Daniel Baumann

Cosmology

Chapter 3. Thermal History (The first 3 minutes in the history of the Universe)

1/17/2023

The Hot Big Bang

- \clubsuit Rate of interactions $\Gamma \gg$ Rate of expansion H
 - \blacktriangleright Timescale of particle interactions \ll characteristic expansion time scale
 - Local thermal equilibrium is reached before effect of expansion becomes relevant

• Natural units:
$$c = \hbar = k_{\rm B} = 1$$
, Planck mass $M_{\rm Pl} = \sqrt{\frac{\hbar c}{8\pi G}} = 2.4 \cdot 10^{18} \, {\rm GeV}$

• Rate of interactions $\Gamma = n\sigma v$ $E = \sqrt{m^2 + p^2} \approx p$ \blacktriangleright Velocity of particles $v \approx 1$ > Number density of particles $n = \int f(p,T) d^3p \sim \int e^{-E/T} 4\pi p^2 dp \propto \int e^{-p/T} p^2 dp$

Local thermal equilibrium

- Rate of interactions $\Gamma = n\sigma v \propto \alpha^2 T$
- ★ Hubble rate $H \sim \sqrt{\rho} / M_{\text{Pl}}$ > Density $\rho = \int f(p,T) E \, \mathrm{d}^3 p \, \propto \, \int \mathrm{e}^{-p/T} \cdot p \cdot p^2 \, \mathrm{d} p \, \propto T^4$ H \approx $\frac{T^2}{M_{\text{Pl}}}$ $H \propto \frac{T^2}{M_{\text{Pl}}}$ $\frac{\Gamma}{H} \propto \frac{\alpha^2 M_{\text{Pl}}}{T} \propto \frac{10^{16} \, \text{GeV}}{T}$
- Thus for temperatures below T~10¹⁵ GeV and above 100 GeV (relativistic limit) all the particles of the Standard model are in thermal equilibrium
- As *T* drops below the mass of the particles, they become non-relativistic, yielding *f* ∝ $e^{-m/T}$

Number of total relativistic DOF vs. temperature

Decoupling and freeze-out of massive particles

Decoupling of weak scale interactions

- ♣ Below $T \leq 100$ GeV (the scale of electroweak symmetry breaking), the W^{\pm} and Z bosons receive masses ($M_W = 80$ GeV and $M_Z = 90$ GeV)
- The cross-section associated with the weak force

✤ Particles interacting with the primordial plasma only through the weak interaction should decouple at ~1 MeV

History of the Universe

Models to explain overabundance of matter over anti-matter w/o assuming	Event	time t	redshift z	temperature T
primordial matter-antimatter asymmetry	Singularity	0	∞	∞
Particles receive masses through the	Quantum gravity	$\sim 10^{-43} \mathrm{s}$	_	$\sim 10^{18}{ m GeV}$
Higgs mechanism	Inflation	$\gtrsim 10^{-34}\mathrm{s}$	_	_
Strong interaction between quarks	Baryogenesis	$\lesssim 20\mathrm{ps}$	$> 10^{15}$	$> 100 {\rm GeV}$
and gluons leads to the formation of 🔪 🎽	EW phase transition	$20\mathrm{ps}$	10^{15}	$100{ m GeV}$
baryons and mesons	QCD phase transition	$20\mu{ m s}$	10^{12}	$150{ m MeV}$
Is expected to decouple relatively early	Dark matter freeze-out	?	?	?
Interact with the rest of the primordial	Neutrino decoupling	$1\mathrm{s}$	6×10^9	$1{ m MeV}$
plasma through the weak interaction	Electron-positron annihilation	$6\mathrm{s}$	2×10^9	$500{ m keV}$
Energies of the e^- and e^+ are transferred	Big Bang nucleosynthesis	$3\mathrm{min}$	4×10^8	$100\mathrm{keV}$
Formation of light chemical elements	Matter-radiation equality	$60\mathrm{kyr}$	3400	$0.75\mathrm{eV}$
Formation of neutral H atoms	Recombination	$260380\mathrm{kyr}$	1100 - 1400	$0.260.33\mathrm{eV}$
Small number of remaining free <i>e</i> leads	Photon decoupling	$380{ m kyr}$	1100	$0.26\mathrm{eV}$
to the decoupling of photons and CMB	Reionization	$100400\mathrm{Myr}$	10 - 30	$2.67.0\mathrm{meV}$
UV radiation from the first stars	Dark energy-matter equality	$9{ m Gyr}$	0.4	$0.33{ m meV}$
reionized the Universe	Present	13.8 Gyr	0	$0.24 \mathrm{meV}$

Equilibrium Thermodynamics

• Equilibrium distribution function for a particle to have a momentum \mathbf{p} :

$$f(\mathbf{p}, T) = \frac{1}{\exp\left(\frac{E(p) - \mu}{T}\right) \pm 1}$$

 \clubsuit Particle has g internal degrees of freedom

• Density of states in 3D is
$$\frac{g}{(2\pi\hbar)^3} \equiv \frac{g}{(2\pi)^3}$$
:

- "+" : Fermi–Dirac distribution
- "-" : Bose-Einstein distribution
- μ chemical potential describing the response to a change in particle number

 $E(p) = \sqrt{m^2 + p^2}$

Number density
$$n = g \cdot \sum_{\mathbf{p}} f(\mathbf{p}, T) \equiv \frac{g}{(2\pi)^3} \int d^3p f(\mathbf{p}, T)$$

of particles $\rho = \frac{g}{(2\pi)^3} \int d^3p f(\mathbf{p}, T) \cdot E(p)$

Pressure

* Total number of particles with energy *E* within the solid angle $d\Omega$, that will hit this area dAwithin the time interval between *t* and *t* + d*t*: $g \qquad d\mathbf{A} \cdot \mathbf{v} dt d\Omega$

$$dN_A = \frac{g}{(2\pi)^3} f(E) \cdot \frac{d\mathbf{A} \cdot \mathbf{v} dt \, ds_2}{4\pi}$$

- * Elastic hits transfer the momentum $2|\boldsymbol{p}\cdot\boldsymbol{\widehat{n}}|$
- ✤ The contribution of the particles with velocity $|\mathbf{v}| = |\mathbf{p}|/E$ to the pressure is

$$P(E) = \iint \frac{2|\mathbf{p} \cdot \widehat{\mathbf{n}}|}{\mathrm{d}A\mathrm{d}t} \mathrm{d}N_A = \frac{g}{(2\pi)^3} f(E) \cdot \frac{p^2}{2\pi E} \int_0^{\frac{\pi}{2}} \cos^2 \vartheta \sin \vartheta \,\mathrm{d}\vartheta \int_0^{2\pi} \mathrm{d}\varphi$$
$$\Rightarrow P = \frac{g}{(2\pi)^3} \int \mathrm{d}^3 p \, f(\mathbf{p}, T) \cdot \frac{p^2}{3E} = \frac{1/3}{2\pi E}$$

Chemical potential

$$\bigstar \text{ Entropy } dS = \frac{dU + PdV - \mu dN}{T} \qquad \Longrightarrow \qquad \mu = -T \left(\frac{\partial S}{\partial N}\right)_{U,V} \qquad \text{ or, alternatively} \qquad \mu = \left(\frac{\partial U}{\partial N}\right)_{S,V}$$

- ★ For a general reaction $A + B \leftrightarrow C + D$ particles flow to the side of the reaction, where the total chemical potential ($\mu_A + \mu_B$ or $\mu_C + \mu_D$) is lower
- ✤ In equilibrium, when forward and backward reaction total rates are equal, µ remains constant: $\mu_A + \mu_B = \mu_C + \mu_D$
- Number of photons is not conserved $\Rightarrow \mu_{\gamma} = 0$
- ★ In the annihilation reaction: $X + \overline{X} \leftrightarrow \gamma + \gamma$

Particle and energy densities

"+" : Fermi-Dirac distribution
"-" : Bose-Einstein distribution

[Ex. to show that for electrons]

* At early times, the chemical potentials of all particles are very small, $\mu \approx 0$

***** Particle density
$$n = \frac{g}{(2\pi)^3} \int d^3p \ f(\mathbf{p}, T) = \frac{g}{(2\pi)^3} \int_0^\infty \frac{4\pi p^2 \ dp}{\exp\left(\frac{\sqrt{p^2 + m^2}}{T}\right) \pm 1} = \frac{g}{2\pi^2} T^3 \cdot I_{\pm}(x)$$

Energy density

$$\rho = \frac{g}{(2\pi)^3} \int d^3p \ Ef(\mathbf{p}, T) = \frac{g}{(2\pi)^3} \int_0^\infty \frac{4\pi p^2 \sqrt{p^2 + m^2} \ dp}{\exp\left(\frac{\sqrt{p^2 + m^2}}{T}\right) \pm 1} = \frac{g}{2\pi^2} T^4 \cdot J_{\pm}(x)$$

$$I_{\pm}(x) = \int_0^\infty \frac{\xi^2 \, \mathrm{d}\xi}{\exp\left(\sqrt{\xi^2 + x^2}\right) \pm 1} \qquad J_{\pm}(x) = \int_0^\infty \frac{\xi^2 \sqrt{\xi^2 + x^2} \, \mathrm{d}\xi}{\exp\left(\sqrt{\xi^2 + x^2}\right) \pm 1}$$

