Rodrigo Soto

Kinetic Theory and Transport Phenomena

Overview of Chapters 1–4

2019-11-04

Chapter 1

Basic concepts

Notations and definitions

✤ Velocity distribution function
$$f(\mathbf{r}, \mathbf{c}, t)$$

$$\iint f(\mathbf{r}, \mathbf{c}, t) \, \mathrm{d}^3 r \, \mathrm{d}^3 c = N \quad \mathbf{n}$$

Total number of molecules

 $\text{ In thermal equilibrium: } f = f(\mathbf{c}) = n \, \hat{f}_{\text{MB}}(\mathbf{c}), \text{ here} \\ \hat{f}_{\text{MB}}(\mathbf{c}) = \left(\frac{m}{2\pi k_{\text{B}}T}\right)^{3/2} \exp\left(-\frac{mc^2}{2k_{\text{B}}T}\right) \begin{array}{l} \text{Maxwell-Boltzmann} \\ \text{distribution} \end{array}$

Particle density

$$n(\mathbf{r},t) = \int f(\mathbf{r},\mathbf{c},t) \,\mathrm{d}^3c$$

Notations and definitions

- ***** Particular property $\varphi(\mathbf{c})$:
 - \blacktriangleright Mass: $\varphi = m$
 - > Momentum: $\varphi = m\mathbf{c}$
 - > Kinetic energy: $\varphi = \frac{1}{2}mc^2$

* Local average of φ : $\langle \varphi \rangle(\mathbf{r}, t) = \frac{1}{n(\mathbf{r}, t)} \int \varphi(\mathbf{c}) f(\mathbf{r}, \mathbf{c}, t) d^3 c$

***** Local velocity: $\mathbf{v}(\mathbf{r}, t) = \frac{1}{n(\mathbf{r}, t)} \int \mathbf{c} f(\mathbf{r}, \mathbf{c}, t) d^3 c$

Local temperature:

$$\frac{3}{2}k_{\mathrm{B}}T(\mathbf{r},t) = \left\langle\frac{m(\mathbf{c}-\mathbf{v})^{2}}{2}\right\rangle$$

Flux

• When particles move, they transfer φ :

> In time interval Δt surface ΔS is crossed by the molecules from the volume $\Delta V = \mathbf{c} \cdot \hat{\mathbf{n}} \Delta t \Delta S$

> Amount of φ transferred:

$$\Delta \varphi = \Delta t \Delta S \int f(\mathbf{r}, \mathbf{c}, t) \varphi(\mathbf{c}) \mathbf{c} \cdot \hat{\mathbf{n}} \, \mathrm{d}^3 c$$

 $\hat{\Delta}S$

 $c\Delta t$

► Flux:

$$\mathbf{J}_{\varphi}(\mathbf{r},t) = \int f(\mathbf{r},\mathbf{c},t)\varphi(\mathbf{c})\mathbf{c} \,\mathrm{d}^{3}c$$

Flux

• Mass flux: $\mathbf{J}_m(\mathbf{r},t) = mn(\mathbf{r},t)\mathbf{v}(\mathbf{r},t)$

***** Kinetic energy (heat) flux: $\mathbf{J}_e(\mathbf{r}, t) = \frac{m}{2} \int f(\mathbf{r}, \mathbf{c}, t) c^2 \mathbf{c} \, \mathrm{d}^3 c$

• Momentum flux (tensor) $\tilde{P}_{ik}(\mathbf{r}, t) = m \int f(\mathbf{r}, \mathbf{c}, t) c_i c_k \, \mathrm{d}^3 c$

 $\gg \tilde{P}_{ik} - i^{\text{th}}$ component of momentum that is crosses a unitary surface oriented in k direction per unit time

Stress tensor & energy flux

If the gas has net velocity v (convective contribution), it is usually subtracted to measure the flux in a frame comoving with the gas:

$$q_i = \frac{m}{2} \int f(\mathbf{r}, \mathbf{c}, t) (\mathbf{c} - \mathbf{v})^2 (c_i - v_i) d^3 c$$
$$P_{ik}(\mathbf{r}, t) = m \int f(\mathbf{r}, \mathbf{c}, t) (c_i - v_i) (c_k - v_k) d^3 c$$
$$_{i,k} = x, y, z$$

In thermal equilibrium (MB distribution):

$$P_{ik} = 0$$

$$P_{ik} = \delta_{ik} m \int f(\mathbf{r}, \mathbf{c}, t) (c_i - v_i)^2 \, \mathrm{d}^3 c = \frac{nk_\mathrm{B}T}{\delta_{ik}} \delta_{ik}$$

