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Basic concepts

Chapter 1



Notations and definitions

❖Velocity distribution function 𝑓 𝐫, 𝐜, 𝑡

ඵ𝑓 𝐫, 𝐜, 𝑡 d3𝑟 d3𝑐 = 𝑁

❖ In thermal equilibrium: 𝑓 = 𝑓 𝐜 = 𝑛 መ𝑓MB(𝐜), here 

መ𝑓MB 𝐜 =
𝑚

2𝜋𝑘B𝑇

3/2

exp −
𝑚𝑐2

2𝑘B𝑇

❖Particle density 

𝑛 𝐫, 𝑡 = න𝑓 𝐫, 𝐜, 𝑡 d3𝑐

Total number of 
molecules

Maxwell–Boltzmann 
distribution



Notations and definitions

❖Particular property 𝜑 𝐜 :
➢ Mass: 𝜑 = 𝑚

➢ Momentum: 𝜑 = 𝑚𝐜

➢ Kinetic energy: 𝜑 =
1

2
𝑚𝑐2

❖ Local average of 𝜑:

𝜑 𝐫, 𝑡 =
1

𝑛 𝐫, 𝑡
න𝜑 𝐜 𝑓 𝐫, 𝐜, 𝑡 d3𝑐

❖ Local velocity: 𝐯 𝐫, 𝑡 =
1

𝑛 𝐫,𝑡
׬ 𝐜 𝑓 𝐫, 𝐜, 𝑡 d3𝑐

❖ Local temperature:
3

2
𝑘B𝑇 𝐫, 𝑡 =

𝑚 𝐜 − 𝐯 2

2



Flux

❖When particles move, they transfer 𝜑:
➢ In time interval Δ𝑡 surface Δ𝑆 is crossed 

by the molecules from the volume
Δ𝒱 = 𝐜 ⋅ ෝ𝐧 Δ𝑡Δ𝑆

➢ Amount of 𝜑 transferred:

Δ𝜑 = Δ𝑡Δ𝑆න𝑓 𝐫, 𝐜, 𝑡 𝜑 𝐜 𝐜 ⋅ ෝ𝐧 d3𝑐

➢ Flux:

𝐉𝜑 𝐫, 𝑡 = න𝑓 𝐫, 𝐜, 𝑡 𝜑 𝐜 𝐜 d3𝑐



Flux

❖Mass flux: 𝐉𝑚 𝐫, 𝑡 = 𝑚𝑛 𝐫, 𝑡 𝐯 𝐫, 𝑡

❖Kinetic energy (heat) flux:

𝐉𝑒 𝐫, 𝑡 =
𝑚

2
න𝑓 𝐫, 𝐜, 𝑡 𝑐2𝐜 d3𝑐

❖Momentum flux (tensor)

෨𝑃𝑖𝑘 𝐫, 𝑡 = 𝑚න𝑓 𝐫, 𝐜, 𝑡 𝑐𝑖𝑐𝑘 d
3𝑐

➢ ෨𝑃𝑖𝑘 – 𝑖th component of momentum that is crosses a unitary 
surface oriented in 𝑘 direction per unit time



Stress tensor & energy flux

❖ If the gas has net velocity 𝐯 (convective contribution), 
it is usually subtracted to measure the flux in a frame 
comoving with the gas:

𝑞𝑖 =
𝑚

2
න𝑓 𝐫, 𝐜, 𝑡 (𝐜 − 𝐯)2(𝑐𝑖−𝑣𝑖) d

3𝑐

𝑃𝑖𝑘 𝐫, 𝑡 = 𝑚න𝑓 𝐫, 𝐜, 𝑡 𝑐𝑖 − 𝑣𝑖 𝑐𝑘 − 𝑣𝑘 d3𝑐

❖ In thermal equilibrium (MB distribution):
➢ 𝑞𝑖 = 0

➢ 𝑃𝑖𝑘 = 𝛿𝑖𝑘𝑚׬𝑓 𝐫, 𝐜, 𝑡 𝑐𝑖 − 𝑣𝑖
2 d3𝑐 = 𝑛𝑘B𝑇𝛿𝑖𝑘

❖Definition of pressure:

➢ 𝑝 =
1

3
𝑃𝑖𝑖 ≡

1

3
σ𝑖=1
3 𝑃𝑖𝑖

𝑖, 𝑘 = 𝑥, 𝑦, 𝑧

𝑝 = 𝑛𝑘B𝑇,   holds for 
the ideal gas even 

under non-equilibrium



Continuity equations

❖Total mass that crosses (inwards) the surface of the 
commoving volume per unit time:

d𝑀

d𝑡
= −නන

𝑆

𝑓 𝐫, 𝐜, 𝑡 𝑚 𝐜 − 𝐯 ⋅ d𝐒 d3𝑐

❖Total momentum that enters the commoving volume:
d𝑝𝑖
d𝑡

= −නන
𝑆

𝑓 𝐫, 𝐜, 𝑡 𝑚𝑐𝑖 𝐜 − 𝐯 ⋅ d𝐒 d3𝑐

= 0

= −නන
𝑆

𝑓 𝐫, 𝐜, 𝑡 𝑚 𝑐𝑖 − 𝑣𝑖 𝐜 − 𝐯 ⋅ d𝐒 d3𝑐

We can add a zero term 𝑚𝑣𝑖 𝑓׬ 𝐫, 𝐜, 𝑡 𝐜 − 𝐯 d3𝑐

= −න
𝑆

𝑃𝑖𝑘d𝑆𝑘

Stress tensor

Force in 𝑖 direction



Continuity equations

❖Total energy that enters the commoving volume:
d𝐸

d𝑡
= −නන

𝑆

𝑓 𝐫, 𝐜, 𝑡
𝑚𝑐2

2
𝐜 − 𝐯 ⋅ d𝐒 d3𝑐

We get 1st law of thermodynamics!

𝑐2 = 𝐜 − 𝐯 2 + 2 𝐜 − 𝐯 ⋅ 𝐯 + 𝑣2

= −න
𝑆

𝐪 ⋅ d𝐒

𝑞𝑖 =
𝑚

2
න𝑓 𝐫, 𝐜, 𝑡 (𝐜 − 𝐯)2(𝑐𝑖−𝑣𝑖) d

3𝑐 , 𝑃𝑖𝑘 𝐫, 𝑡 = 𝑚න𝑓 𝐫, 𝐜, 𝑡 𝑐𝑖 − 𝑣𝑖 𝑐𝑘 − 𝑣𝑘 d3𝑐

−නන
𝑆

𝑣𝑖𝑃𝑖𝑘 ⋅ d𝑆𝑘 d
3𝑐

Heat flux Mechanical work per unit 
time done by external gas



Collision frequency

❖Relative velocity 𝐠 = 𝐜2 − 𝐜1
❖Total collision cross-section 𝜎

❖Number of projectiles with velocities
in the interval d3𝑐2:

Δ𝑁2 = 𝑓 𝐜2 Δ𝒱2 d
3𝑐2

❖Number of targets: Δ𝑁1 = 𝑓 𝐜1 d3𝑟 d3𝑐1
❖Number of collisions: Δ𝑁coll = Δ𝑁1Δ𝑁2
❖Collision frequency

𝜈 =
1

𝑁

Δ𝑁coll
Δ𝑡

=
𝜎

𝑛
ඵ𝑓 𝐜1 𝑓 𝐜2 𝐜2 − 𝐜1 d3𝑐1d

3𝑐2

𝐜2 𝐜1

TargetProjectile

Δ𝒱2 = 𝜎 𝐠 Δ𝑡



Collision frequency

❖Collision frequency

𝜈 =
1

𝑁

Δ𝑁coll
Δ𝑡

=
𝜎

𝑛
ඵ𝑓 𝐜1 𝑓 𝐜2 𝐜2 − 𝐜1 d3𝑐1d

3𝑐2

❖ In thermal equilibrium:

➢ New coordinates 𝐂 =
𝐜1+𝐜2

2
and 𝐠 = 𝐜2 − 𝐜1 (Jacobian = 1)

❖Mean free path ℓ =
𝐜

𝜈

𝜈 = 𝑛𝜎
𝑚

2𝜋𝑘B𝑇

3

නexp −
𝑚𝐶2

𝑘B𝑇
d3𝐶 නexp −

𝑚𝑔2

4𝑘B𝑇
𝑔 d3𝑔

= 4𝑛𝜎
𝑘B𝑇

𝜋𝑚

=
1

2𝑛𝜎
~10−7 m for atmosphere  

molecules 

~10−10 s−1 for atmosphere  
molecules 



Distribution functions

Chapter 2



Phase space

❖Hamilton’s equations:  
d𝑞𝑖

d𝑡
=

𝜕𝐻

𝜕𝑝𝑖
,   

d𝑝𝑖

d𝑡
= −

𝜕𝐻

𝜕𝑞𝑖

❖Equation of motion for any function 𝑓 𝑞, 𝑝 :

❖State vector Γ = 𝑞1, 𝑝1, 𝑞2, 𝑝2, …

➢
dΓ

d𝑡
= 𝐻, Γ – flux vector (generalized velocity of the 

system in the phase space)

Poisson bracket: 𝐻, 𝑓 =෍

𝑘

𝜕𝐻

𝜕𝑝𝑘

𝜕𝑓

𝜕𝑞𝑘
−
𝜕𝐻

𝜕𝑞𝑘

𝜕𝑓

𝜕𝑝𝑘

d𝑓

d𝑡
=
𝜕𝑓

𝜕𝑡
+ 𝐻, 𝑓



Phase space

❖ Let’s introduce a Gibbs’ ensemble of systems, 
described by a probability density function 𝐹 Γ, 𝑡 , 
given in a Γ-space:  ׬ 𝐹 Γ, 𝑡 dΓ = 1

❖From the continuity equation we get:
𝜕𝐹

𝜕𝑡
= −𝛻Γ ⋅ 𝐹

dΓ

d𝑡

❖After some manipulations:

𝜕𝐹 𝐫

𝜕𝑡
+ 𝛻 𝐹 ⋅ ሶ𝐫 = 0

𝜕𝐹

𝜕𝑡
= −{𝐻, 𝐹} – Liouville equation



Reduced distributions

❖ Our initially defined distribution function 𝐹 Γ, 𝑡

❖ Symmetrized distribution function

෠𝐹 Γ, 𝑡 =
1

𝑁!
෍

𝑃

𝐹 𝑃Γ, 𝑡

❖ Reduced n-particle distribution function

𝐹 𝑛 1,… , 𝑛, 𝑡 ≡ 𝐹 𝑛 𝐫1, 𝐩1, … , 𝐫𝑛, 𝐩𝑛, 𝑡

=
𝑁!

