 𝛾

❖ 𝑇 ≪ 𝑚𝑒 ≈ 0.5 MeV, thus equilibrium densities are

𝑛𝑖
eq

= 𝑔𝑖
𝑚𝑖𝑇

2𝜋

3/2

exp
𝜇𝑖 −𝑚𝑖

𝑇
, 𝑖 = 𝑒, 𝑝, 𝐻

➢ 𝜇𝑒 + 𝜇𝑝 = 𝜇𝐻

❖ Let’s consider the ratio =
𝑔𝐻
𝑔𝑒𝑔𝑝

𝑚𝐻

𝑚𝑒𝑚𝑝

2𝜋

𝑇

3/2

exp
𝑚𝑝 +𝑚𝑒 −𝑚𝐻

𝑇

𝑛𝐻
𝑛𝑒𝑛𝑝 eq

≈ 𝑚𝑝 ≈ 𝐸𝐵 = 13.6 eV

≈
4

2⋅2
= 1

𝑛𝐻

𝑛𝑒
2

eq

=
2𝜋

𝑚𝑒𝑇

3/2

exp
𝐸𝐵
𝑇

𝑛𝑒 = 𝑛𝑝



❖
𝑛𝐻

𝑛𝑒
2

eq
=

2𝜋

𝑚𝑒𝑇

3/2
exp

𝐸𝐵

𝑇

❖ Fraction of free electrons  𝑋𝑒 = 𝑛𝑒/𝑛𝑏,  here 𝑛𝑏 is baryon density

➢ 𝑛𝑏 = 𝜂𝑏𝑛𝛾

➢ 𝜂𝑏 = 5.5 ⋅ 10−10 – baryon-to-photon ratio

➢ Ignoring other nuclei, baryon density 𝑛𝑏 ≈ 𝑛𝑝 + 𝑛𝐻 = 𝑛𝑒 + 𝑛𝐻

= 𝜂𝑏
𝜁(3)

𝜋2
2𝑇3

Electron–proton recombination

1 − 𝑋𝑒

𝑋𝑒
2

eq

=
2𝜁(3)

𝜋2
𝜂𝑏

2𝜋𝑇

𝑚𝑒

3/2

exp
𝐸𝐵
𝑇

Saha equation

𝑋𝑒
eq
=
−1 + 1 + 𝑓

2𝑓
, 𝑓 =

2𝜁(3)

𝜋2
𝜂𝑏

2𝜋𝑇

𝑚𝑒

3/2

exp
𝐸𝐵
𝑇



❖
𝑛𝐻

𝑛𝑒
2

eq
=

2𝜋

𝑚𝑒𝑇

3/2
exp

𝐸𝐵

𝑇

❖ Fraction of free electrons  𝑋𝑒 = 𝑛𝑒/𝑛𝑏,  here 𝑛𝑏 is baryon density

➢ 𝑛𝑏 = 𝜂𝑏𝑛𝛾

➢ 𝜂𝑏 = 5.5 ⋅ 10−10 – baryon-to-photon ratio

➢ Ignoring other nuclei, baryon density 𝑛𝑏 ≈ 𝑛𝑝 + 𝑛𝐻 = 𝑛𝑒 + 𝑛𝐻

➢ The redshift of recombination 1 + 𝑧rec = Τ𝑎 𝑡0 𝑎 𝑡rec = 𝑇rec/𝑇0

➢ 𝑎 𝑡 = Τ𝑡 𝑡0
2/3

= 𝜂𝑏
𝜁(3)

𝜋2
2𝑇3

1 − 𝑋𝑒

𝑋𝑒
2

eq

=
2𝜁(3)

𝜋2
𝜂𝑏

2𝜋𝑇

𝑚𝑒

3/2

exp
𝐸𝐵
𝑇

Saha equation

Electron–proton recombination

𝑇rec ≈ 0.32 eV
≈ 3700 K

𝑡rec =
𝑡0

1+𝑧rec
3/2 = 𝑡0

𝑇0

𝑇rec

3/2
≈ 290 kyr

𝑋𝑒
eq
=
−1 + 1 + 𝑓

2𝑓
, 𝑓 =

2𝜁(3)