• Definition of pressure: > $p = \frac{1}{2} P_{ii} \left(\equiv \frac{1}{2} \sum_{i=1}^{3} P_{ii} \right)$ $p = nk_{\rm B}T$, holds for the ideal gas even under non-equilibrium

Continuity equations

Total mass that crosses (inwards) the surface of the commoving volume per unit time:

$$\frac{\mathrm{d}M}{\mathrm{d}t} = -\int \int_{(S)} f(\mathbf{r}, \mathbf{c}, t) m(\mathbf{c} - \mathbf{v}) \cdot \mathrm{d}\mathbf{S} \,\mathrm{d}^3 c = 0$$

Total momentum that enters the commoving volume: $\frac{\mathrm{d}p_i}{\mathrm{d}t} = -\int \int_{(S)} f(\mathbf{r}, \mathbf{c}, t) mc_i(\mathbf{c} - \mathbf{v}) \cdot \mathrm{d}\mathbf{S} \,\mathrm{d}^3 c$ We can add a zero term $mv_i \int f(\mathbf{r}, \mathbf{c}, t) (\mathbf{c} - \mathbf{v}) \mathrm{d}^3 c$

Force in *i* direction

$$= -\int \int_{(S)} f(\mathbf{r}, \mathbf{c}, t) m(c_i - v_i) (\mathbf{c} - \mathbf{v}) \cdot d\mathbf{S} d^3 c$$
$$= -\int P_{i\nu} dS_{\nu}$$

 $J_{(S)}$

Continuity equations

★ Total energy that enters the commoving volume:
$$\frac{dE}{dt} = -\int \int_{(S)} f(\mathbf{r}, \mathbf{c}, t) \frac{mc^2}{2} (\mathbf{c} - \mathbf{v}) \cdot d\mathbf{S} d^3 c$$

$$c^2 = (\mathbf{c} - \mathbf{v})^2 + 2(\mathbf{c} - \mathbf{v}) \cdot \mathbf{v} + v^2$$

$$q_i = \frac{m}{2} \int f(\mathbf{r}, \mathbf{c}, t) (\mathbf{c} - \mathbf{v})^2 (c_i - v_i) d^3 c, \quad P_{ik}(\mathbf{r}, t) = m \int f(\mathbf{r}, \mathbf{c}, t) (c_i - v_i) (c_k - v_k) d^3 c$$

$$= -\int_{(S)} \mathbf{q} \cdot d\mathbf{S} - \int_{(S)} v_i P_{ik} \cdot dS_k d^3 c$$

Heat flux

Mechanical work per unit time done by external gas

We get 1st law of thermodynamics!

Collision frequency

 $\Delta \mathcal{V}_2 = \sigma |\mathbf{g}| \Delta t$

 $|\mathbf{g}|\Delta t$

 σ

- ***** Relative velocity $\mathbf{g} = \mathbf{c}_2 \mathbf{c}_1$
- Total collision cross-section σ
- * Number of projectiles with velocities in the interval d^3c_2 : $\Delta N_2 = f(\mathbf{c}_2) \Delta \mathcal{V}_2 d^3c_2$

- Number of collisions: $\Delta N_{\text{coll}} = \Delta N_1 \Delta N_2$
- Collision frequency

$$\nu = \frac{1}{N} \frac{\Delta N_{\text{coll}}}{\Delta t} = \frac{\sigma}{n} \iint f(\mathbf{c}_1) f(\mathbf{c}_2) |\mathbf{c}_2 - \mathbf{c}_1| \, \mathrm{d}^3 c_1 \mathrm{d}^3 c_2$$

Collision frequency

Collision frequency

$$\nu = \frac{1}{N} \frac{\Delta N_{\text{coll}}}{\Delta t} = \frac{\sigma}{n} \iint f(\mathbf{c}_1) f(\mathbf{c}_2) |\mathbf{c}_2 - \mathbf{c}_1| \, \mathrm{d}^3 c_1 \mathrm{d}^3 c_2$$

In thermal equilibrium:

► New coordinates
$$\mathbf{C} = \frac{\mathbf{c}_1 + \mathbf{c}_2}{2}$$
 and $\mathbf{g} = \mathbf{c}_2 - \mathbf{c}_1$ (Jacobian = 1)
 $\nu = n\sigma \left(\frac{m}{2\pi k_{\rm B}T}\right)^3 \int \exp\left(-\frac{mC^2}{k_{\rm B}T}\right) \mathrm{d}^3 C \int \exp\left(-\frac{mg^2}{4k_{\rm B}T}\right) g \,\mathrm{d}^3 g$
 $= 4n\sigma \sqrt{\frac{k_{\rm B}T}{\pi m}} \sim 10^{-10} \,\mathrm{s}^{-1}$ for atmosphere
molecules
 \bigstar Mean free path $\ell = \frac{\langle |\mathbf{c}| \rangle}{\nu} = \frac{1}{\sqrt{2}n\sigma} \sim 10^{-7} \,\mathrm{m}$ for atmosphere
molecules