Particle and energy densities

"+" : Fermi-Dirac distribution "-" : Bose-Einstein distribution

Riemann zeta function $\zeta(x) = 1 + 2^{-x} + 3^{-x} + 4^{-x} + \cdots$

Relativistic limit

$$\stackrel{\bullet}{\bullet} m \ll T, \ x \to 0, \ I_{\pm}(0) = \int_{0}^{\infty} \frac{\xi^{2} d\xi}{\exp(\xi) \pm 1} = \begin{cases} \frac{3}{2}\zeta(3), \ "+", \\ 2\zeta(3), \ "-", \end{cases} \qquad J_{\pm}(0) = \begin{cases} \frac{21}{4}\zeta(4), \ "+" \\ 6\zeta(4), \ "-" \end{cases}$$
$$n = \frac{\zeta(3)}{\pi^{2}} gT^{3} \cdot \begin{cases} 1, & \text{bosons} \\ \frac{3}{4}, & \text{fermions} \end{cases} \qquad \rho = \frac{\pi^{2}}{30} gT^{4} \cdot \begin{cases} 1, & \text{bosons} \\ \frac{7}{8}, & \text{fermions} \end{cases} \qquad \zeta(4) = \frac{\pi^{4}}{90} \end{cases}$$

✤ Relic photons: $g = 2, T_0 = 2.73$ K

Photon density $n_{\gamma,0} = \frac{\zeta(3)}{\pi^2} 2T_0^3 \equiv \frac{\zeta(3)}{\pi^2} 2\left(\frac{k_B T_0}{\hbar c}\right)^3 \approx 410 \text{ photons/cm}^3$ Mass density $\rho_{\gamma,0} = \frac{\pi^2}{30} 2T_0^4 \equiv \frac{\pi^2}{30} 2\frac{(k_B T_0)^4}{\hbar^3 c^5} \approx 4.64 \cdot 10^{-34} \text{ g/cm}^3$ Dimensionless density $\Omega_{\gamma,0} h^2 = \frac{\rho_{\gamma,0}}{\rho_{\text{crit,0}}} = 2.5 \cdot 10^{-5}$ Pressure $P_{\gamma} = \frac{g}{(2\pi)^3} \int d^3 p f(\mathbf{p}, T) \cdot \frac{p^2}{3E} = \frac{g}{2\pi^2} \int_0^\infty \frac{p^2}{3p} \frac{p^2 dp}{\exp(\frac{p}{T}) - 1} = \frac{1}{3} \rho_{\gamma}$

Non-relativistic limit: $m \gg T$, $x \gg 1$

Effective number of relativistic species

The total energy density of all the particles is

$$\rho = \sum_{i} \frac{g_i}{2\pi^2} T_i^4 J_{\pm}(x_i)$$

$$\rho^{(r)} = \frac{\pi^2}{30} g T^4 \cdot \begin{cases} 1, \text{ bosons} \\ \frac{7}{8}, \text{ fermions} \end{cases}$$

* It is common to write ρ in terms of the "Temperature of the Universe", which is typically chosen as the photon temperature:

$$\rho = \frac{\pi^2}{30} g_*(T) T^4, \qquad g_*(T) = \sum_i g_i \left(\frac{T_i}{T}\right)^4 \frac{J_{\pm}(x_i)}{J_{-}(0)}$$

- Due to exponential drop-out it is sufficient to include only relativistic species
- ➢ For $T_i \gg m_i$, we have $J_{\pm}(x_i \ll 1) \approx \text{const}$

Relativistic particles in thermal equilibrium with photons, $T_i = T$:

$$g_*^{(\mathrm{th})}(T) = \sum_{i \in \mathrm{bos}} g_i + \frac{7}{8} \sum_{i \in \mathrm{fer}} g_i$$

Relativistic particles decoupled from the thermal bath (neutrinos after e^+e^- annihilation):

$$g_*^{(\text{dec})}(T) = \sum_{i \in \text{bos}} g_i \left(\frac{T_i}{T}\right)^4 + \frac{7}{8} \sum_{i \in \text{fer}} g_i \left(\frac{T_i}{T}\right)^4$$

Degrees of freedom

 $g_*^{(\text{th})}(T) = \sum_{i \in \text{bos}} g_i + \frac{7}{8} \sum_{i \in \text{fer}} g_i$

		Mass	Spin g			Mass	Spin	g	
quarks	$t,ar{t}$	$173~{\rm GeV}$	$\frac{1}{2} \qquad 2 \cdot 2 \cdot 3 = 12$	gauge	W^+	$80 { m GeV}$	1	3	
	$b, ar{b}$	$4 { m GeV}$	Particle and anti-particle	bosons	W^{-}	$80~{\rm GeV}$	3 s	pin states	
	c,ar c	$1~{\rm GeV}$	2 spin states		Z^0	$91~{ m GeV}$			
	$s, ar{s}$	$100~{\rm MeV}$	3 colors		γ	0		2	
	$d, ar{s}$	$5 { m MeV}$					2 polar	rization states	
	u, \bar{u}	$2 {\rm MeV}$		gluons	g_i	0	1	$8 \cdot 2 = 16$	
leptons	τ^{\pm}	$1777 { m ~MeV}$	$\frac{1}{2}$ $2 \cdot 2 = 4$				2 polar	rization states	
	μ^{\pm}	$106 { m ~MeV}$	Particle and anti-particle	Higgs	H^0	125 GeV	0	1	
	e^{\pm} 511 keV	2 spin states	boson	11	125 Gev	0	1		
neutrinos	$ u_{ au}, ar{ u}_{ au}$	$< 0.6 \ {\rm eV}$	$\frac{1}{2}$ $2 \cdot 1 = 2$	At $T > 10$	0 GeV.	all particles a	re relat	tivistic. hence	
	$ u_{\mu}, ar{ u}_{\mu}$	$< 0.6 \ {\rm eV}$	Either	$q_* = 3$.	3 + 2 -	+ 16 + 1			
	$ u_e, \bar{\nu}_e$	$< 0.6 \ \mathrm{eV}$	Particle = anti-particle <i>or</i> a single spin state exists	+	$\frac{7}{8} \cdot (6 \cdot$	$12 + 3 \cdot 4 +$	- 3 · 2)) = 106.75	