𝜋2
𝜂𝑏

2𝜋𝑇

𝑚𝑒

3/2

exp
𝐸𝐵
𝑇



𝑇rec ≈ 0.32 eV
≈ 3700 K

𝑇dec ≈ 0.27 eV
≈ 3700 K

Photon decoupling

❖ Interaction with the remaining free electrons:  𝑒− + 𝛾 ↔ 𝑒− + 𝛾

❖ Interaction rate Γ ≈ 𝑛𝑒𝜎𝑇 with Thomson cross-section 𝜎𝑇 = 2 ⋅ 10−3 MeV−2

❖ Photons and electrons decouple when Γ 𝑇dec ≈ 𝐻 𝑇dec
➢ Γ 𝑇dec = 𝑛𝑒𝜎𝑇 = 𝑛𝑏𝑋𝑒 𝑇dec 𝜎𝑇 = 𝜎𝑇𝜂𝑏

2𝜁(3)

𝜋2
𝑇dec
3 𝑋𝑒 𝑇dec

➢ 𝐻 𝑇dec = 𝐻0 Ω𝑚
𝑇dec

𝑇0

3/2

➢ A large degree of neutrality is necessary for 
the universe to become transparent to photons

𝑇dec ≈ 0.27 eV

𝑋𝑒 𝑇dec ≈ 0.01

𝑡dec ≈ 380 kyr



Electron freeze-out

❖ Boltzmann  equation:
1

𝑎3
d 𝑛𝑒𝑎

3

d𝑡
= − 𝜎𝑣 𝑛𝑒

2 − 𝑛𝑒
eq 2

➢ 𝜎𝑣 ≃ 𝜎𝑇 𝐸𝐻/𝑇

➢ 𝑛𝑒 = 𝑛𝑏𝑋𝑒 , 𝑛𝑏𝑎
3 = const

➢ 𝑥 = 𝐸𝐻/𝑇,      𝑇 ∝ 𝑔∗𝑆
− Τ1 3

𝑎−1

❖ Electron freeze-out abundance: 𝑋𝑒
∞

≃
𝑥𝑓

𝜆

d𝑋𝑒
d𝑥

= −
𝜆

𝑥2
𝑋𝑒
2 − 𝑋𝑒

eq 2

𝜆 =
𝑛𝑏
𝑥𝐻

𝜎𝑣
𝑥=1

The same eq. as for 
dark matter freeze-out!

𝑥𝑓 ≈ 54,  𝑇𝑓 ≈ 0.25 eV
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Big Bang Nucleosynthesis

❖ 𝑇~1 MeV: 
➢ Photons, electrons, and positrons are in equilibrium

➢ Neutrinos are going to decouple

➢ Baryons already are non-relativistic

❖ Currently, 
𝑛He

𝑛H
~

1

16

➢ Why?



Step 0: Equilibrium

❖ Simplifications:
➢ No elements heavier than helium (H, D, T, and 3He, and He)

➢ Only neutrons and protons exist at 𝑇 > 0.1 MeV

➢ Chemical potentials for 𝑒− and 𝜈𝑒 are negligible

❖ 𝑛 − 𝑝 equilibrium
➢ 𝑛 + 𝜈𝑒 ↔ 𝑝+ + 𝑒−, 𝑛 + 𝑒+ ↔ 𝑝+ + ҧ𝜈𝑒
➢ 𝜇𝑛 ≈ 𝜇𝑛

➢ For 𝑇 < 1 MeV, the fraction of neutrons gets smaller

𝑛𝑖
eq

= 𝑔𝑖
𝑚𝑖𝑇

2𝜋

3/2

exp
𝜇𝑖 −𝑚𝑖

𝑇

𝑛𝑛
𝑛𝑝 eq

=
𝑚𝑛

𝑚𝑝

3/2

exp −
𝑚𝑛 −𝑚𝑝

𝑇

≈ 𝑄 = 1.30 MeV

≈ 1

= exp −
𝑄

𝑇



Step 0: Equilibrium

❖ 𝑛 − 𝑝 equilibrium:

❖ Deuteron:
➢ 𝑛 + 𝑝+ ↔ 𝐷 + 𝛾

➢ 𝜇𝐷 = 𝜇𝑛 + 𝜇𝑝

𝑛𝑖
eq

= 𝑔𝑖
𝑚𝑖𝑇

2𝜋

3/2

exp
𝜇𝑖 −𝑚𝑖

𝑇

𝑛𝑛
𝑛𝑝 eq

= exp −
𝑄

𝑇

≈ 𝐸𝐷 = 2.22 MeV

≈ 2/𝑚𝑝

𝑛𝐷
𝑛𝑝𝑛𝑛 eq

=
3

4

𝑚𝐷

𝑚𝑛𝑚𝑝

2𝜋

𝑇

3/2

exp
𝑚𝑛 +𝑚𝑝 −𝑚𝐷

𝑇

𝑛𝐷
𝑛𝑝 eq

≈
3

4
𝑛𝑛
eq 4𝜋

𝑚𝑝𝑇

3/2

exp
𝐸𝐷
𝑇



Step 1: Neutron Freeze-out

❖ Boltzmann equation (𝑛 + 𝜈𝑒 ↔ 𝑝+ + 𝑒−):

➢ Γ𝑛 = 𝑛ℓ 𝜎𝑣

➢ 𝑋𝑛 =
𝑛𝑛

𝑛𝑛+𝑛𝑝
,   𝑛𝑛 + 𝑛𝑝~𝑛𝑏 ∝ 𝑎−3,   

𝑛𝑛

𝑛𝑝 eq

= exp −
𝑄

𝑇

➢ 𝑥 = 𝑄/𝑇

1

𝑎3
d 𝑛𝐴𝑎

3

d𝑡
= − 𝜎𝑣 𝑛𝐴𝑛𝐵 −

𝑛𝐴𝑛𝐵
𝑛𝐶𝑛𝐷 eq

𝑛𝐶𝑛𝐷

𝐴 + 𝐵 ↔ 𝐶 + 𝐷:

1

𝑎3
d 𝑛𝑛𝑎

3

d𝑡
= −Γ𝑛 𝑛𝑛 −

𝑛𝑛
𝑛𝑝 eq

𝑛𝑝

d𝑋𝑛
d𝑡

= −Γ𝑛 𝑋𝑛 − 1 − 𝑋𝑛 e−𝑄/𝑇

d𝑋𝑛
d𝑥

= −
Γ𝑛
𝐻1

𝑥 e−𝑥 − 𝑋𝑛 1 + e−𝑥

➢ For 𝑇~1 MeV,  Γ𝑛
−1 is 

comparable with the age of 
the Universe

➢ At later times, 𝑇 ∝ 𝑡−1/2, and 
Γ𝑛 ∝ 𝑇3 ∝ 𝑡−3/2, so the 
neutron-proton conversion 

time Γ𝑛
−1 ∝ 𝑡3/2 becomes 

even longer
➢ As a result, 𝑛𝑛/𝑛𝑝 ratio 

approaches a constant

Numerical solution yields
𝑋𝑛
∞ ≡ 𝑋𝑛 𝑥 = ∞ = 0.15



Step 1: Neutron Freeze-out

❖ Boltzmann equation (𝑛 + 𝜈𝑒 ↔ 𝑝+ + 𝑒−):