Chapter 2

Distribution functions

Phase space

- $\clubsuit \text{ Hamilton's equations: } \frac{\mathrm{d}q_i}{\mathrm{d}t} = \frac{\partial H}{\partial p_i}, \ \frac{\mathrm{d}p_i}{\mathrm{d}t} = -\frac{\partial H}{\partial q_i}$
- **\clubsuit** Equation of motion for any function f(q, p):

$$\frac{\mathrm{d}f}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \{H, f\}$$
Poisson bracket: $\{H, f\} = \sum_{k} \left(\frac{\partial H}{\partial p_{k}} \frac{\partial f}{\partial q_{k}} - \frac{\partial H}{\partial q_{k}} \frac{\partial f}{\partial p_{k}}\right)$

State vector $\Gamma = (q_{1}, p_{1}, q_{2}, p_{2}, ...)$

 $\stackrel{d\Gamma}{=} \{H, \Gamma\} - \text{flux vector (generalized velocity of the system in the phase space)}$

Phase space

★ Let's introduce a Gibbs' ensemble of systems, described by a probability density function $F(\Gamma, t)$, given in a Γ-space: $\int F(\Gamma, t) \, d\Gamma = 1$

From the continuity equation we get:

$$\frac{\partial F}{\partial t} = -\nabla_{\Gamma} \cdot \left(F \frac{\mathrm{d}\Gamma}{\mathrm{d}t} \right)$$

$$\frac{\partial F(\mathbf{r})}{\partial t} + \nabla (F \cdot \dot{\mathbf{r}}) = 0$$

After some manipulations:

$$\frac{\partial F}{\partial t} = -\{H, F\} - \text{Liouville equation}$$

Reduced distributions

• Our initially defined distribution function $F(\Gamma, t)$

Symmetrized distribution function

$$\widehat{F}(\Gamma, t) = \frac{1}{N!} \sum_{P} F(P\Gamma, t)$$
 Sum over all permutations

all

Reduced n-particle distribution function $F^{(n)}(1,\ldots,n,t) \equiv F^{(n)}(\mathbf{r}_1,\mathbf{p}_1,\ldots,\mathbf{r}_n,\mathbf{p}_n,t)$ $= \frac{N!}{(N-n)!} \int \hat{F}(\Gamma, t) \, \mathrm{d}^{3} r_{n+1} \mathrm{d}^{3} p_{n+1} \dots \mathrm{d}^{3} r_{N} \mathrm{d}^{3} p_{N}$ ➤ Normalization: $\int F^{(n)}(1, ..., n, t) d1 d2 ... dn = \frac{N!}{(N-n)!}$ > Relation to 1-particle velocity distribution: $f(\mathbf{r}, \mathbf{c}, t) = m^3 F^{(1)}(\mathbf{r}, \mathbf{p}, t)$

►
$$\int F^{(1)}(\mathbf{r}, \mathbf{p}) d^3 p = \frac{N}{v} = n$$

 $\succ \int F^{(2)}(\mathbf{r}_1, \mathbf{p}_1, \mathbf{r}_2, \mathbf{p}_2) \, \mathrm{d}^3 p_1 \mathrm{d}^3 p_2 = \frac{N(N-1)}{N^2} \xrightarrow{N \gg 1}{N^2} = n^2$

Average observables

* The ensemble-average of some quantity
$$A(\Gamma)$$
 is
 $\langle A \rangle(t) = \int F(\Gamma, t) A(\Gamma) \, d\Gamma$

We will define 3 major types of observables:

- Global observables
- Densities
- Fluxes

Global observables

Give single value characterizing some properties of the whole system, e.g. kinetic and potential energies

$$\text{Kinetic energy } K = \sum_{a} \frac{p_{a}^{2}}{2m}$$

$$\text{Kinetic energy } K = \int_{a} F(\Gamma, t) \sum_{a} \frac{p_{a}^{2}}{2m} \, \mathrm{d}\Gamma = N \int_{a} \widehat{F}(\Gamma, t) \frac{p_{1}^{2}}{2m} \, \mathrm{d}\Gamma$$

$$= \int_{a} F^{(1)}(\mathbf{r}_{1}, \mathbf{p}_{1}, t) \frac{p_{1}^{2}}{2m} \, \mathrm{d}^{3}r_{1} \mathrm{d}^{3}p_{1}$$