Number of total relativistic DOF vs. temperature

Conservation of entropy

★ Total entropy of the Universe only increases or stays constant
★ T dS = dU + P dV ⇒
$$\frac{dS}{dt} = \frac{1}{T} \frac{d}{dt} (\rho V) + \frac{P}{T} \frac{dV}{dt} = \frac{V}{T} \frac{d\rho}{dt} + \frac{\rho + P}{T} \frac{dV}{dt} = 0$$
★ Entropy density $s = S/V$
From the continuity equation $= \frac{d(a^3)}{dt} = 3a^2\dot{a} = 3HV$
Ts dV + TV ds = $\rho dV + V d\rho + P dV$
★ S and ρ do not depend on volume, thus $Ts - \rho - P = 0$
★ Total entropy:
$$s = \sum_{i} \frac{\rho_i + P_i}{T_i} = \sum_{i} \frac{\rho_i + \frac{1}{3}\rho_i}{T_i} = \frac{2\pi^2}{45} g_{*S}(T)T^3$$
Effective number of degrees of freedom of entropy.
Particles in thermal equilibrium with photons:
$$g_{*S}^{(\text{th})}(T) = \sum_{i \in \text{bos}} g_i + \frac{7}{8} \sum_{i \in \text{fer}} g_i = g_*^{(\text{th})}(T),$$

$$g_{*S}^{(\text{dec})}(T) = \sum_{i \in \text{bos}} g_i (\frac{T_i}{T})^3 + \frac{7}{8} \sum_{i \in \text{fer}} g_i (\frac{T_i}{T})^3 \neq g_*^{(\text{th})}(T)$$

 $\rho = \frac{\pi^2}{30} g_*(T) T^4$

Conservation of entropy

 $S = sV = \text{const} \implies s \propto a^{-3}$

> Number of particles in a comoving volume $N_i = \frac{n_i}{s}$

$$s \propto g_{*S}(T) \cdot T^3 \implies g_{*S}(T) \cdot T^3 \cdot a^3 = \text{const, or } T \propto g_{*S}^{-1/3} a^{-1}$$

- > Whenever a particle species becomes non-relativistic, its entropy is transferred to the remaining relativistic species, causing the temperature to decrease slightly slower than $\propto a^{-1}$
- > Hubble constant for the radiation-dominated universe ($\rho = \frac{\pi^2}{30} g_*(T)T^4$): $H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{\rho}{3M_{\rm pl}^2} = \frac{\pi^2}{90} g_*(T) \frac{T^4}{M_{\rm pl}^2}$

Electron–positron annihilation, $e^+ + e^- \leftrightarrow \gamma + \gamma$

- Energy density and entropy of electrons and positrons is transferred to the photons
 - Photons are heated their temperature decreases slower than that of the already decoupled neutrinos

$$\succ g_{*S}^{(\text{th})} = \begin{cases} 2 + \frac{7}{8} \cdot 4 = \frac{11}{2}, & T \gtrsim m_{\text{e}} \\ 2, & T < m_{\text{e}} \end{cases}$$

> After e^+e^- annihilation, $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma}$

Current temperature of the cosmic neutrino background $T_{\nu,0} = 1.95 \text{ K} (T_0 = 2.73 \text{ K})$

Beyond Equilibrium

- Boltzmann equation
 - In the absence of interactions the number of particles is conserved:

 $\frac{1}{a^3} \frac{\mathrm{d}(n_i a^3)}{\mathrm{d}t} = 0$ To account for the interactions, we include the collision term: $\frac{1}{a^3} \frac{\mathrm{d}(n_i a^3)}{\mathrm{d}t} = C_i[\{n_i\}]$ **Boltzmann equation *** Example: $A + B \leftrightarrow C + D$ $\frac{1}{a^3} \frac{d(n_A a^3)}{dt} = -\alpha n_A n_B + \beta n_C n_D$ $\Rightarrow \text{ In (chemical) equilibrium: } [\alpha n_A n_B]_{eq} = [\beta n_C n_D]_{eq} \Rightarrow \beta = \alpha \cdot \left(\frac{n_A n_B}{n_C n_D}\right)_{eq}$ $\frac{1}{a^3} \frac{d(n_A a^3)}{dt} = -\langle \sigma v \rangle \left[n_A n_B - \left(\frac{n_A n_B}{n_C n_D}\right)_{eq} n_C n_D\right]$