𝑁 − 𝑛 !
න ෠𝐹 Γ, 𝑡 d3𝑟𝑛+1d

3𝑝𝑛+1…d3𝑟𝑁d
3𝑝𝑁

➢ Normalization: ׬𝐹 𝑛 (1, …𝑛, 𝑡) d1 d2…d𝑛 =
𝑁!

𝑁−𝑛 !

➢ Relation to 1-particle velocity distribution:  𝑓 𝐫, 𝐜, 𝑡 = 𝑚3𝐹 1 𝐫, 𝐩, 𝑡

➢ 𝐹׬ 1 𝐫, 𝐩 d3𝑝 =
𝑁

𝒱
= 𝑛

➢ 𝐹׬ 2 𝐫1, 𝐩1, 𝐫2, 𝐩2 d3𝑝1d
3𝑝2 =

𝑁 𝑁−1

𝒱2

𝑁≫1
= 𝑛2

Sum over all 
permutations



Average observables

❖The ensemble-average of some quantity 𝐴 Γ is 

𝐴 𝑡 = න𝐹 Γ, 𝑡 𝐴 Γ dΓ

❖We will define 3 major types of observables:
➢ Global observables

➢ Densities

➢ Fluxes 



Global observables

❖Give single value characterizing some properties of 
the whole system, e.g. kinetic and potential energies

❖Kinetic energy 𝐾 = σ𝑎
𝑝𝑎
2

2𝑚

➢

❖Potential energy 𝑈 = σ𝑎<𝑏𝜙 𝐫𝑎 − 𝐫𝑏

➢

𝐾 = න𝐹 Γ, 𝑡 ෍

𝑎

𝑝𝑎
2

2𝑚
dΓ = 𝑁න ෠𝐹 Γ, 𝑡

𝑝1
2

2𝑚
dΓ

= න𝐹 1 𝐫1, 𝐩1, 𝑡
𝑝1
2

2𝑚
d3𝑟1d

3𝑝1

𝑈 = න𝐹 Γ, 𝑡 ෍

𝑎<𝑏

𝜙 𝐫𝑎 − 𝐫𝑏 dΓ

= න𝐹 2 1,2, 𝑡 𝜙 𝐫1 − 𝐫2 d1d2



Densities

❖For point particles, density of quantity 𝜑 (e.g. mass, 
momentum, energy) is

𝜌𝜑 𝐫 =෍

𝑎

𝜑 𝐫𝑎 , 𝐩𝑎 𝛿 𝐫 − 𝐫𝑎

❖The phase-space average then is

𝜌𝜑 𝐫, 𝑡 = න𝐹 1 𝐫, 𝐩1, 𝑡 𝜑 𝐫, 𝐩1 d3𝑝1



Fluxes

❖ If density field 𝜑 is associated with a conserved 
quantity, we expect that flux field exists and satisfies 
the conservation equation

𝜕𝜌𝜑

𝜕𝑡
+ 𝛻 ⋅ 𝐉𝜑 = 0

❖Mass (𝜑 = 𝑚)

➢ Average:

𝜕𝜌

𝜕𝑡
=

𝜕

𝜕𝑡
෍

𝑎

𝑚𝛿 𝐫 − 𝐫𝑎 = −෍

𝑎

𝑚𝛿′ 𝐫 − 𝐫𝑎 ⋅
d𝐫𝑎
d𝑡

𝛻𝛿 𝐫 − 𝐫𝑎

= −𝛻 ⋅෍

𝑎

𝐩𝑎𝛿 𝐫 − 𝐫𝑎

𝐉 =෍

𝑎

𝐩𝑎𝛿 𝐫 − 𝐫𝑎

Momentum density

𝐉 𝐫, 𝑡 = න𝐹 1 𝐫, 𝐩1, 𝑡 𝐩1d
3𝑝1



Fluxes

❖Momentum

➢ Components of stress tensor:

𝜕𝐽𝑖
𝜕𝑡

=
𝜕

𝜕𝑡
෍

𝑎

𝑝𝑎𝑖𝛿 𝐫 − 𝐫𝑎

=෍

𝑎

ሶ𝑝𝑎𝑖𝛿 𝐫 − 𝐫𝑎 −෍

𝑎

𝑝𝑎𝑖𝛿′ 𝐫 − 𝐫𝑎 ሶ𝐫𝑎 = −𝛻𝑘𝑃𝑖𝑘

𝑃𝑖𝑘 =෍

𝑎

𝑚𝑐𝑎𝑖𝑐𝑎𝑘𝛿 𝐫 − 𝐫𝑎 +
1

2
෍
𝑎,𝑏
𝑎≠𝑏

𝑓𝑘
𝑎𝑏න

𝐫𝑎

𝐫𝑏

𝛿 𝐫 − 𝐬 d𝑠𝑖

= 𝑓𝑎𝑖 = σ𝑏≠𝑎 𝑓𝑖
𝑎𝑏 – force acting on 𝑎th particle

Kinetic transfer of 
momentum through the 

surface

Collisional transfer of 
momentum through the 

surface



Fluxes

➢ In homogeneous system, stress tensor can be averaged in 
space:

➢ Pressure:

𝑝 =
1

3
𝑃𝑖𝑖 =

1

3𝒱
෍

𝑎

𝑚𝐜𝑎
2 +

1

2
෍
𝑎,𝑏
𝑎≠𝑏

𝐟𝑎𝑏 ⋅ 𝐫𝑎𝑏

𝑃𝑖𝑘 =෍

𝑎

𝑚𝑐𝑎𝑖𝑐𝑎𝑘𝛿 𝐫 − 𝐫𝑎 +
1

2
෍
𝑎,𝑏
𝑎≠𝑏

𝑓𝑘
𝑎𝑏න

𝐫𝑎

𝐫𝑏

𝛿 𝐫 − 𝐬 d𝑠𝑖

𝑃𝑖𝑘 =
1

𝒱
න𝑃𝑖𝑗 d

3𝑟 =
1

𝒱
෍

𝑎

𝑚𝑐𝑎𝑖𝑐𝑎𝑘 +
1

2
෍
𝑎,𝑏
𝑎≠𝑏

𝑓𝑘
𝑎𝑏𝑟𝑖

𝑎𝑏



Fluxes

❖Energy
➢ Density:

➢ Flux:

𝜌𝑒 =෍

𝑎

𝑝𝑎
2

2𝑚
𝛿 𝐫 − 𝐫𝑎 +෍

𝑎<𝑏

𝜙 𝐫𝑎 − 𝐫𝑏
𝛿 𝐫 − 𝐫𝑎 + 𝛿 𝐫 − 𝐫𝑏

2

𝐉𝑒 =෍

𝑎

𝑝𝑎
2

2𝑚
𝐯𝑎𝛿 𝐫 − 𝐫𝑎 +෍

𝑎<𝑏

𝜙 𝐫𝑎 − 𝐫𝑏
𝐯𝑎𝛿 𝐫 − 𝐫𝑎 + 𝐯𝑏𝛿 𝐫 − 𝐫𝑏

2

Kinetic transfer of 
the kinetic energy

Collisional transfer of the 
kinetic energy

+෍

𝑎<𝑏

𝐯𝑎 ⋅ 𝐟
𝑎𝑏 − 𝐯𝑏𝐟

𝑏𝑎

2
න
𝐫𝑎

𝐫𝑏

𝛿 𝐫 − 𝐬 d𝑠𝑖

Kinetic transfer of the potential 
energy of 2 particles



BBGKY hierarchy

❖N-particle distribution function 𝐹 obeys Liouville
equation

here 𝐻𝑁 is full Hamiltonian:

❖What is the equation for the reduced distribution 
function 𝐹 𝑛 ?