• Potential energy $U = \sum_{a < b} \phi(\mathbf{r}_a - \mathbf{r}_b)$

$$\langle U \rangle = \int F(\Gamma, t) \sum_{a < b} \phi(\mathbf{r}_a - \mathbf{r}_b) \, \mathrm{d}\Gamma$$
$$= \int F^{(2)}(1, 2, t) \phi(\mathbf{r}_1 - \mathbf{r}_2) \, \mathrm{d}1 \, \mathrm{d}2$$

Densities

* For point particles, density of quantity φ (e.g. mass, momentum, energy) is

$$\rho_{\varphi}(\mathbf{r}) = \sum_{a} \varphi(\mathbf{r}_{a}, \mathbf{p}_{a}) \delta(\mathbf{r} - \mathbf{r}_{a})$$

* The phase-space average then is $\langle \rho_{\varphi} \rangle(\mathbf{r}, t) = \int F^{(1)}(\mathbf{r}, \mathbf{p}_1, t) \varphi(\mathbf{r}, \mathbf{p}_1) d^3 p_1$

If density field φ is associated with a conserved quantity, we expect that flux field exists and satisfies the conservation equation

$$\frac{\partial \rho_{\varphi}}{\partial t} + \nabla \cdot \mathbf{J}_{\varphi} = 0$$

$$\langle \mathbf{J} \rangle (\mathbf{r}, t) = \int F^{(1)}(\mathbf{r}, \mathbf{p}_1, t) \mathbf{p}_1 \mathrm{d}^3 p_1$$

Momentum density

Momentum

$$\frac{\partial J_i}{\partial t} = \frac{\partial}{\partial t} \sum_a p_{ai} \delta(\mathbf{r} - \mathbf{r}_a)$$
$$= \sum_a \dot{p}_{ai} \delta(\mathbf{r} - \mathbf{r}_a) - \sum_a p_{ai} \delta'(\mathbf{r} - \mathbf{r}_a) \dot{\mathbf{r}}_a = -\nabla_k P_{ik}$$
$$= f_{ai} = \sum_{b \neq a} f_i^{ab} - \text{force acting on } a^{\text{th}} \text{ particle}$$

Components of stress tensor:

$$P_{ik} = \sum_{a} mc_{ai}c_{ak}\delta(\mathbf{r} - \mathbf{r}_{a}) + \frac{1}{2}\sum_{\substack{a,b\\a\neq b}} f_{k}^{ab} \int_{\mathbf{r}_{a}}^{\mathbf{r}_{b}} \delta(\mathbf{r} - \mathbf{s}) \, \mathrm{d}s_{i}$$

Kinetic transfer of
momentum through the
surface

$$P_{ik} = \sum_{a} mc_{ai}c_{ak}\delta(\mathbf{r} - \mathbf{r}_{a}) + \frac{1}{2}\sum_{\substack{a,b\\a\neq b}} f_{k}^{ab} \int_{\mathbf{r}_{a}}^{\mathbf{r}_{b}} \delta(\mathbf{r} - \mathbf{s}) \, \mathrm{d}s_{i}$$

In homogeneous system, stress tensor can be averaged in space:

$$P_{ik} = \frac{1}{\mathcal{V}} \int P_{ij} \, \mathrm{d}^3 r = \frac{1}{\mathcal{V}} \left[\sum_{a} mc_{ai} c_{ak} + \frac{1}{2} \sum_{\substack{a,b \\ a \neq b}} f_k^{ab} r_i^{ab} \right]$$

Pressure:

$$p = \frac{1}{3}P_{ii} = \frac{1}{3\mathcal{V}} \left[\sum_{a} m\mathbf{c}_{a}^{2} + \frac{1}{2} \sum_{\substack{a,b\\a\neq b}} \mathbf{f}^{ab} \cdot \mathbf{r}^{ab} \right]$$

Energy \blacktriangleright Density: $\rho_e = \sum \frac{p_a^2}{2m} \delta(\mathbf{r} - \mathbf{r}_a) + \sum \phi(\mathbf{r}_a - \mathbf{r}_b) \frac{\delta(\mathbf{r} - \mathbf{r}_a) + \delta(\mathbf{r} - \mathbf{r}_b)}{2}$ ➢ Flux: $\mathbf{J}_e = \sum_{a} \frac{p_a^2}{2m} \mathbf{v}_a \delta(\mathbf{r} - \mathbf{r}_a) + \sum_{a < b} \phi(\mathbf{r}_a - \mathbf{r}_b) \frac{\mathbf{v}_a \delta(\mathbf{r} - \mathbf{r}_a) + \mathbf{v}_b \delta(\mathbf{r} - \mathbf{r}_b)}{2}$ Kinetic transfer of the potential energy of 2 particles Kinetic transfer of the kinetic energy + $\sum \frac{\mathbf{v}_a \cdot \mathbf{f}^{ab} - \mathbf{v}_b \mathbf{f}^{ba}}{2} \int_{-\infty}^{\mathbf{r}_b} \delta(\mathbf{r} - \mathbf{s}) \, \mathrm{d}s_i$ Collisional transfer of the kinetic energy