History of the Universe

	Event	time t	redshift \boldsymbol{z}	temperature ${\cal T}$
	Singularity	0	∞	∞
?	Quantum gravity	$\sim 10^{-43}\mathrm{s}$	_	$\sim 10^{18}{\rm GeV}$
	Inflation	$\gtrsim 10^{-34}\mathrm{s}$	_	_
?	Baryogenesis	$\lesssim 20\mathrm{ps}$	$> 10^{15}$	$> 100 {\rm GeV}$
	EW phase transition	$20\mathrm{ps}$	10^{15}	$100{ m GeV}$
	QCD phase transition	$20\mu{ m s}$	10^{12}	$150{ m MeV}$
	Dark matter freeze-out	?	?	?
/	Neutrino decoupling	$1\mathrm{s}$	6×10^9	$1{ m MeV}$
	Electron-positron annihilation	$6 \mathrm{s}$	2×10^9	$500\mathrm{keV}$
	Big Bang nucleosynthesis	$3\mathrm{min}$	4×10^8	$100\mathrm{keV}$
	Matter-radiation equality	$60\mathrm{kyr}$	3400	$0.75\mathrm{eV}$
	Recombination	260–380 kyr	1100 - 1400	$0.260.33\mathrm{eV}$
	Photon decoupling	$380{ m kyr}$	1100	$0.26\mathrm{eV}$
	Reionization	$100400\mathrm{Myr}$	10 - 30	$2.67.0\mathrm{meV}$
	Dark energy-matter equality	$9{ m Gyr}$	0.4	$0.33{ m meV}$
	Present	13.8 Gyr	0	$0.24~{ m meV}$

- **Assumptions:**
 - > Dark matter consists of weakly interacting massive particles (WIMPs)
 - > Heavy dark matter particle X and its antiparticle \overline{X} can annihilate to produce two light (\approx massless) particles ℓ and $\overline{\ell}$:

$$X + \bar{X} \leftrightarrow \ell + \bar{\ell}$$

- $\succ \ell$ are tightly coupled to the cosmic plasma $\Rightarrow n_{\ell} \approx n_{\ell}^{(eq)}$
- \succ No asymmetry X and \overline{X} , i.e. $n_X = n_{\overline{X}}$

Dark matter relics

Boltzmann equation:

$$\frac{1}{a^3} \frac{\mathrm{d}(n_X a^3)}{\mathrm{d}t} = -\langle \sigma v \rangle \left[n_X^2 - \left(n_X^{(\mathrm{eq})} \right)^2 \right]$$

Let's introduce new quantities:

 $\Box Y_X = \frac{n_X}{T^3} (\propto N_X = \frac{n_X}{s}, \text{ the number of particles in a comoving volume})$ $\Box x = \frac{M_X}{T} \implies \frac{dx}{dt} = -\frac{M_X}{T^2} \frac{dT}{dt} = -\frac{x}{T} \frac{dT}{dt} = \frac{x}{a} \frac{da}{dt} = Hx$ $\succ \text{ During radiation-dominated era:}$ $H = H(T = M_X) \cdot \left[\frac{a(T = M_X)}{a}\right]^2 \stackrel{T \propto a^{-1}}{=} H(M_X) \cdot \left[\frac{T}{M_Y}\right]^2 = \frac{H(M_X)}{x^2}$

Riccati equation:

$$\frac{\mathrm{d}Y_x}{\mathrm{d}x} = -\frac{\lambda}{x^2} \left[Y_X^2 - \left(Y_X^{(\mathrm{eq})} \right)^2 \right] \qquad \lambda = \frac{M_X^3}{H(M_X)} \langle \sigma v \rangle$$

Dark matter relics

Dark matter density

Let's relate the freeze-out abundance of dark matter relics to the dark matter density today

 $Y_X = \frac{n_X}{T^3}, \quad Y_X^{(\infty)} \simeq \frac{x_f}{\lambda}, \quad \lambda = \frac{M_X^3}{H(M_V)} \langle \sigma v \rangle$

$$\Omega_{X} = \frac{\rho_{X,0}}{\rho_{\text{crit},0}} = \frac{M_{X}n_{X,0}}{3M_{\text{pl}}^{2}H_{0}^{2}} = \frac{M_{X}}{3M_{\text{pl}}^{2}H_{0}^{2}}Y_{X}^{(\infty)}T_{0}^{3}\frac{g_{*S}(T_{0})}{g_{*S}(M_{X})} = \frac{M_{X}}{3M_{\text{pl}}^{2}H_{0}^{2}}\frac{x_{f}}{\lambda}T_{0}^{3}\frac{g_{*S}(T_{0})}{g_{*S}(M_{X})}$$

$$\Rightarrow \text{ Number density: } n_{X,0} = n_{X,1}\left(\frac{a_{1}}{a_{0}}\right)^{3} = Y_{X}^{(\infty)}T_{1}^{3}\left(\frac{a_{1}}{a_{0}}\right)^{3} = Y_{X}^{(\infty)}T_{0}^{3}\left(\frac{a_{1}T_{1}}{a_{0}T_{0}}\right)^{3}$$