𝜕𝐹

𝜕𝑡
= − 𝐻𝑁 , 𝐹 ,

ℎ0 𝑎

𝐻𝑁 = ෍

𝑎=1

𝑁
𝑝𝑎
2

2𝑚
+ 𝑉 𝐫𝑎 +෍

𝑎<𝑏

𝑁

𝜙 𝐫𝑎 − 𝐫𝑏



BBGKY hierarchy

❖Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy

➢ Reduced Hamiltonian 𝐻𝑛 = σ𝑎=1
𝑛 ℎ0 𝑎 + σ𝑎<𝑏

𝑛 𝜙 𝐫𝑎 − 𝐫𝑏
➢ System of inter-dependent differential equations equation 

for 𝐹(𝑛) depends on 𝐹(𝑛+1)

𝜕𝐹 𝑛

𝜕𝑡
= − 𝐻𝑛, 𝐹

𝑛 −෍

𝑎=1

𝑛

න 𝜙 𝑎, 𝑛 + 1 , 𝐹(𝑛+1) d(𝑛 + 1)



One-particle distribution

❖𝐻1 =
𝑝1
2

2𝑚
+ 𝑉 𝐫1

❖ 𝐻1, 𝐹
1 =

𝐩1

𝑚
⋅
𝜕𝐹 1

𝜕𝐫1
+ 𝐅1 ⋅

𝜕𝐹 1

𝜕𝐩1

❖BBKGY1 equation:

❖ In velocity representation, 𝑓 𝐫, 𝐜, 𝑡 = 𝑚3𝐹 1 𝐫, 𝐩, 𝑡

𝐻, 𝑓 =෍

𝑘

𝜕𝐻

𝜕𝑝𝑘

𝜕𝑓

𝜕𝑞𝑘
−
𝜕𝐻

𝜕𝑞𝑘

𝜕𝑓

𝜕𝑝𝑘

𝐅1 = −𝛻𝑉

𝜕𝐹 1

𝜕𝑡
+
𝐩1
𝑚
⋅
𝜕𝐹 1

𝜕𝐫1
+ 𝐅1 ⋅

𝜕𝐹 1

𝜕𝐩1
= −න 𝜙12, 𝐹

(2) d3𝑟2d
3𝑝2

𝜕𝑓

𝜕𝑡
+ 𝐜1 ⋅

𝜕𝑓

𝜕𝐫1
+
𝐅1
𝑚
⋅
𝜕𝑓

𝜕𝐜1
= න

𝜕𝜙12
𝜕𝐫12

𝜕

𝜕𝐜1
−

𝜕

𝜕𝐜2
𝑓 2 1,2, 𝑡 d3𝑟2d

3𝑐2



Thermal equilibrium

❖ In thermal equilibrium, the system is described by the 
Gibbs distribution function: 

𝐹eq Γ =
1

𝑍
exp −

𝐻 Γ

𝑘B𝑇

❖Absence of external field → spatial homogeneity

𝐻 = ෍

𝑎=1

𝑁
𝑝𝑎
2

2𝑚
+෍

𝑎<𝑏

𝑁

𝜙 𝐫𝑎 − 𝐫𝑏

❖1-particle distribution is Maxwellian:

𝐹eq
(1)

𝐩 =
𝑛

2𝜋𝑚𝑘B𝑇
3/2

exp −
𝑝2

2𝑚𝑘B𝑇
, 𝑛 =

𝑁

𝒱

❖𝐹eq
(2)

𝐫1, 𝐩1, 𝐫2, 𝐩2 = 𝐹eq
(1)

𝐩1 𝐹eq
(1)

𝐩2 𝑔(2) 𝐫1 − 𝐫2

Pair distribution function



The Lorentz model 
for the classical 
transport of charges

Chapter 3



Hypothesis

❖Classical model (1905) → no quantum effects

❖Free electrons move in a medium between the fixed 
heavy ions

❖Distribution function (F) for ions is assumed to be 
constant

❖Electron–electron interaction is neglected
➢ Small mass → softer scattering

➢ Long-range Coulomb force is compensated by many 
electrons

➢ Small density (we can neglect 𝑛𝑒
2 term in BBGKY eq.)

❖ Include only 2-particle interactions

❖Free flight between two collisions

❖No correlations preserved



Lorentz kinetic equation

❖BBGKY equation:

Collisional source for the change in 𝑓
= gain term – loss term

𝜕𝑓

𝜕𝑡
+ 𝐜1 ⋅

𝜕𝑓

𝜕𝐫1
+
𝐅1
𝑚
⋅
𝜕𝑓

𝜕𝐜1
= න

𝜕𝜙12
𝜕𝐫12

𝜕

𝜕𝐜1
−

𝜕

𝜕𝐜2
𝑓 2 1,2, 𝑡 d3𝑟2d

3𝑐2

Notation:
𝐫1, 𝐜1 → 𝐫, 𝐜 – electrons
𝐫2, 𝐜2 → 𝐫1, 𝐜1 – ions

𝑓 2 1,2, 𝑡 → 𝑓 𝐜 𝐹(𝐜1)
𝐅1 → 𝑞𝐄

rate ∝ 𝑓 𝐜 𝐹(𝐜1)rate ∝ 𝑓 𝐜∗ 𝐹(𝐜1
∗)



Loss term

❖Volume element:
Δ𝒱 = 𝐜 − 𝐜1 Δ𝑡 ⋅ 𝑏d𝑏d𝜓

❖Number of colliding electrons:
d𝑁𝑒 = 𝑓 𝐫, 𝐜, 𝑡 Δ𝒱 d3𝐜

❖Number of targets (ions):
d𝑁𝑖 = 𝐹 𝐫, 𝐜𝟏, 𝑡 d

3𝐜1d
3𝐫

❖Number of collisions per Δ𝑡:Electron scattering

𝜕𝑓

𝜕𝑡
loss

d3𝑐 d3𝑟 = −𝑓 𝐫, 𝐜, 𝑡 𝐹 𝐫, 𝐜𝟏, 𝑡 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3c d3c1d
3𝑟



Gain term

❖Analogically for the gain term:

❖Energy and angular momentum 
conservation imply that

𝐜∗ = 𝐜′, 𝐜1
∗ = 𝐜1

′ , 𝐜 − 𝐜1 = 𝐜′ − 𝐜1
′

and
𝑏∗d𝑏∗d𝜓∗ d3𝐜∗ d3𝐜1

∗ = 𝑏d𝑏d𝜓 d3𝑐 d3𝑐1

𝜕𝑓

𝜕𝑡
loss

d3𝑐 = −𝑓 𝐫, 𝐜, 𝑡 𝐹 𝐫, 𝐜𝟏, 𝑡 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3𝑐 d3𝑐1

𝜕𝑓

𝜕𝑡
gain

d3𝑐 = 𝑓 𝐫, 𝐜∗, 𝑡 𝐹 𝐫, 𝐜𝟏
∗ , 𝑡 𝐜∗ − 𝐜1

∗ ⋅ 𝑏∗d𝑏∗d𝜓∗ d3𝑐∗ d3𝑐1
∗

𝜕𝑓

𝜕𝑡
gain

d3𝑐 = 𝑓 𝐫, 𝐜′, 𝑡 𝐹 𝐫, 𝐜𝟏
′ , 𝑡 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3𝑐 d3𝑐1



Lorentz equation

here 𝑓 = 𝑓 𝐫, 𝐜, 𝑡 ,  𝐹1 = 𝐹 𝐫, 𝐜𝟏, 𝑡 ,

𝑓′ = 𝑓 𝐫, 𝐜′, 𝑡 ,  𝐹1
′ = 𝐹 𝐫, 𝐜𝟏

′ , 𝑡

❖ Ion distribution function – Maxwellian:

𝐹 𝐫, 𝐜𝟏, 𝑡 = 𝐹MB 𝐜1 = 𝑛𝑖
𝑀

2𝜋𝑘B𝑇

3/2

exp −
𝑀𝑐1

2

2𝑘B𝑇

❖Equilibrium solution: 𝑓 𝐫, 𝐜, 𝑡 = 𝑓MB 𝐜

➢
1

2
𝑚𝑐2 +

1

2
𝑀𝑐1

2 =
1

2
𝑚𝑐′2 +

1

2
𝑀𝑐1

′2

➢ 𝑓MB 𝐜 𝐹MB 𝐜1 = 𝑓MB 𝐜′ 𝐹MB 𝐜1
′

➢ 𝐽 𝑓MB = 0

𝜕𝑓

𝜕𝑡
+ 𝐜 ⋅

𝜕𝑓

𝜕𝐫
+
𝑞𝐄

𝑚
⋅
𝜕𝑓

𝜕𝐜
= න 𝑓′𝐹1

′ − 𝑓𝐹1 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3𝑐1

Collisional operator
𝐽 𝑓 = 𝐽+ 𝑓 − 𝐽− 𝑓



Conservation laws

❖ Let’s recall:
➢ Density of 𝜑:   𝜌𝜑(𝐫, 𝑡) = 𝜑׬ 𝐜 𝑓 𝐫, 𝐜, 𝑡 d3𝑐

➢ Flux of 𝜑:   𝐉𝜑(𝐫, 𝑡) = 𝜑׬ 𝐜 𝑓 𝐫, 𝐜, 𝑡 𝐜 d3𝑐

➢ Density of 𝐠 =
𝜕𝜑

𝜕𝐜
:   𝜌𝐠(𝐫, 𝑡) = ׬

𝜕𝜑

𝜕𝐜
𝑓 𝐫, 𝐜, 𝑡 d3𝑐

𝜕𝑓

𝜕𝑡
+ 𝐜 ⋅

𝜕𝑓

𝜕𝐫
+
𝑞𝐄

𝑚
⋅
𝜕𝑓

𝜕𝐜
= න 𝑓′𝐹1

′ − 𝑓𝐹1 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3𝑐1𝜑 𝐜 ⋅

any function of 𝐜

නd3𝑐

𝜕𝜌𝜑

𝜕𝑡
+ 𝛻 ⋅ 𝐉𝜑 −

𝑞𝐄

𝑚
⋅ 𝜌𝐠 = න𝜑 𝐜 𝑓′𝐹1

′ − 𝑓𝐹1 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3𝑐d3𝑐1

Flux of 𝜑 Source term
(like mechanical work)

Change in 𝜑 due to collision



Conservation laws

❖Gain term:

𝐴 = න𝜑 𝐜 𝑓′𝐹1
′ 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3𝑐d3𝑐1

𝜕𝜌𝜑

𝜕𝑡
+ 𝛻 ⋅ 𝐉𝜑 −

𝑞𝐄

𝑚
⋅ 𝜌𝐠 = න𝜑 𝐜 𝑓′𝐹1

′ − 𝑓𝐹1 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3𝑐d3𝑐1

= 𝐜∗ − 𝐜1
∗ ⋅ 𝑏∗d𝑏∗d𝜓∗ d3𝑐∗d3𝑐1

∗

Dummy integration 
variables

= න𝜑 𝐜′ 𝑓𝐹1 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3𝑐d3𝑐1

Integration over pre-collisional parameters

𝐜∗ → 𝐜,  𝐜𝟏
∗ → 𝐜1 (pre-collisional)