BBGKY hierarchy

N-particle distribution function F obeys Liouville equation

$$\frac{\partial F}{\partial t} = -\{H_N, F\},\$$

here H_N is full Hamiltonian:

$$H_N = \sum_{a=1}^N \left(\frac{p_a^2}{2m} + V(\mathbf{r}_a) \right) + \sum_{a < b}^N \phi(\mathbf{r}_a - \mathbf{r}_b)$$
$$h_0(a)$$

* What is the equation for the reduced distribution function $F^{(n)}$?

BBGKY hierarchy

Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy

$$\frac{\partial F^{(n)}}{\partial t} = -\{H_n, F^{(n)}\} - \sum_{a=1}^n \int \{\phi(a, n+1), F^{(n+1)}\} d(n+1)$$

- > Reduced Hamiltonian $H_n = \sum_{a=1}^n h_0(a) + \sum_{a < b}^n \phi(\mathbf{r}_a \mathbf{r}_b)$
- System of inter-dependent differential equations equation for F⁽ⁿ⁾ depends on F⁽ⁿ⁺¹⁾

One-particle distribution

***** BBKGY₁ equation:
$$\frac{\partial F^{(1)}}{\partial t} + \frac{\mathbf{p}_1}{m} \cdot \frac{\partial F^{(1)}}{\partial \mathbf{r}_1} + \mathbf{F}_1 \cdot \frac{\partial F^{(1)}}{\partial \mathbf{p}_1} = -\int \{\phi_{12}, F^{(2)}\} \, \mathrm{d}^3 r_2 \mathrm{d}^3 p_2$$

• In velocity representation, $f(\mathbf{r}, \mathbf{c}, t) = m^3 F^{(1)}(\mathbf{r}, \mathbf{p}, t)$

$$\frac{\partial f}{\partial t} + \mathbf{c}_1 \cdot \frac{\partial f}{\partial \mathbf{r}_1} + \frac{\mathbf{F}_1}{m} \cdot \frac{\partial f}{\partial \mathbf{c}_1} = \int \frac{\partial \phi_{12}}{\partial \mathbf{r}_{12}} \left(\frac{\partial}{\partial \mathbf{c}_1} - \frac{\partial}{\partial \mathbf{c}_2} \right) f^{(2)}(1, 2, t) \, \mathrm{d}^3 r_2 \mathrm{d}^3 c_2$$

Thermal equilibrium

In thermal equilibrium, the system is described by the Gibbs distribution function:

$$F_{\rm eq}(\Gamma) = \frac{1}{Z} \exp\left(-\frac{H(\Gamma)}{k_{\rm B}T}\right)$$

Absence of external field \rightarrow_{N} spatial homogeneity

$$H = \sum_{a=1}^{N} \frac{p_a^2}{2m} + \sum_{a < b}^{N} \phi(\mathbf{r}_a)^g$$

* 1-particle distribution is Maxwellic

$$F_{eq}^{(1)}(\mathbf{p}) = \frac{n}{(2\pi m k_B T)^{3/2}} \exp\left(-\frac{1}{2n}\right)^{1/2} \exp\left(-\frac{1}{2n}\right)^{1/2}$$

* $F_{eq}^{(2)}(\mathbf{r}_1, \mathbf{p}_1, \mathbf{r}_2, \mathbf{p}_2) = F_{eq}^{(1)}(\mathbf{p}_1)F_{eq}^{(1)}(\mathbf{p}_2)g^{(2)}(\mathbf{r}_1 - \mathbf{r}_2)$

Pair distribution function

Chapter 3

The Lorentz model for the classical transport of charges

Hypothesis

- ♦ Classical model (1905) \rightarrow no quantum effects
- Free electrons move in a medium between the fixed heavy ions
- Distribution function (F) for ions is assumed to be constant
- Electron–electron interaction is neglected
 - > Small mass \rightarrow softer scattering
 - Long-range Coulomb force is compensated by many electrons
 - > Small density (we can neglect n_e^2 term in BBGKY eq.) $_{-eE}$
- Include only 2-particle interactions
- Free flight between two collisions
- No correlations preserved