$$\Rightarrow \text{ Conservation of entropy: } g_{*S}(aT)^{3} = \text{ const } \Rightarrow n_{X,0} = Y_{X}^{(\infty)}T_{0}^{3}\frac{g_{*S}(T_{0})}{g_{*S}(M_{X})}$$

$$\Rightarrow \Omega_{X} = \frac{H(M_{X})}{M_{X}^{2}}\frac{T_{0}^{3}}{3M_{\text{pl}}^{2}H_{0}^{2}}\frac{x_{f}}{\langle\sigma\nu\rangle}\frac{g_{*S}(T_{0})}{g_{*S}(M_{X})} \approx 0.1\frac{x_{f}}{\sqrt{g_{*}(M_{X})}}\frac{10^{-8}\text{ GeV}^{-2}}{\langle\sigma\nu\rangle} \approx 0.27$$

$$if \langle\sigma\nu\rangle \sim 10^{-8}\text{ GeV}^{-2},$$

$$a \text{ characteristic scale for the weak interaction } g_{*S}(T_{0}) = 3.91, g_{*S}(M_{X}) = g_{*}(M_{X})$$

History of the Universe

Ev	ent	time t	redshift \boldsymbol{z}	temperature ${\cal T}$
Sir	ngularity	0	∞	∞
💡 Qu	antum gravity	$\sim 10^{-43}\mathrm{s}$	_	$\sim 10^{18}{\rm GeV}$
V Inf	lation	$\gtrsim 10^{-34}\mathrm{s}$	_	_
? Ba	ryogenesis	$\lesssim 20\mathrm{ps}$	$> 10^{15}$	$> 100 {\rm GeV}$
EV EV	V phase transition	$20\mathrm{ps}$	10^{15}	$100{ m GeV}$
V QC	CD phase transition	$20\mu{ m s}$	10^{12}	$150{ m MeV}$
V Da	rk matter freeze-out	?	?	?
Ne Ne	utrino decoupling	$1\mathrm{s}$	6×10^9	$1{ m MeV}$
Ele	ectron-positron annihilation	$6\mathrm{s}$	2×10^9	$500\mathrm{keV}$
Big	g Bang nucleosynthesis	$3\mathrm{min}$	4×10^8	$100\mathrm{keV}$
Ma	atter-radiation equality	$60\mathrm{kyr}$	3400	$0.75\mathrm{eV}$
Re	combination	$260380\mathrm{kyr}$	1100 - 1400	$0.260.33\mathrm{eV}$
\mathbf{Ph}	oton decoupling	$380{ m kyr}$	1100	$0.26\mathrm{eV}$
Re	ionization	$100400\mathrm{Myr}$	10 - 30	$2.67.0\mathrm{meV}$
Da	rk energy-matter equality	$9{ m Gyr}$	0.4	$0.33{ m meV}$
\mathbf{Pr}	resent	13.8 Gyr	0	$0.24~{ m meV}$

Electron-proton recombination (first H atoms)

• When $T \gtrsim 1 \text{ eV}$: $e^- + p^+ \leftrightarrow H + \gamma$ $T \ll m_e \approx 0.5$ MeV, thus equilibrium densities are $n_i^{(\text{eq})} = g_i \left(\frac{m_i T}{2\pi}\right)^{3/2} \exp\left(\frac{\mu_i - m_i}{T}\right), \quad i = \{e, p, H\}$ $\approx E_B = 13.6 \text{ eV}$ $\blacktriangleright \mu_e + \mu_p = \mu_H$ $\textbf{ Let's consider the ratio } \left(\frac{n_H}{n_e n_p}\right)_{eq} = \underbrace{\frac{g_H}{g_e g_p}}_{eq} \left(\frac{m_H}{m_e m_p} \frac{2\pi}{T}\right)^{3/2} \exp\left(\frac{m_p + m_e - m_H}{T}\right) \\ n_e = n_p \quad \qquad \approx \frac{4}{2\cdot 2} = 1$ $\left(\frac{n_H}{n_e^2}\right)_{ac} = \left(\frac{2\pi}{m_e T}\right)^{3/2} \exp\left(\frac{E_B}{T}\right)$

Electron-proton recombination

$$\bigstar \left(\frac{n_H}{n_e^2}\right)_{\text{eq}} = \left(\frac{2\pi}{m_e T}\right)^{3/2} \exp\left(\frac{E_B}{T}\right)$$

✤ Fraction of free electrons X_e = n_e/n_b, here n_b is baryon density
> n_b = η_bn_γ = η_b $\frac{\zeta(3)}{\pi^2} 2T^3$

