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Problems

6.8. Dynamic response under a travelling charge. Consider the dynamical response in plasmas in
the case of a travelling charge as discussed in Section 6.2.5. A direct calculation results in an undefined
integral. The origin of the problem lies in the consideration that the charge was travelling from the very
beginning, and hence the unperturbed state was not properly defined. The solution consists in assuming
that, for infinitely negative time, the plasma was in equilibrium and the charge was turned on gradually.
This is achieved by writing ρext(~r, t) = ρ0(~r−~vt)eδt, where δ is a small positive quantity that we will later
consider to be vanishingly small. The divergence for large positive times is not of concern, because by
causality it can only affect the future and not the observation time where the exponential factor remains
finite (of order one in the limit δ → 0+). Perform the Fourier transform to show that now ω = ~k ·~v+iδ and
that the integral remains finite. Using the Plemelj formula evaluate the imaginary part of the dielectric
function. Interpret its sign.

Fourier transform:

h̃(~k, ω) = (2π)−4
∫
h(~r)e−i(

~k·~r−ωt)d3~r d~t (A.5)

with

h(~r, t) =

∫
h̃(~k, ω)ei(

~k·~r−ωt)d3~r dω . (A.6)

Then the immediate answer to the first part of the question would be

ρ̃ext(~k, ω) := ρ̃0(~k)δ(ω − ~k · ~v) = (2π)−4
∫
ρ0(~r − ~vt)eδteiωt−i~k·~rd3~r d~t

= (2π)−4
∫
ρ0(~r − ~vt)ei(ω−iδ)t−i~k·~rd3~r d~t , (1)

modifying ω → ω − iδ = ω′.

Going through the full calculation, we starteded with the ansatz

f(~r,~c, t) = f0(~c) + λg(~r,~c, t) , (6.23)

the mean field potential Φmf in terms of the total charge density

~∇2Φmf = − 1

ε0

[
ρext(~r, t)− e

∫
g(~r,~c, t)d3~c

]
, (6.24)

and the Vlasov equation, linear in λ

∂g

∂t
+ ~c · ∂g

∂~r
+

e

m
~∇Φmf ·

∂f0
∂~c

= 0 . (6.25)

Fourier transforming with the modification leads to

−~k2Φ̃mf = − 1

ε0

[
ρ̃ext − e

∫
g̃d3~c

]
, (6.26)

and

−iω′g̃ + i~k · ~c g̃ +
ie

m
Φ̃mf

~k · ∂f0
∂~c

= 0 . (6.27)

The last equation gives

g̃ = − e

m
Φ̃mf

~k · ∂f0∂~c
~k · ~c− ω′

= − e

m
Φ̃mf

~k · ∂f0∂~c
~k · ~c− ω + iδ

, (2)

which would be singular for ω → ~k · ~c, but is fine for ω′.
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Next we get

Φ̃mf =
ρ̃ext(~k, ω)

ε(~k, ω)
, (6.28)

with the dielectric function

ε(~k, ω) = ε0

[
1− e2

mε0k2

∫ ~k · ∂f0∂~c
~k · ~c− ω + iδ

d3~c

]
. (6.30)

For thermal plasma we now write explicitely

f0 =

(
m

2πkBT

)3/2

e−m~c
2/(2kBT ) , (3)

giving

~k · ∂f0
∂~c

= −
(

m

2πkBT

)3/2
m~k · ~c
kBT

e−m~c
2/(2kBT ) , (4)

and

ε(~k, ω) = ε0

[
1 +

e2

mε0k2
m

kBT

(
m

2πkBT

)3/2 ∫ ~k · ~c
~k · ~c− ω + iδ

e−m~c
2/(2kBT )d3~c

]
. (5)

Taking the coordinate system for the integration aligned to the vector ~k, we have ~c = (c,~c⊥) and ~k ·~c = kc,
and

( m
2πkBT

)3/2
∫ ~k · ~c e−

m~c 2

2kBT

~k · ~c− ω + iδ
d3~c = ( m

2πkBT
)2/2

∫
e
− m~c 2

⊥
2kBT d2~c⊥

(
m

2πkBT

)1/2 ∫ ck e
− mc2

2kBT

ck − ω + iδ
dc

=
√

m
2πkBT

1

k

∫ ∞
−∞

z e
− mz2

2kBTk2

z − ω + iδ
dz =

√
m

2πkBT

1

k

∫ ∞
−∞

e
− mz2

2kBTk2 (1 +
ω − iδ

z − ω + iδ
)dz

= 1 +
√

m
2πkBT

ω − iδ
k

∫ ∞
−∞

e
− mz2

2kBTk2
dz

z − ω + iδ

= 1 +
√

m
2πkBT

ω − iδ
k

∫ ∞
−∞

e
−m(z′+ω)2

2kBTk2
dz′

z′ + iδ
. (6)

The Sokhotski-Plemelj theorem states:

lim
ε→0+

∫ b>0

a<0

f(x)

x± iε
dx = ∓iπf(0) + P

∫ b>0

a<0

f(x)

x
dx . (7)

Using it on our function we get

ε(~k, ω) = lim
δ→0+

ε0

[
1 +

e2

ε0k2kBT

(
1 +

√
m

2πkBT

ω − iδ
k

[−iπe−
mω2

2kBTk2 + P
∫ ∞
−∞

e
−m(z′+ω)2

2kBTk2
dz′

z′
]

)]
= ε0

[
1 +

e2

ε0k2kBT

(
1 +

√
m

2πkBT

ω

k
[−iπe−

mω2

2kBTk2 + P
∫ ∞
−∞

e
−m(z′+ω)2

2kBTk2
dz′

z′
]

)]
. (8)

The principal value only changes the real part, so I omit it from the further discussion.
The imaginary part is

Im[ε(~k, ω)] = ε0
e2

ε0k2kBT

√
m

2πkBT

ω

k
(−π)e

− mω2

2kBTk2 < 0 . (9)

⇒ gain term ? (according to Wikipedia)