Lorentz kinetic equation

Loss term

 $\int_{\text{loss}} d^3 c \, d^3 r = -f(\mathbf{r}, \mathbf{c}, t)F(\mathbf{r}, \mathbf{c_1}, t)|\mathbf{c} - \mathbf{c_1}| \cdot b db d\psi \, d^3 c \, d^3 c_1 d^3 r$

Vdb

Gain term

$$\left(\frac{\partial f}{\partial t}\right)_{\text{loss}} d^3 c = -f(\mathbf{r}, \mathbf{c}, t)F(\mathbf{r}, \mathbf{c_1}, t)|\mathbf{c} - \mathbf{c_1}| \cdot b db d\psi d^3 c d^3 c_1$$

Analogically for the gain term:

$$\begin{pmatrix} \frac{\partial f}{\partial t} \end{pmatrix}_{gain} d^{3}c = f(\mathbf{r}, \mathbf{c}^{*}, t)F(\mathbf{r}, \mathbf{c}_{1}^{*}, t)|\mathbf{c}^{*} - \mathbf{c}_{1}^{*}| \cdot b^{*}db^{*}d\psi^{*} d^{3}c^{*} d^{3}c_{1}^{*}$$

***** Energy and angular momentum conservation imply that

$$\mathbf{c}^{*} = \mathbf{c}', \ \mathbf{c}_{1}^{*} = \mathbf{c}_{1}', \ |\mathbf{c} - \mathbf{c}_{1}| = |\mathbf{c}' - \mathbf{c}_{1}'|$$

$$\mathbf{c}' \qquad \mathbf{c}_{1} \qquad \mathbf{c}_{1}^{*} / \mathbf{c}'$$

$$\mathbf{c}^{*} = \mathbf{b}' db^{*} d\psi^{*} d^{3}\mathbf{c}^{*} d^{3}\mathbf{c}_{1}^{*} = b db d\psi d^{3}c d^{3}c_{1}$$

$$\begin{pmatrix} \frac{\partial f}{\partial t} \\ \frac{\partial f}{\partial t} \end{pmatrix}_{gain} d^{3}c = f(\mathbf{r}, \mathbf{c}', t)F(\mathbf{r}, \mathbf{c}_{1}', t)|\mathbf{c} - \mathbf{c}_{1}| \cdot b db d\psi d^{3}c d^{3}c_{1}$$

Lorentz equation

$$\frac{\partial f}{\partial t} + \mathbf{c} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{q\mathbf{E}}{m} \cdot \frac{\partial f}{\partial \mathbf{c}} = \int [f'F_1' - fF_1]|\mathbf{c} - \mathbf{c}_1| \cdot bdbd\psi d^3c_1$$

Collicional anaratan

here
$$f = f(\mathbf{r}, \mathbf{c}, t), F_1 = F(\mathbf{r}, \mathbf{c}_1, t),$$

 $f' = f(\mathbf{r}, \mathbf{c}', t), F'_1 = F(\mathbf{r}, \mathbf{c}'_1, t)$

Ion distribution function – Maxwellian:

$$F(\mathbf{r}, \mathbf{c_1}, t) = F_{\mathrm{MB}}(\mathbf{c_1}) = n_i \left(\frac{M}{2\pi k_{\mathrm{B}}T}\right)^{3/2} \exp\left(-\frac{Mc_1^2}{2k_{\mathrm{B}}T}\right)$$

• Equilibrium solution: $f(\mathbf{r}, \mathbf{c}, t) = f_{MB}(\mathbf{c})$

$$\stackrel{1}{\sim} \frac{1}{2}mc^{2} + \frac{1}{2}Mc_{1}^{2} = \frac{1}{2}mc'^{2} + \frac{1}{2}Mc_{1}'^{2}$$

$$\stackrel{I}{\rightarrow} f_{MB}(\mathbf{c})F_{MB}(\mathbf{c}_{1}) = f_{MB}(\mathbf{c}')F_{MB}(\mathbf{c}_{1}')$$