 $\succ \eta_b = 5.5 \cdot 10^{-10}$ – baryon-to-photon ratio

> Ignoring other nuclei, baryon density $n_b \approx n_p + n_H = n_e + n_H$

Photon decoupling

- ★ Interaction with the remaining free electrons: $e^- + \gamma \leftrightarrow e^- + \gamma$
- ♣ Interaction rate $Γ ≈ n_e σ_T$ with Thomson cross-section $σ_T = 2 \cdot 10^{-3} \text{ MeV}^{-2}$
- ♦ Photons and electrons decouple when $\Gamma(T_{dec}) ≈ H(T_{dec})$
 - $\succ \Gamma(T_{\text{dec}}) = n_e \sigma_T = n_b X_e(T_{\text{dec}}) \sigma_T = \sigma_T \eta_b \frac{2\zeta(3)}{\pi^2} T_{\text{dec}}^3 X_e(T_{\text{dec}})$ $\succ H(T_{\text{dec}}) = H_0 \sqrt{\Omega_m} \left(\frac{T_{\text{dec}}}{T_0}\right)^{3/2}$ $k_{\rm B}T \,[{\rm eV}]$ 0.250.30.350.4 $T_{\rm dec} \approx 0.27 \, {\rm eV}$ 0.75 $T_{\rm rec} \approx 0.32 \, {\rm eV}$ $T_{\rm dec} \approx 0.27 \ {\rm eV}$ $X_e(T_{\rm dec}) \approx 0.01$ X_e ≈ 3700 K ≈ 3700 K 0.5 $t_{\rm dec} \approx 380 \, \rm kyr$ 0.25

1000

1200

1400

z

1600

1800

A large degree of neutrality is necessary for the universe to become transparent to photons

Electron freeze-out

History of the Universe

	Event	time t	redshift \boldsymbol{z}	temperature ${\cal T}$
	Singularity	0	∞	∞
?	Quantum gravity	$\sim 10^{-43}\mathrm{s}$	_	$\sim 10^{18}{\rm GeV}$
\checkmark	Inflation	$\gtrsim 10^{-34}{ m s}$	_	_
?	Baryogenesis	$\lesssim 20\mathrm{ps}$	$> 10^{15}$	$> 100 {\rm GeV}$
\checkmark	EW phase transition	$20\mathrm{ps}$	10^{15}	$100{ m GeV}$
\checkmark	QCD phase transition	$20\mu{ m s}$	10^{12}	$150{ m MeV}$
\checkmark	Dark matter freeze-out	?	?	?
\checkmark	Neutrino decoupling	$1\mathrm{s}$	6×10^9	$1{ m MeV}$
\checkmark	Electron-positron annihilation	$6\mathrm{s}$	2×10^9	$500\mathrm{keV}$
	Big Bang nucleosynthesis	$3\mathrm{min}$	4×10^8	$100{ m keV}$
	Matter-radiation equality	$60\mathrm{kyr}$	3400	$0.75\mathrm{eV}$
\checkmark	Recombination	$260380\mathrm{kyr}$	1100 - 1400	$0.260.33\mathrm{eV}$
\checkmark	Photon decoupling	$380{ m kyr}$	1100	$0.26\mathrm{eV}$
	Reionization	$100400\mathrm{Myr}$	10 - 30	$2.67.0\mathrm{meV}$
	Dark energy-matter equality	$9{ m Gyr}$	0.4	$0.33{ m meV}$
	Present	$13.8 \mathrm{Gyr}$	0	$0.24 \mathrm{meV}$

Big Bang Nucleosynthesis

- **✤** *T*~1 MeV:
 - > Photons, electrons, and positrons are in equilibrium

Step 0: Equilibrium

- Simplifications:
 - > No elements heavier than helium (H, D, T, and 3 He, and He)
 - > Only neutrons and protons exist at T > 0.1 MeV
 - \succ Chemical potentials for e^- and v_e are negligible
- $\stackrel{\bullet}{\rightarrow} n p \text{ equilibrium}$ $\stackrel{\bullet}{\rightarrow} n + v_e \leftrightarrow p^+ + e^-, \quad n + e^+ \leftrightarrow p^+ + \bar{v}_e$ $\stackrel{\bullet}{\rightarrow} \mu_n \approx \mu_n$ $\approx Q = 1.30 \text{ MeV}$ $n_i^{(eq)} = g_i \left(\frac{m_i T}{2\pi}\right)^{3/2} \exp\left(\frac{\mu_i m_i}{T}\right) \quad \bigoplus \quad \left(\frac{n_n}{n_p}\right)_{eq} = \left[\left(\frac{m_n}{m_p}\right)^{3/2}\right] \exp\left(-\frac{m_n m_p}{T}\right) = \exp\left(-\frac{Q}{T}\right)$

 \succ For T < 1 MeV, the fraction of neutrons gets smaller

Step 0: Equilibrium

$$n_i^{(\text{eq})} = g_i \left(\frac{m_i T}{2\pi}\right)^{3/2} \exp\left(\frac{\mu_i - m_i}{T}\right)$$