𝐜 → 𝐜′, 𝐜1 → 𝐜1
′ (post-collisional)

𝜕𝜌𝜑

𝜕𝑡
+ 𝛻 ⋅ 𝐉𝜑 +

𝑞𝐄

𝑚
⋅ 𝜌𝐠 = න 𝜑 𝐜′ − 𝜑 𝐜 𝑓𝐹1 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3𝑐d3𝑐1

= 0 for collisional invariants



Conservation laws

❖𝜑 = 1 or any constant (mass, charge, etc.): 𝐠 =
𝜕𝜑

𝜕𝐜
= 0

𝜕𝜌

𝜕𝑡
+ 𝛻 ⋅ 𝐉 = 0

𝜕𝜌𝜑

𝜕𝑡
+ 𝛻 ⋅ 𝐉𝜑 +

𝑞𝐄

𝑚
⋅ 𝜌𝐠 = න 𝜑 𝐜′ − 𝜑 𝐜 𝑓𝐹1 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3𝑐d3𝑐1

= 0 for collisional invariants

Conservation law



Kinetic collision models

❖Rigid hard spheres

➢ Ions: 𝑀 = ∞, radius 𝑅, are static (𝐹 𝐜1 = 𝑛𝑖𝛿 𝐜1 )

➢ 𝐜′ = 𝐜 − 2 𝐜 ⋅ ෝ𝐧 ෝ𝐧

➢ 𝑏 = 𝑅 sin 𝜗

➢ Loss term:

➢ Gain term:  𝐽+ 𝑓 = 𝑛𝑖𝑅
2 𝐜 ℙ𝑓 𝐜

➢ 𝐽 𝑓 = 𝑛𝑖𝑅
2 𝐜 ℙ𝑓 − 𝑓

R

𝐽− 𝑓 = න𝑓𝐹1 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3𝑐1 = 𝑛𝑖𝑅
2 𝐜 𝑓 𝐜

ℙ𝑓 𝐜 =
1

4𝜋
න𝑓 𝐫, 𝐜, 𝑡 d2 Ƹ𝐜

Directional average:

“Removes” particles at a rate 𝑛𝑖𝑅
2 𝐜 and replaces 

them with an isotropic distribution 



Kinetic collision models

❖Thermalising ions (BGK model, or relaxation time 
approximation)
➢ Electrons exchange energy with ions

➢ After each collision, electrons emerge with velocities 
described by Maxwell distributions

➢ 𝑀 ≫ 𝑚,  𝐜 − 𝐜1 ≈ 𝐜

➢ Loss term: 𝐽− 𝑓 = 𝑛𝑖𝑅
2 𝐜 𝑓 𝐜

➢ Gain term: proportional to the Maxwellian flux 𝐜 መ𝑓MB 𝐜 , 
should also ensure charge conservation

➢ 𝐽 𝑓 = 𝑛𝑖𝑅
2𝑐 መ𝑓MB 𝐜

׬ 𝐜′ 𝑓 𝐜′ d3𝑐′

׬ 𝐜′ መ𝑓MB 𝐜′ d3𝑐′
− 𝑓 𝐜



Methods to solve Lorentz equation

❖ Linear response

❖Frequency response

❖ Linear operator and eigenvalues

❖Chapman–Enskog method



Linear response

❖Weak electric field:  𝐄 = 𝜖𝐄0,  𝜖 ≪ 1

❖We look for solution of the form:
𝑓 𝐜 = 𝑓MB 𝐜 1 + 𝜖Φ 𝐜

❖Φ 𝐜 is the response to the external electric field:
Φ 𝐜 = 𝜙 𝑐 𝐜 ⋅ 𝐄0

❖Terms in LE proportional to 𝜖:

𝜕𝑓

𝜕𝑡
+ 𝐜 ⋅

𝜕𝑓

𝜕𝐫
+
𝑞𝐄

𝑚
⋅
𝜕𝑓

𝜕𝐜
= න 𝑓′𝐹1

′ − 𝑓𝐹1 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3𝑐1

𝑞𝐄0
𝑚

⋅
𝜕𝑓MB

𝜕𝐜
= න𝑓MB 𝐜 𝐹MB 𝐜1 Φ 𝐜′ −Φ 𝐜 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3𝑐1

= −𝑛𝑖𝑛𝑒𝐼 Φ
Linear operator acting on 
correction to 𝑓 𝐜= −

𝑞

𝑘B𝑇
𝑓MB 𝐜 ⋅ 𝐄0

𝐼 Φ =
𝑞

𝑛𝑖𝑘B𝑇
መ𝑓MB 𝑐 𝐜 ⋅ 𝐄0



Linear response

❖Rigid hard sphere model: 
𝐼 Φ = 𝜋𝑅2 መ𝑓MB 𝐜 Φ − ℙΦ

➢ here  Φ 𝐜 = 𝜙 𝑐 𝐜 ⋅ 𝐄0 ℙΦ = 0 due to isotropy

➢ Solution:

𝜙 𝑐 =
𝑞

𝜋𝑅2𝑛𝑖𝑘B𝑇𝑐

❖Electric current density:

❖ In isotropic system:

𝐼 Φ =
𝑞

𝑛𝑖𝑘B𝑇
መ𝑓MB 𝑐 𝐜 ⋅ 𝐄0

= 𝑞න𝑓MB 𝑐 𝜙 𝑐 𝐜 𝐜 ⋅ 𝐄 𝑑3𝑐 = 𝜎𝐄𝐉 = 𝑞න𝐜𝑓MB 1 + 𝜖𝜙 𝑐 𝐜 ⋅ 𝐄0 𝑑3𝑐
Conductivity

tensor

𝜎 =
1

3
𝜎𝑖𝑖 =

𝑞

3
න𝑓MB 𝑐 𝜙 𝑐 𝑐2 𝑑3𝑐 =

𝑞2𝑛𝑒
3𝑛𝑖𝑘B𝑇𝜋𝑅

2

8𝑘B𝑇

𝜋𝑚𝑒

Drude
formula



Frequency response

❖Time-dependent electric field: 𝐄 𝑡 = 𝜖𝐄𝜔e
−i𝜔𝑡

❖ Linear response: 𝑓 𝐜, 𝑡 = 𝑓MB 𝐜 1 + 𝜖Φ𝜔 𝐜 e−i𝜔𝑡

❖Plugging into LE:

𝐼 Φ𝜔 −
i𝜔

𝑛𝑖
መ𝑓MBΦ𝜔 =

𝑞

𝑛𝑖𝑘B𝑇
መ𝑓MB 𝐜 ⋅ 𝐄0

❖Φ𝜔 𝐜 = 𝜙𝜔 𝑐 𝐜 ⋅ 𝐄𝜔

❖Electric current:
𝐉 = 𝜎0 + 𝑖𝜎1 𝐄𝜔e

−i𝜔𝑡 = 𝜎𝜔𝐄𝜔e
−i(𝜔𝑡−𝛼)

Complex conductivity

𝜎𝜔 = 𝜎0
2 + 𝜎1

2

Phase delay

𝛼 = arctan
𝜎1

𝜎0



Relaxation dynamics

❖No external electric  field

❖ Initial distribution – close to, but different from 
Maxwellian and non-uniform

❖Fourier transformation of initial distribution in spatial 
coordinates → perturbation for single mode:

𝑓 𝐫, 𝐜, 𝑡 = 𝑓MB 𝐜 1 + Φ𝐤 𝐜, 𝑡 ei𝐤⋅𝐫

❖Plugging into LE:

𝑓MB

𝜕Φ𝐤

𝜕𝑡
= −𝐿𝐤Φ𝐤,

here operator   𝐿𝐤Φ = 𝑛𝑒𝑛𝑖𝐼 Φ + i𝐤 ⋅ 𝐜 𝑓MBΦ

❖Φ𝐤 𝐜, 𝑡 = Φ𝐤 𝐜 e−𝜆𝑡 𝐿𝐤Φ𝐤 = 𝜆𝑓MBΦ𝐤



Operator Lk

❖At longer times, relaxation towards the thermal 
equilibrium is determined by the smallest eigenvalue

❖ Let’s analyze the case of small wavevectors: 
𝐿𝐤Φ = 𝑛𝑒𝑛𝑖𝐼 Φ + i𝜖𝐤 ⋅ 𝐜 𝑓MBΦ, 𝜖 ≪ 1

❖Properties of operator 𝐿0:
➢ Linear, Hermitian (𝜆 = 𝜆∗), positive semi-definite (𝜆 ≥ 0)