$$\stackrel{I}{\rightarrow} J[f_{MB}] = 0$$

Conservation laws

$$\int d^{3}c \ \varphi(\mathbf{c}) \cdot \left| \begin{array}{l} \frac{\partial f}{\partial t} + \mathbf{c} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{q\mathbf{E}}{m} \cdot \frac{\partial f}{\partial \mathbf{c}} = \int [f'F'_{1} - fF_{1}]|\mathbf{c} - \mathbf{c}_{1}| \cdot bdbd\psi d^{3}c_{1} \\ \text{any function of } \mathbf{c} \\ \checkmark \text{ Let's recall:} \\ \geqslant \text{ Density of } \varphi: \ \rho_{\varphi}(\mathbf{r}, t) = \int \varphi(\mathbf{c})f(\mathbf{r}, \mathbf{c}, t) d^{3}c \\ \geqslant \text{ Flux of } \varphi: \ \mathbf{J}_{\varphi}(\mathbf{r}, t) = \int \varphi(\mathbf{c})f(\mathbf{r}, \mathbf{c}, t) \mathbf{c} d^{3}c \\ \geqslant \text{ Density of } \mathbf{g} = \frac{\partial \varphi}{\partial \mathbf{c}}: \ \rho_{\mathbf{g}}(\mathbf{r}, t) = \int \frac{\partial \varphi}{\partial \mathbf{c}}f(\mathbf{r}, \mathbf{c}, t) d^{3}c \\ \Rightarrow \frac{\partial \rho_{\varphi}}{\partial t} + \nabla \cdot \mathbf{J}_{\varphi} - \frac{q\mathbf{E}}{m} \cdot \rho_{\mathbf{g}} = \int \varphi(\mathbf{c})[f'F'_{1} - fF_{1}]|\mathbf{c} - \mathbf{c}_{1}| \cdot bdbd\psi d^{3}cd^{3}c_{1} \\ \end{cases} \\ \text{Flux of } \varphi \text{ Source term} \\ \text{ (like mechanical work)} \end{array}$$

Conservation laws

$$\frac{\partial \rho_{\varphi}}{\partial t} + \nabla \cdot \mathbf{J}_{\varphi} - \frac{q\mathbf{E}}{m} \cdot \rho_{\mathbf{g}} = \int \varphi(\mathbf{c})[f'F_{1}' - fF_{1}]|\mathbf{c} - \mathbf{c}_{1}| \cdot bdbd\psi \, d^{3}cd^{3}c_{1}$$

$$\Leftrightarrow \text{ Gain term:}$$

$$A = \int \varphi(\mathbf{c})f'F_{1}'|\mathbf{c} - \mathbf{c}_{1}| \cdot bdbd\psi \, d^{3}cd^{3}c_{1},$$

$$= |\mathbf{c}^{*} - \mathbf{c}_{1}^{*}| \cdot b^{*}db^{*}d\psi^{*} \, d^{3}c^{*}d^{3}c_{1}^{*}$$

$$\text{Integration over pre-collisional parameters} \quad \text{Dummy integration } \mathbf{c}_{1}^{*}/\sqrt{\mathbf{c}^{*}}$$

$$\int \mathbf{c}^{*} \rightarrow \mathbf{c}, \, \mathbf{c}_{1}^{*} \rightarrow \mathbf{c}_{1} \, (\text{pre-collisional})$$

$$= \int \varphi(\mathbf{c}')fF_{1}|\mathbf{c} - \mathbf{c}_{1}| \cdot bdbd\psi \, d^{3}cd^{3}c_{1}$$

$$\frac{\partial \rho_{\varphi}}{\partial t} + \nabla \cdot \mathbf{J}_{\varphi} + \frac{q\mathbf{E}}{m} \cdot \rho_{\mathbf{g}} = \int [\varphi(\mathbf{c}') - \varphi(\mathbf{c})]fF_{1}|\mathbf{c} - \mathbf{c}_{1}| \cdot bdbd\psi \, d^{3}cd^{3}c_{1}$$

= 0 for collisional invariants

Conservation laws

Kinetic collision models

Rigid hard spheres

 \blacktriangleright lons: $M = \infty$, radius R, are static ($F(\mathbf{c}_1) = n_i \delta(\mathbf{c}_1)$) $\mathbf{i} \mathbf{c}' = \mathbf{c} - 2(\mathbf{c} \cdot \hat{\mathbf{n}})\hat{\mathbf{n}}$ $\triangleright b = R \sin \vartheta$ \blacktriangleright Loss term: n R $J_{-}[f] = \int fF_1 |\mathbf{c} - \mathbf{c}_1| \cdot b db d\psi d^3 c_1 = n_i R^2 |\mathbf{c}| f(\mathbf{c})$ ➤ Gain term: $J_+[f] = n_i R^2 |\mathbf{c}| \mathbb{P}f(\mathbf{c})$ Directional average: $\mathbb{P}f(\mathbf{c}) = \frac{1}{4\pi} \int f(\mathbf{r}, \mathbf{c}, t) \, \mathrm{d}^2 \hat{\mathbf{c}}$

$$\succ J[f] = n_i R^2 |\mathbf{c}| \left(\mathbb{P}f - f\right)$$

"Removes" particles at a rate $n_i R^2 |\mathbf{c}|$ and replaces them with an isotropic distribution
Kinetic collision models