 $^{4}\mathrm{He}$

D

$$n - p \text{ equilibrium: } \left(\frac{n_n}{n_p}\right)_{eq} = \exp\left(-\frac{Q}{T}\right)$$

$$Deuteron:
$$n + p^+ \leftrightarrow D + \gamma$$

$$\mu_D = \mu_n + \mu_p$$

$$\left(\frac{n_D}{n_p n_n}\right)_{eq} = \frac{3}{4} \left(\frac{m_D}{m_n m_p} \frac{2\pi}{T}\right)^{3/2} \exp\left(\frac{m_n + m_p - m_D}{T}\right)$$

$$\left(\frac{n_D}{n_p}\right)_{eq} \approx \frac{3}{4} n_n^{eq} \left(\frac{4\pi}{m_p T}\right)^{3/2} \exp\left(\frac{E_D}{T}\right)$$

$$under the second se$$$$

Temperature [MeV]

Step 1: Neutron Freeze-out

Soltzmann equation $(n + v_e \leftrightarrow p^+ + e^-)$:

$$\frac{1}{a^3} \frac{\mathrm{d}(n_n a^3)}{\mathrm{d}t} = -\Gamma_n \left[n_n - \left(\frac{n_n}{n_p}\right)_{\mathrm{eq}} n_p \right]$$

$$\succ \Gamma_n = n_\ell \langle \sigma v \rangle$$

$$\gg X_n = \frac{n_n}{n_n + n_p}, \quad n_n + n_p \sim n_b \propto a^{-3}, \quad \left(\frac{n_n}{n_p}\right)_{eq} = \exp\left(-\frac{q_n}{n_p}\right)$$

$$\succ x = Q/T \qquad \qquad \frac{\mathrm{d}X_n}{\mathrm{d}t} = -\Gamma_n \left[X_n - (1 - X_n) \mathrm{e}^{-Q/T} \right]$$

$$A + B \leftrightarrow C + D:$$

$$\frac{1}{a^3} \frac{\mathrm{d}(n_A a^3)}{\mathrm{d}t} = -\langle \sigma v \rangle \left[n_A n_B - \left(\frac{n_A n_B}{n_C n_D} \right)_{\mathrm{eq}} n_C n_D \right]$$

- For $T \sim 1$ MeV, Γ_n^{-1} is comparable with the age of the Universe
- At later times, $T \propto t^{-1/2}$, and $\Gamma_n \propto T^3 \propto t^{-3/2}$, so the neutron-proton conversion time $\Gamma_n^{-1} \propto t^{3/2}$ becomes even longer
- As a result, n_n/n_p ratio approaches a constant

$$\frac{\mathrm{d}X_n}{\mathrm{d}x} = -\frac{\Gamma_n}{H_1} x [\mathrm{e}^{-x} - X_n (1 + \mathrm{e}^{-x})]$$

Numerical solution yields $X_n^{\infty} \equiv X_n(x = \infty) = 0.15$

Step 1: Neutron Freeze-out

Step 2: Neutron Decay

★ At T < 0.2 MeV ($t \ge 100$ s), the finite lifetime of a neutron ($\tau_n = 887$ s) becomes important:

Step 3: Helium Fusion

- Deuteron:
 - $> n + p^{+} \leftrightarrow D + \gamma$ $> n_{D} \text{ follows the } n_{n} \text{ and } n_{p} \text{ equilibrium abundance}$ $> \left(\frac{n_{D}}{n_{p}}\right)_{eq} \approx \frac{3}{4} n_{n}^{eq} \left(\frac{4\pi}{m_{p}T}\right)^{3/2} \exp\left(\frac{E_{D}}{T}\right) \sim \eta_{b} \left(\frac{T}{m_{p}}\right)^{3/2} \exp\left(\frac{E_{D}}{T}\right) \sim 1$ $> n_{n}^{eq} \sim n_{b} = \eta_{b} n_{\gamma} = \eta_{b} \cdot \frac{2\zeta(3)}{\pi^{2}} T^{3}, \text{ here baryon/photon ratio } \eta_{b} \sim 10^{-9}$ $> X_{n}(t_{\text{nuc}}) \sim \frac{1}{6} \exp\left(-\frac{330 \text{ s}}{887 \text{ s}}\right) \sim 0.11$ $T_{\text{nuc}} \approx 0.06 \text{ MeV}$ $t_{\text{nuc}} \approx 330 \text{ s}$

Step 3: Helium Fusion

- ✤ Helium:
 - $> D + p^+ \leftrightarrow {}^{3}\text{He} + \gamma, D + 3\text{He} \leftrightarrow {}^{4}\text{He} + p^+$
 - > Binding energy of He is larger than that of D (7.1 MeV *vs* 1.1 MeV per nucleon)
 - Formation of He starts immediately after some D is produced
 - \succ Virtually all the neutrons are bound in He at $t \sim t_{nuc}$

Final
$$n_{\text{He}} = \frac{1}{2} n_n(t_{\text{nuc}})$$

 $\frac{n_{\text{He}}}{n_{\text{H}}} = \frac{n_{\text{He}}}{n_p} \approx \frac{\frac{1}{2} X_n(t_{\text{nuc}})}{1 - X_n(t_{\text{nuc}})} \approx \frac{\frac{1}{2} \cdot 0.11}{1 - 0.11} \approx \frac{1}{16}$

Theoretical predictions