➢ The smallest eigenvalue 𝜆 = 0 corresponds to the 
eigenfunction Φ0 = 1

❖For the smallest eigenvalue of   𝐿𝐤 = 𝐿0 + i𝜖𝐿1:
➢ 𝜆 = 0 + 𝜖𝜆1 + 𝜖2𝜆2 +⋯

➢ Φ𝐤 = 1 + 𝜖Φ1 + 𝜖2Φ2 +⋯

𝐿𝐤Φ𝐤 = 𝜆𝑓MBΦ𝐤

= 𝐿0Φ = i𝜖𝐿1Φ



Eigenvalue of Lk

❖First-order:  𝐿0Φ1 + i𝐿1Φ0 = 𝑓MB 𝜆0Φ1 + 𝜆1Φ0

➢ 𝐿0Φ1 = 𝜆1𝑓MB − i𝐿1 ⋅ 1

❖Second-order:
➢ 𝐿0Φ2 = 𝜆2𝑓MB − i𝐿1 ⋅ Φ1

න 𝜆1𝑓MB − i𝐿1 d3𝑐 = නΦ1𝐿01 𝑑
3𝑐

= 0

𝐿0 = 𝑛𝑒𝑛𝑖𝐼
L1 = 𝐤 ⋅ 𝐜 𝑓MB

𝐿1 ∝ 𝐜

𝜆1 = 0

𝐼 Φ1 = −i
𝑓𝑀𝐵
𝑛𝑖

𝐜 ⋅ 𝐤

𝜆2 = i
׬ 𝐿1Φ1 d

3𝑐

𝑓MB׬ d
3𝑐

= i
׬ 𝐿1Φ1 d

3𝑐

𝑛𝑒
=

𝑘𝐵𝑇𝜎

𝑛𝑒𝑞
2

𝑘2

𝐿𝐤 = 𝐿0 + i𝜖𝐿1

= 1 = 0 = 1

= න1𝐿0Φ1 𝑑
3𝑐

𝐿0 is Hermitian

= 0



Diffusive behavior

❖𝜆 =
𝑘𝐵𝑇𝜎

𝑛𝑒𝑞
2 𝑘2

❖By integrating LE over d3𝑐 and calculating inverse 
Fourier transform we obtain the diffusion equation:

𝜕𝜌

𝜕𝑡
= 𝐷𝛻2𝜌

❖Diffusion coefficient 𝐷 =
𝑘𝐵𝑇𝜎

𝑛𝑒𝑞
2 =

ℓ 𝐜

3

log t

Ballistic
regime

Kinetic
regime

Hydrodynamic
regime

Equilibrium

𝑡𝐾 =
1

𝜈
𝑡𝐻 =

1

𝐷𝑘2

𝑓 𝐫, 𝐜 = const Local Maxwell dist. Global Maxwel dist.,
uniform density



Chapman–Enskog method

❖A method to obtain hydrodynamic equations by time 
scale separation

❖ In the hydrodynamic regime, 𝑓 depends on c, r and t 
not separately, but via 𝑛 𝐫, 𝑡 :

𝑓 𝐫, 𝐜, 𝑡 = ℎ 𝐜; 𝑛 𝐫, 𝑡

❖Expand ℎ as power series:
ℎ = ℎ0 + 𝜖ℎ1 + 𝜖2ℎ2 +⋯

❖ Introducing time scales:
𝑡0 = 𝑡, 𝑡1 = 𝜖𝑡, 𝑡2 = 𝜖2𝑡, …

➢ For very small 𝑡, 𝑡1 = 𝑡2 = 0, and ℎ depends only on 𝑡0
➢ At larger times, stationary state for the 𝑡0 timescale is 

reached, and ℎ starts to depend on 𝑡1, etc.

We also assume that
𝐄 and 𝛻𝑛 are first-order
in 𝜖



Chapman–Enskog method

❖𝑛 = 𝑛 𝐫, 𝑡0, 𝑡1, 𝑡2, …
𝜕𝑛

𝜕𝑡
→

𝜕𝑛

𝜕𝑡0
+ 𝜖

𝜕𝑛

𝜕𝑡1
+ 𝜖2

𝜕𝑛

𝜕𝑡2
+⋯

❖Zeroth-order in 𝜖:
𝜕ℎ0
𝜕𝑛

𝜕𝑛

𝜕𝑡0
= න ℎ0

′ 𝐹1
′ − ℎ0𝐹1 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3𝑐1

➢ Integral over d3𝑐 is equal to 0         
𝜕𝑛

𝜕𝑡0
= 0

➢ ℎ0 = 𝑛 መ𝑓MB

𝜕𝑓

𝜕𝑡
+ 𝐜 ⋅

𝜕𝑓

𝜕𝐫
+
𝑞𝐄

𝑚
⋅
𝜕𝑓

𝜕𝐜
= න 𝑓′𝐹1

′ − 𝑓𝐹1 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3𝑐1

𝑛 = 𝑛 𝐫, 𝑡1, 𝑡2, …

𝜕𝑛

𝜕𝑡0
= 0



Chapman–Enskog method

❖First-order in 𝜖:
𝜕ℎ1
𝜕𝑛

𝜕𝑛

𝜕𝑡0
+
𝜕ℎ0
𝜕𝑛

𝜕𝑛

𝜕𝑡1
+ 𝐜 ⋅ 𝛻ℎ0 +

𝑞𝐄

𝑚
⋅
𝜕ℎ0
𝜕𝐜

= න ℎ1
′𝐹1

′ − ℎ1𝐹1 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3𝑐1

➢ Integral over d3𝑐 is equal to 0         
𝜕𝑛

𝜕𝑡1
= 0

➢ ℎ1 = ℎ0Φ

➢ Eq. of the same form as we had before for linear response

𝜕𝑓

𝜕𝑡
+ 𝐜 ⋅

𝜕𝑓

𝜕𝐫
+
𝑞𝐄

𝑚
⋅
𝜕𝑓

𝜕𝐜
= න 𝑓′𝐹1

′ − 𝑓𝐹1 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3𝑐1

𝑛 = 𝑛 𝐫, 𝑡2, …
Density evolves at the 

slowest time scale!𝐼 Φ =
መ𝑓MB 𝑐

𝑘B𝑇
𝐜 ⋅

𝑞𝐄

𝑚
−
𝑘B𝑇𝛻𝑛

𝑛𝑛𝑖

𝜕𝑛

𝜕𝑡1
= 0



Chapman–Enskog method

❖Second-order in 𝜖:
𝜕ℎ2
𝜕𝑛

𝜕𝑛

𝜕𝑡0
+
𝜕ℎ1
𝜕𝑛

𝜕𝑛

𝜕𝑡1
+
𝜕ℎ0
𝜕𝑛

𝜕𝑛

𝜕𝑡2
+ 𝐜 ⋅ 𝛻ℎ1 +

𝑞𝐄

𝑚
⋅
𝜕ℎ1
𝜕𝐜

= න ℎ2
′ 𝐹1

′ − ℎ2𝐹1 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3𝑐1

➢ Integral over d3𝑐 is equal to 0       
𝜕𝑛

𝜕𝑡2
+ 𝛻 𝐜ℎ1׬ 𝑑

3𝑐 = 0

➢
𝜕𝜌

𝜕𝑡2
+ 𝛻𝐉 = 0

➢ 𝐉 = 𝜎𝐄 − 𝐷𝛻𝜌

𝜕𝑓

𝜕𝑡
+ 𝐜 ⋅

𝜕𝑓

𝜕𝐫
+
𝑞𝐄

𝑚
⋅
𝜕𝑓

𝜕𝐜
= න 𝑓′𝐹1

′ − 𝑓𝐹1 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3𝑐1

𝜕𝜌

𝜕𝑡2
+ 𝛻(𝜎𝐄) = 𝐷𝛻2𝜌

= መ𝑓MB

⋅ 𝑞
𝜕𝑛

𝜕𝑡2
+ 𝛻 ׬ 𝐜ℎ1 𝑑

3𝑐 = 0



The Boltzmann equation 
for dilute gases

Chapter 4



The Boltzmann equation

❖Formulated in 1872

❖Describes evolution of classical gases

❖Explains:
➢ Origin of the irreversible behavior of macroscopic systems

➢ Relates the macroscopic coefficients (viscosity, thermal 
conductivity, diffusion coefficient) to the interatomic 
interactions

❖Valid for dilute gas



The Boltzmann equation

❖Dilute gas:

➢ 𝑁 molecules in a volume 𝒱, density 𝑛 =
𝑁

𝒱

➢ Molecules interact via potential with range 𝑟0
➢ Cross-section 𝜎~𝑟0

2

➢ Fraction of volume occupied by all molecules (assuming them 

to be spheres of radius 𝑟0) is 𝜙 =
4

3
𝜋𝑛𝑟0

3 ≪ 1

➢ Transport coefficients are proportional 

to the mean free path ℓ~
1

𝑛𝜎
~

1

𝑛𝑟0
2

➢ Number of molecules within the mean
free path volume 𝑁ℓ = 𝑛ℓ3 ≫ 1, 
so that statistical description by using 
distribution functions is valid

❖Boltzmann–Grad limit: 𝑟0 → 0, 𝑛 → ∞ while 𝒱 is finite

In the atmosphere under 
normal conditions:
• 𝑛 = 2,7 ⋅ 1025 m−3

• 𝑟0~1 Å
• ℓ~8 ⋅ 10−8 m
• 𝜙~10−4

• 𝑁ℓ~1.4 ⋅ 10
4



Assumptions

❖𝑟0 → 0, 𝑛 → ∞ while 𝒱 is finite

❖Colliding particles are 
statistically independent 
➢ No re-collisions or 

pre-collisional correlations

Molecular chaos hypothesis

❖All derived equation are valid on the mesoscale
➢ Time and length scales ≥ mean free time & path

➢ Duration of the collision is much shorter

➢ No effect of the external forces during the collision

𝜕𝑓

𝜕𝑡
+ 𝐜1 ⋅

𝜕𝑓

𝜕𝐫1
+
𝐅1
𝑚
⋅
𝜕𝑓

𝜕𝐜1
= න

𝜕𝜙12
𝜕𝐫12

𝜕

𝜕𝐜1
−

𝜕

𝜕𝐜2
𝑓 2 1,2, 𝑡 d3𝑟2d

3𝑐2

BBKGY1 equation:

𝑓 2 𝐜1, 𝐜2 precoll = 𝑓 𝐜1 𝑓 𝐜2



Boltzmann kinetic equation

❖Derivation similar to that of the 
Lorentz equation, but now particle 
collide between themselves and 
not with (almost) stationary ions

here 𝑓 = 𝑓 𝐫, 𝐜, 𝑡 ,  𝑓1 = 𝑓 𝐫, 𝐜𝟏, 𝑡 ,

𝑓′ = 𝑓 𝐫, 𝐜′, 𝑡 ,  𝑓1
′ = 𝑓 𝐫, 𝐜𝟏

′ , 𝑡

𝐠 = 𝐜 − 𝐜1

𝜕𝑓

𝜕𝑡
+ 𝐜 ⋅

𝜕𝑓

𝜕𝐫
+
𝐅

𝑚
⋅
𝜕𝑓

𝜕𝐜
= න 𝑓′𝑓1

′ − 𝑓𝑓1 𝐠 ⋅ 𝑏d𝑏d𝜓 d3𝑐1

Collisional operator
𝐽 𝑓, 𝑓



Hard sphere model

❖Molecules are hard spheres of radius 𝑟0
➢ They meet at a distance 𝐷 = 2𝑟0
➢ From the energy and momentum 

conservation laws:
𝐜′ = 𝐜 − 𝐜 − 𝐜1 ⋅ ෝ𝐧 ෝ𝐧
𝐜1
′ = 𝐜1 − 𝐜 − 𝐜1 ⋅ ෝ𝐧 ෝ𝐧

➢ Post-collisional relative velocity:
𝐠′ = 𝐠 − 2 𝐠 ⋅ ෝ𝐧 ෝ𝐧

➢ 𝑏 = 𝑅 sin 𝜗

➢ 𝐠 ⋅ 𝑏d𝑏d𝜓 = 𝐷2 𝐠 sin 𝜗 cos 𝜗 d𝜗d𝜓 = 𝐷2 𝐠 ⋅ ෝ𝐧 d2ෝ𝐧

𝜕𝑓

𝜕𝑡
+ 𝐜 ⋅

𝜕𝑓

𝜕𝐫
+
𝐅

𝑚
⋅
𝜕𝑓

𝜕𝐜
= 𝐷2න 𝑓′𝑓1

′ − 𝑓𝑓1 𝐠 ⋅ ෝ𝐧 Θ 𝐠 ⋅ ෝ𝐧 d2ෝ𝐧d3𝑐1



Conservation laws

❖ Let’s recall:
➢ Density of 𝜑:   𝜌𝜑(𝐫, 𝑡) = 𝜑׬ 𝐜 𝑓 𝐫, 𝐜, 𝑡 d3𝑐

➢ Flux of 𝜑:   𝐉𝜑(𝐫, 𝑡) = 𝜑׬ 𝐜 𝑓 𝐫, 𝐜, 𝑡 𝐜 d3𝑐

➢ Source due to external force:  𝑆𝜑(𝐫, 𝑡) = ׬
𝐅

𝑚
⋅
𝜕𝜑

𝜕𝐜
𝑓 𝐫, 𝐜, 𝑡 d3𝑐

𝜕𝑓

𝜕𝑡
+ 𝐜 ⋅

𝜕𝑓

𝜕𝐫
+
𝑞𝐄

𝑚
⋅
𝜕𝑓

𝜕𝐜
= න 𝑓′𝐹1

′ − 𝑓𝐹1 𝐜 − 𝐜1 ⋅ 𝑏d𝑏d𝜓 d3𝑐1𝜑 𝐜 ⋅නd3𝑐

𝜕𝜌𝜑

𝜕𝑡
+ 𝛻 ⋅ 𝐉𝜑 − 𝑆𝜑 = න𝜑 𝐜 𝑓′𝑓1

′ − 𝑓𝑓1 𝐠 ⋅ 𝑏d𝑏d𝜓 d3𝑐d3𝑐1



Conservation laws
𝜕𝜌𝜑

𝜕𝑡
+ 𝛻 ⋅ 𝐉𝜑 − 𝑆𝜑 = න𝜑 𝐜 𝑓′𝑓1

′ − 𝑓𝑓1 𝐠 ⋅ 𝑏d𝑏d𝜓 d3𝑐d3𝑐1

=
1

2
න 𝜑 𝐜 + 𝜑 𝐜1 𝑓′𝑓1

′ − 𝑓𝑓1 𝐠 ⋅ 𝑏d𝑏d𝜓 d3𝑐d3𝑐1

Re-do the same trick

Relabel variables: 𝐜 ↔ 𝐜′ and 𝐜1 ↔ 𝒄1
′

Now ' denote post-collisional velocities

=
1

2
න 𝜑 𝐜′ + 𝜑 𝐜1

′ 𝑓𝑓1 − 𝑓′𝑓1
′ 𝐠′ ⋅ 𝑏′d𝑏′d𝜓′ d3𝑐′d3𝑐1

′

= 𝐠 ⋅ 𝑏d𝑏d𝜓 d3𝑐d3𝑐1

=
1

4
න 𝜑 + 𝜑1 − 𝜑′ − 𝜑1

′ 𝑓′𝑓1
′ − 𝑓𝑓1 𝐠′ ⋅ 𝑏′d𝑏′d𝜓′ d3𝑐′d3𝑐1

′

=
1

2
න 𝜑′ + 𝜑1

′ − 𝜑 − 𝜑1 𝑓𝑓1 𝐠
′ ⋅ 𝑏′d𝑏′d𝜓′ d3𝑐′d3𝑐1

′

= 0 for collisional invariants



Conservation laws

❖Mass (𝜑 = 𝑚):
𝜕𝜌

𝜕𝑡
+ 𝛻 ⋅ 𝜌𝐯 = 0

❖Momentum (𝜑 = 𝑚𝑐):
➢ ෨𝑃𝑖𝑘 𝐫, 𝑡 = 𝑚׬𝑓 𝐫, 𝐜, 𝑡 𝑐𝑖𝑐𝑘 d

3𝑐

𝜕

𝜕𝑡
𝜌𝑣𝑖 +

𝜕

𝜕𝑥𝑘
𝑃𝑖𝑘 + 𝜌𝑣𝑖𝑣𝑘 − 𝜌

𝐹𝑖
𝑚
= 0

❖Energy (𝜑 = 𝑚𝑐2/2):
3

2
𝑘B𝜌

𝜕𝑇

𝜕𝑡
+ 𝐯 ⋅ 𝛻 𝑇 = −𝛻 ⋅ 𝐪 − 𝑃𝑖𝑘

𝜕𝑣𝑖
𝜕𝑥𝑘

= 0

𝜕𝜌𝜑

𝜕𝑡
+ 𝛻 ⋅ 𝐉𝜑 − 𝑆𝜑 =

1

2
න 𝜑′ + 𝜑1

′ − 𝜑 − 𝜑1 𝑓𝑓1 𝐠
′ ⋅ 𝑏′d𝑏′d𝜓′ d3𝑐′d3𝑐1

′

𝐉𝜑(𝐫, 𝑡) = න𝜑 𝐜 𝑓 𝐫, 𝐜, 𝑡 𝐜 d3𝑐

𝑆𝜑(𝐫, 𝑡) = න
𝐅

𝑚
⋅
𝜕𝜑

𝜕𝐜
𝑓 𝐫, 𝐜, 𝑡 d3𝑐

Stress tensor 𝑃𝑖𝑘 𝐫, 𝑡 = 𝑚׬𝑓 𝐫, 𝐜, 𝑡 𝑐𝑖 − 𝑣𝑖 𝑐𝑘 − 𝑣𝑘 d3𝑐

= 𝑃𝑖𝑘 + 𝜌𝑣𝑖𝑣𝑘

Heat flux 𝑞𝑖 =
𝑚

2
𝑓׬ 𝐫, 𝐜, 𝑡 (𝐜 − 𝐯)2(𝑐𝑖−𝑣𝑖) d

3𝑐

Equations are not closed!
(𝑃𝑖𝑘 and 𝐪 are not specified)



H-theorem

❖ Let’s divide 1-particle phase space into
parcels of size Δ

❖Number of particles in the 𝑘th parcel is
𝑁𝑘 = 𝑓𝑘Δ

❖Total number of configurations is Ω =
𝑁!

𝑁1!𝑁2!⋯𝑁𝑘!⋯
, 

here 𝑁 = σ𝑘𝑁𝑘
❖Entropy of such macroscopic state is 

r

c

Δ

≃ −𝑘B෍

𝑘

𝑁𝑘 ln
𝑁𝑘
𝑁

𝑆 = 𝑘B ln Ω
𝑁 ≫ 1

≃ −𝑘Bන𝑓 𝐫, 𝐜 ln
𝑓 𝐫, 𝐜 Δ

𝑁
d3𝑟d3𝑐



H-theorem

❖For homogeneous gas we can define the functional

❖From the Boltzmann equation we obtain:

❖ It can be proven that lower boundary exists

❖Steady state: 
d𝐻

d𝑡
= 0

➢ Steady-state distribution 𝑓 should be collisional-invariant

𝐻 𝑓 𝑡 = න𝑓 𝐜, 𝑡 ln
𝑓 𝐜, 𝑡

𝑓0
d3𝑐

d𝐻

d𝑡
= න ln

𝑓 𝐜

𝑓0
+ 1

𝜕𝑓

𝜕𝑡
d3𝑐

= −න ln 𝑓𝑓1 − ln 𝑓′𝑓1
′ 𝑓𝑓1 − 𝑓′𝑓1

′ 𝐠 ⋅ 𝑏d𝑏d𝜓 d3𝑐d3𝑐1

= −න 𝑓′𝑓1
′ − 𝑓𝑓1 𝐠 ⋅ 𝑏d𝑏d𝜓 d3𝑐1

Argument is of the form  ln 𝑥 − ln 𝑦 𝑥 − 𝑦 ≥ 0 d𝐻

d𝑡
≤ 0

𝑓𝑓1 = 𝑓′𝑓1
′



H-theorem

❖We can expand ln 𝑓st 𝐜 in terms of collisional 
invariants:

ln 𝑓st = 𝛼𝑚 + 𝛃 ⋅ 𝑚𝐜 + 𝛾
𝑚𝑐2

2

❖We obtain Maxwell-Boltzmann distribution:

𝑓st 𝐜 = 𝑛
𝑚

2𝜋𝑘B𝑇

3/2

exp −
𝑚 𝐜 − 𝐯 2

2𝑘B𝑇

❖How does irreversible evolution towards MB 
distribution appear, when we start from the time-
reversible equations of motion?