➢ Γ𝑛 = 𝑛ℓ 𝜎𝑣

➢ 𝑋𝑛 =
𝑛𝑛

𝑛𝑛+𝑛𝑝
,   𝑛𝑛 + 𝑛𝑝~𝑛𝑏 ∝ 𝑎−3,   

𝑛𝑛

𝑛𝑝 eq

= exp −
𝑄

𝑇

➢ 𝑥 = 𝑄/𝑇

1

𝑎3
d 𝑛𝐴𝑎

3

d𝑡
= − 𝜎𝑣 𝑛𝐴𝑛𝐵 −

𝑛𝐴𝑛𝐵
𝑛𝐶𝑛𝐷 eq

𝑛𝐶𝑛𝐷

𝐴 + 𝐵 ↔ 𝐶 + 𝐷:

1

𝑎3
d 𝑛𝑛𝑎

3

d𝑡
= −Γ𝑛 𝑛𝑛 −

𝑛𝑛
𝑛𝑝 eq

𝑛𝑝

d𝑋𝑛
d𝑡

= −Γ𝑛 𝑋𝑛 − 1 − 𝑋𝑛 e−𝑄/𝑇

d𝑋𝑛
d𝑥

= −
Γ𝑛
𝐻1

𝑥 e−𝑥 − 𝑋𝑛 1 + e−𝑥

➢ For 𝑇~1 MeV,  Γ𝑛
−1 is 

comparable with the age of 
the Universe

➢ At later times, 𝑇 ∝ 𝑡−1/2, and 
Γ𝑛 ∝ 𝑇3 ∝ 𝑡−3/2, so the 
neutron-proton conversion 

time Γ𝑛
−1 ∝ 𝑡3/2 becomes 

even longer
➢ As a result, 𝑛𝑛/𝑛𝑝 ratio 

approaches a constant

Numerical solution yields
𝑋𝑛
∞ ≡ 𝑋𝑛 𝑥 = ∞ = 0.15



Step 2: Neutron Decay

❖ At 𝑇 < 0.2 MeV (𝑡 ≳ 100 s), the finite lifetime of a neutron (𝜏𝑛 = 887 s) 
becomes important:

𝑋𝑛 𝑡 = 𝑋𝑛
∞ exp −

𝑡

𝜏𝑛
≈
1

6
exp −

𝑡

887 s



Step 3: Helium Fusion

❖ Deuteron: 
➢ 𝑛 + 𝑝+ ↔ 𝐷 + 𝛾

➢ 𝑛𝐷 follows the 𝑛𝑛 and 𝑛𝑝 equilibrium abundance

➢
𝑛𝐷

𝑛𝑝 eq

≈
3

4
𝑛𝑛
eq 4𝜋

𝑚𝑝𝑇

3/2

exp
𝐸𝐷

𝑇

➢ 𝑛𝑛
eq
~𝑛𝑏 = 𝜂𝑏𝑛𝛾 = 𝜂𝑏 ⋅

2𝜁 3

𝜋2
𝑇3,   here baryon/photon ratio 𝜂𝑏~10

−9

➢ 𝑋𝑛 𝑡nuc ~
1

6
exp −

330 s

887 s
~0.11

~ 1~ 𝜂𝑏
𝑇

𝑚𝑝

3/2

exp
𝐸𝐷
𝑇

𝑇nuc ≈ 0.06 MeV
𝑡nuc ≈ 330 s



Step 3: Helium Fusion

❖ Helium:
➢ 𝐷 + 𝑝+ ↔ 3He + 𝛾,   𝐷 + 3He↔ 4He + 𝑝+

➢ Binding energy of He is larger than that of D (7.1 MeV vs 1.1 MeV per nucleon)

➢ Formation of He starts immediately after some D is produced

➢ Virtually all the neutrons are bound in He at 𝑡~𝑡nuc

➢ Final 𝑛He =
1

2
𝑛𝑛 𝑡nuc

𝑛He
𝑛H

=
𝑛He
𝑛𝑝

≈
1
2
𝑋𝑛 𝑡nuc

1 − 𝑋𝑛 𝑡nuc
≈

1
2
⋅ 0.11

1 − 0.11
≈

1
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Theoretical predictions