Irreversibility problem

❖Poincare̒ recurrence theorem:
➢ After a long but finite time any classical system obeying 

microscopic reversible dynamics will return close to any 
initial condition

➢ The recurrence time ~2𝑁, where N is the number of 
degrees of freedom

❖Example: oscillator chain on a ring
➢ Initially, one ball is given velocity 𝑣0

➢ Exact solution: 𝑣 𝑡 = 𝑣0σ𝑛=0
𝑁−1 cos 𝜔𝑛𝑡

𝑁
, 

where 𝜔𝑛 = 2 𝑘/𝑚 sin
𝜋𝑛

𝑁

k
m

𝑣0

0

𝑣 𝑡

𝑣0

𝑘

𝑚
𝑡

𝑁 = 10
𝑁 = 20

𝑁 = ∞

𝑣 𝑡 = 𝑣0𝐽0 2
𝑘

𝑚
𝑡

𝑁 → ∞

(damped oscillations)



Dynamics close to equilibrium

❖Eventually, the gas state will approach thermal 
equilibrium. Let’s study the later stage of its evolution, 
when it is already close to equilibrium

❖𝑓 𝐜 = 𝑓MB 𝐜 1 + Φ 𝐜

❖ 𝐽 𝑓, 𝑓 ≈

❖ 𝐼 Φ – linear, Hermitian, positive semidefinite 
operator:
➢ Bracket product Ψ,Φ = ∗Ψ׬ 𝐜 𝐼 Φ 𝐜 d3𝑐

➢ Ψ,Φ = Φ,Ψ ∗,   Φ,Φ ≥ 0

➢ Ψ,Φ = 0 if either Ψ or Φ is a collisional invariant

𝜕𝑓

𝜕𝑡
+ 𝐜 ⋅

𝜕𝑓

𝜕𝐫
+
𝐅

𝑚
⋅
𝜕𝑓

𝜕𝐜
= න 𝑓′𝑓1

′ − 𝑓𝑓1 𝐠 ⋅ 𝑏d𝑏d𝜓 d3𝑐1

−𝑛2න መ𝑓MB
መ𝑓MB1 Φ+Φ1 −Φ′ −Φ1

′ 𝐠 ⋅ 𝑏d𝑏d𝜓 d3𝑐1

= 𝐼 Φ



Eigenvalue analysis

❖Consider gas close to equilibrium with no external 
forces

❖Perturbation for a single Fourier mode:
𝑓 𝐫, 𝐜, 𝑡 = 𝑓MB 𝐜 1 + Φ𝐤 𝐜, 𝑡 ei𝐤⋅𝐫

❖From BE:

𝑓MB

𝜕Φ𝐤

𝜕𝑡
+ i𝐤 ⋅ 𝐜𝑓MBΦ𝐤 = −𝑛2𝐼 Φ𝐤

❖ Linear operator  𝐿𝐤 = 𝑛2𝐼 + i𝐤 ⋅ 𝐜𝑓MB

➢ Eigenvalue equation:    𝐿𝐤Φ𝐤,𝑗 = −𝜆𝐤,𝑗𝑓MBΦ𝐤,𝑗

➢ 𝑓 𝐫, 𝐜, 𝑡 = 𝑓MB 𝐜 1 +෍

𝑗

𝐴𝐤,𝑗Φ𝐤 𝐜 ei𝐤⋅𝐫−𝜆𝐤,𝑗𝒕



Eigenvalue analysis

❖When 𝐤 = 0, operator 𝐿0 = 𝑛2𝐼 is Hermitian and 
positive semidefinite (𝜆 ≥ 0)

❖The smallest eigenvalue 𝜆0 = 0 corresponds to 5 
different eigenfunctions (collisional invariants):
➢ Φ = 1, 𝑐𝑥 , 𝑐𝑦, 𝑐𝑧, 𝐜

2

➢ Each Fourier component Φ𝐤 will have 5 different modes

❖Spectrum of the operator 𝐿𝐤 for small 𝐤 = 𝑘ො𝐱:

➢ 2 transverse modes:  𝜆⊥
(𝑦,𝑧)

= 𝜈𝑘2, Φ = 𝑐𝑦,𝑧 + 𝒪 𝑘

➢ 2 sound modes:  𝜆± = ±i𝑐s𝑘 + Γ𝑘2,  Φ = 𝑐𝑥 + 𝒪 𝑘

➢ 1 heat mode:  𝜆H = 𝐷𝑇𝑘
2,  Φ =

𝑚𝑐2

2
−

3

2
𝑘B𝑇 + 𝒪 𝑘

❖ In all cases: Re 𝜆 > 0 relaxation to a homogeneous equilibrium

❖ Sound modes: ei𝑘 𝑥∓𝒄𝐬𝒕 damping longitudinal sound waves

Momentum diffusion (viscosity)

Heat diffusion (heat conductivity)



Time scales

log t

Ballistic
regime

Kinetic
regime

Diffusion
Equilibrium

𝑡𝐾 =
1

𝜈
𝑡𝐻 =

1

𝐷𝑇𝑘
2

Sound 
waves

𝑡± =
1

𝑐s𝑘

Hydrodynamic regime



BGK model

❖Boltzmann equation gives accurate description of 
gases, but is too complicated for the detailed 
calculations

❖Any simplified description should still include 
irreversible evolution towards the equilibrium and 
preserve collisional invariants

❖Bhatnagar–Gross–Krook (BGK) model:

𝐽BGK 𝑓 = 𝜈 𝑓MB 𝐜; 𝑛 𝑓 , 𝐯 𝑓 , 𝑇 𝑓 − 𝑓 𝐫, 𝐜, 𝑡

➢ 𝑛 𝑓 𝐫, 𝑡 = ׬ 𝑓 𝐫, 𝐜, 𝑡 d3𝑐

➢ 𝐯 𝑓 𝐫, 𝑡 =
1

𝑛 𝐫,𝑡
׬ 𝐜 𝑓 𝐫, 𝐜, 𝑡 d3𝑐

➢
3

2
𝑘B𝑇 𝑓 𝐫, 𝑡 =

1

𝑛 𝐫,𝑡
׬
𝑚 𝐜−𝐯 𝑓 2

2
𝑓 𝐫, 𝐜, 𝑡 d3𝑐



Linear BGK model

❖ Linear BGK operator is notably simpler

❖𝑓 𝐫, 𝐜, 𝑡 = 𝑓MB 𝐜 1 + Φ 𝐜, 𝑡
➢ 𝑛 𝑓 𝑡 = 𝑛0 1 + ׬ መ𝑓MB 𝐜 Φ 𝐜, 𝑡 d3𝑐

➢ 𝐯 𝑓 𝑡 = 𝑛0 ׬ መ𝑓MB 𝐜 Φ 𝐜, 𝑡 𝐜 d3𝑐

➢ 𝑇 𝑓 𝑡 = 𝑇0 1 +
2

3
׬ መ𝑓MB 𝐜 Φ 𝐜, 𝑡

𝑚𝑐2

2𝑘B𝑇
−

3

2
d3𝑐

❖Collision operator:



Hydrodynamic regime

❖Fourier law for the heat flux:
𝐪 = −𝜅 𝛻𝑇

❖Newton’s law for the stress tensor:

ℙ = 𝑝𝕀 − 𝜂 𝛻𝐯 + 𝛻𝐯 T −
2

3
𝛻 ⋅ 𝐯 𝕀

❖Conservation laws:

➢
𝜕𝜌

𝜕𝑡
+ 𝛻 ⋅ 𝜌𝐯 = 0

➢ 𝜌
𝜕𝑣𝑖

𝜕𝑡
+ 𝜌 𝐯 ⋅ 𝛻 𝑣𝑖 = −

𝜕𝑃𝑖𝑘

𝜕𝑥𝑘
+ 𝜌

𝐹𝑖

𝑚
= 0

➢
3

2
𝑘B𝜌

𝜕𝑇

𝜕𝑡
+ 𝐯 ⋅ 𝛻 𝑇 = −𝛻 ⋅ 𝐪 −𝑚𝑃𝑖𝑘

𝜕𝑣𝑖

𝜕𝑥𝑘
= 0

Thermal conductivity

Pressure = 𝑛𝑘B𝑇 Shear viscosity



Hydrodynamic equations

❖Perturbations (with no external forces):
➢ 𝑛 = 𝑛0 + 𝜖𝑛1 𝐫, 𝑡

➢ 𝐯 = 𝜖𝐯1 𝐫, 𝑡

➢ 𝑇 = 𝑇0 + 𝜖𝑇1 𝐫, 𝑡

❖Substituting into the conservation laws:

➢
𝜕𝑛1

𝜕𝑡
= −𝑛0𝛻 ⋅ 𝐯1 = 0

➢ 𝑚𝑛0
𝜕𝐯1

𝜕𝑡
= −𝑘B𝛻 𝑛0𝑇1 + 𝑇0𝑛1 + 𝜂0𝛻

2𝐯1

➢
3

2
𝑘B𝑚𝑛0

𝜕𝑇1

𝜕𝑡
= 𝜅0𝛻

2𝑇1 +𝑚𝑝0𝛻 ⋅ 𝐯 = 0

here 𝑝0 = 𝑘B𝑛0𝑇0, 𝜂0 = 𝜂 𝑛0, 𝑇0 ,  𝜅0 = 𝜅 𝑛0, 𝑇0

❖Fourier mode analysis yields:

➢ 𝜈 =
𝜂0

𝑚𝑛0
➢ Γ =

2𝜅0

15𝑘B𝑇
+

2𝜂0

𝑚𝑛0
➢ 𝐷𝑇 =

3𝜅0

5𝑘B𝑇
➢ 𝑐s =

5𝑘B𝑇

3𝑚



Viscosity

❖Velocity profile: 𝐯 = 𝑉′𝑦ො𝐱, 
here 𝑉′ = 𝑉0/𝐿 is a shear rate

❖By definition: 𝑃𝑥𝑦 = −𝜂
𝜕𝑣𝑥

𝜕𝑦

❖ Linear response:
𝑓 𝐫, 𝐜 = 𝑓MB 𝐜; 𝑛0, 𝑇0, 𝐯 𝐫 1 + Φ 𝐜

❖Boltzmann eq.:     
𝜕𝑓

𝜕𝑡
+ 𝐜 ⋅

𝜕𝑓

𝜕𝐫
+

𝐅

𝑚
⋅
𝜕𝑓

𝜕𝐜
= 𝐽 𝑓, 𝑓

➢
𝑓MB𝑉

′

𝑘B𝑇
𝑐𝑥 − 𝑣𝑥 𝑐𝑦 = −𝑛0

2𝐼 Φ

➢ Ansatz:  Φ 𝐜 = −
𝑉′

𝑛0
෡Φ 𝐜

➢ 𝑃𝑥𝑦 = 𝑓׬ 𝐜 𝑚𝑐𝑥𝑐𝑦 d
3𝑐

𝐼 ෡Φ =
መ𝑓MB

𝑘B𝑇
𝑚𝑐𝑥𝑐𝑦

(Switch to the commoving frame)

= −𝑉′ ׬ መ𝑓MB 𝐜 ෡Φ 𝐜 𝑚𝑐𝑥𝑐𝑦 d
3𝑐

𝜂 = න መ𝑓MB 𝐜 ෡Φ 𝐜 𝑚𝑐𝑥𝑐𝑦 d
3𝑐



Viscosity: variational principle

❖Recall bracket product: 

𝜂 = 𝑘B𝑇න෡Φ 𝐜 𝐼 ෡Φ d3𝑐 ≡ 𝑘B𝑇 ෡Φ, ෡Φ

❖ Let’s assume we can find another function ෡Ψ – such 
that ෡Ψ, ෡Ψ = ෡Ψ, ෡Φ

❖0 ≤ 𝑘B𝑇 ෡Ψ− ෡Φ, ෡Ψ− ෡Φ

❖Polynomial ansatz
➢ ෡Ψ = 𝑐𝑥𝑐𝑦 𝑎0 + 𝑎1𝑐

2 + 𝑎2 𝑐2 2 +⋯

➢ 𝑎0
2 𝑐𝑥𝑐𝑦 , 𝑐𝑥𝑐𝑦 =

𝑚𝑎0

𝑘B𝑇
׬ መ𝑓MB 𝐜 𝑐𝑥

2𝑐𝑦
2 d3𝑐

𝐼 ෡Φ =
መ𝑓MB

𝑘B𝑇
𝑚𝑐𝑥𝑐𝑦𝜂 = න መ𝑓MB 𝐜 ෡Φ 𝐜 𝑚𝑐𝑥𝑐𝑦 d

3𝑐

=
𝑚

𝑘B𝑇
׬ ෡Ψ 𝐜 መ𝑓MB 𝐜 𝑐𝑥𝑐𝑦 d

3𝑐

= −𝑘B𝑇 ෡Φ, ෡Ψ + 𝑘B𝑇 ෡Φ, ෡Φ

𝜂 ≥ 𝑘B𝑇 ෡Ψ, ෡Ψ
Leave just a single term:

= 𝑎0𝑐𝑥𝑐𝑦



Viscosity: variational principle

❖ Lower bound for the viscosity:

❖Hard sphere model:

𝜂 ≥ 𝜂0 = 𝑘B𝑇 ෡Ψ, ෡Ψ

= 𝑐𝑥
′ 𝑐𝑦

′ + 𝑐𝑥1
′ 𝑐𝑦1

′ − 𝑐𝑥𝑐𝑦 − 𝑐𝑥1𝑐𝑦1

𝑎0 =
𝑚

𝑘B𝑇

׬ መ𝑓MB 𝐜 𝑐𝑥
2𝑐𝑦

2 d3𝑐

𝑐𝑥𝑐𝑦, 𝑐𝑥𝑐𝑦

= 𝑘B𝑇𝑎0
2 𝑐𝑥𝑐𝑦, 𝑐𝑥𝑐𝑦

=
4𝑚2

𝑘B𝑇

׬ መ𝑓MB 𝐜 𝑐𝑥
2𝑐𝑦

2 d3𝑐
2

׬ Δ𝑐𝑥𝑐𝑦
2 መ𝑓MB 𝐜 መ𝑓MB 𝐜1 𝐠 ⋅ 𝑏d𝑏d𝜓 d3𝑐d3𝑐1

𝜂0
HS

=
5

16𝐷2

𝑚𝑘B𝑇

𝜋



Chapman–Enskog method

❖𝑓 𝐫, 𝐜, 𝑡 = ℎ 𝐜; 𝑛 𝐫, 𝑡 , 𝐯 𝐫, 𝑡 , 𝑇 𝐫, 𝑡

❖ℎ = ℎ0 + 𝜖ℎ1 + 𝜖2ℎ2 +⋯

❖ 𝑡0 = 𝑡, 𝑡1 = 𝜖𝑡, 𝑡2 = 𝜖2𝑡, …

➢
𝜕

𝜕𝑡
→

𝜕

𝜕𝑡0
+ 𝜖

𝜕

𝜕𝑡1
+ 𝜖2

𝜕

𝜕𝑡2
+⋯

❖Zeroth-order

➢
𝜕ℎ0

𝜕𝑛

𝜕𝑛

𝜕𝑡0
+

𝜕ℎ0

𝜕𝐯
⋅
𝜕𝐯

𝜕𝑡0
+

𝜕ℎ0

𝜕𝑇

𝜕𝑇

𝜕𝑡0
= 𝐽 ℎ0, ℎ0

➢ 𝑛, 𝐯 and 𝑇 do not depend on 𝑡0 𝐽 ℎ0, ℎ0 = 0

➢ Solution – local Maxwellian: ℎ0 = 𝑓MB

❖First-order

➢
𝜕ℎ0

𝜕𝑡1
+ 𝐜 ⋅ 𝛻ℎ0 = −𝐼 Φ ,   here ℎ1 = ℎ0Φ



Chapman–Enskog method: 1st order

❖Heat flux and stress tensor:  𝐪 = 0, ℙ = 𝑛𝑘B𝑇𝕀

❖Conservation laws:

❖Substitution into BE:

Euler equations 
for compressible 
gas

Here 𝐂 = 𝐜 − 𝐯



Chapman–Enskog method: 2nd order

❖Heat flux and stress tensor:  𝐪1 = −𝜅𝛻𝑇,

ℙ1 = −𝜂 𝛻𝐯 + 𝛻𝐯 T −
2

3
𝛻 ⋅ 𝐯 𝕀

❖Conservation laws:

𝜕𝜌

𝜕𝑡2
= 0, 𝜌

𝜕𝐯

𝜕𝑡2
= −𝛻 ⋅ ℙ1,

3

2
𝑘B𝜌

𝜕𝑇

𝜕𝑡2
= −𝛻 ⋅ 𝐪1

❖Transport coefficients:

➢ 𝜂 =
𝑘B𝑇

10
𝐵 𝐂𝐂 −

𝐶2

3
𝕀 , 𝐵 𝐂𝐂 −

𝐶2

3
𝕀

➢ 𝜅 =
𝑘B

𝑇
𝐴𝐂, 𝐴𝐂

here A and B are functions that obey  



Hard sphere model

❖𝜂0
HS

=
5

16𝐷2
𝑚𝑘B𝑇

𝜋

❖𝜅0
HS

=
75𝑘B

64𝐷2
𝑘B𝑇

𝜋𝑚

❖Prandit number  Pr =
𝑐𝑝𝜂

𝜅
➢ 𝑐𝑝 – heat capacity per unit mass 

➢ For ideal gas: 

𝑐𝑝 =
𝑘B
2𝑚

⋅ ቐ
5,
7,
8,

monoatomic gas

diatomic gas

polyatomic gas
Pr =

2

15
⋅
5
7
8

≈ ቐ
0.667
0.933
1.067



Beyond BE

❖Boundary conditions (collisions with the walls)

❖Dense gases
➢ Enskog model for hard sphere gases

➢ Pair distribution function

ቚ𝑓 2 𝐫1, 𝐜1, 𝐫2, 𝐜2
𝐫1−𝐫2 =𝐷

= 𝑓 𝐫1, 𝐜1 𝑓 𝐫2, 𝐜2 ⋅ 𝜒 𝐫2 − 𝐫1

❖Virial expansion
𝜕𝑓

𝜕𝑡
coll

= 𝐽 𝑓, 𝑓 + 𝐾 𝑓, 𝑓, 𝑓 + 𝐿 𝑓, 𝑓, 𝑓, 𝑓, + ⋯

❖ Inelastic collisions, etc.

𝐽 𝑓 = 𝐷2නൣ𝑓 2 𝐫, 𝐜′, 𝐫 − 𝐧, 𝐜1
′ −

൧−𝑓 2 𝐫, 𝐜, 𝐫 + 𝐧, 𝐜1 𝐠 ⋅ ෝ𝐧 Θ 𝐠 ⋅ ෝ𝐧 d2ෝ𝐧 d3𝑐1