- Thermalising ions (BGK model, or relaxation time approximation)
 - Electrons exchange energy with ions
 - After each collision, electrons emerge with velocities described by Maxwell distributions

$$\succ M \gg m, |\mathbf{c} - \mathbf{c}_1| \approx |\mathbf{c}|$$

- > Loss term: $J_{-}[f] = n_i R^2 |\mathbf{c}| f(\mathbf{c})$
- Solution For the Maxwellian flux $|\mathbf{c}|\hat{f}_{MB}(\mathbf{c})$, should also ensure charge conservation

>
$$J[f] = n_i R^2 c \left[\hat{f}_{\text{MB}}(\mathbf{c}) \frac{\int |\mathbf{c}'| f(\mathbf{c}') \, \mathrm{d}^3 c'}{\int |\mathbf{c}'| \hat{f}_{\text{MB}}(\mathbf{c}') \, \mathrm{d}^3 c'} - f(\mathbf{c}) \right]$$

Methods to solve Lorentz equation

- Linear response
- Frequency response
- Linear operator and eigenvalues
- Chapman–Enskog method

Linear response

$$\frac{\partial f}{\partial t} + \mathbf{c} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{q\mathbf{E}}{m} \cdot \frac{\partial f}{\partial \mathbf{c}} = \int [f'F_1' - fF_1] |\mathbf{c} - \mathbf{c}_1| \cdot b db d\psi d^3 c_1$$

↔ Weak electric field: $\mathbf{E} = \epsilon \mathbf{E}_0$, $\epsilon \ll 1$

★ We look for solution of the form: $f(\mathbf{c}) = f_{\text{MB}}(\mathbf{c})[1 + \epsilon \Phi(\mathbf{c})]$

 $\Phi(\mathbf{c}) \text{ is the response to the external electric field:}$ $\Phi(\mathbf{c}) = \phi(c) \mathbf{c} \cdot \mathbf{E}_0$

***** Terms in LE proportional to ϵ :

Linear response

$$I[\Phi] = \frac{q}{n_i k_{\rm B} T} \hat{f}_{\rm MB}(c) \,\mathbf{c} \cdot \mathbf{E}_0$$

★ Rigid hard sphere model: $I[\Phi] = \pi R^2 \hat{f}_{MB} |\mathbf{c}| (\Phi - \mathbb{P}\Phi)$ > here $\Phi(\mathbf{c}) = \phi(c) \mathbf{c} \cdot \mathbf{E}_0 \implies \mathbb{P}\Phi = 0$ due to isotropy
> Solution:

$$\phi(c) = \frac{q}{\pi R^2 n_i k_{\rm B} T c}$$

Electric current density:

$$\mathbf{J} = q \int \mathbf{c} f_{\text{MB}} [1 + \epsilon \phi(c) \, \mathbf{c} \cdot \mathbf{E}_0] \, d^3 c = q \int f_{\text{MB}}(c) \phi(c) \mathbf{c} \, \mathbf{c} \cdot \mathbf{E} \, d^3 c = \sigma \mathbf{E}$$
Conductivity
Conductivity

In isotropic system: $\sigma = \frac{1}{3}\sigma_{ii} = \frac{q}{3}\int f_{\rm MB}(c)\phi(c)c^2 d^3c = \begin{bmatrix} q^2n_e \\ \frac{q^2n_e}{3n_ik_{\rm B}T\pi R^2} \sqrt{\frac{8k_{\rm B}T}{\pi m_e}} & \text{Drude formula} \end{bmatrix}$

Frequency response

★ Time-dependent electric field: $\mathbf{E}(t) = \epsilon \mathbf{E}_{\omega} e^{-i\omega t}$ ★ Linear response: $f(\mathbf{c}, t) = f_{\text{MB}}(\mathbf{c}) [1 + \epsilon \Phi_{\omega}(\mathbf{c}) e^{-i\omega t}]$

• Plugging into LE:

$$I[\Phi_{\omega}] - \frac{\mathrm{i}\omega}{n_{i}} \hat{f}_{\mathrm{MB}} \Phi_{\omega} = \frac{q}{n_{i}k_{\mathrm{B}}T} \hat{f}_{\mathrm{MB}} \mathbf{c} \cdot \mathbf{E}_{0}$$
• $\Phi_{\omega}(\mathbf{c}) = \phi_{\omega}(c) \mathbf{c} \cdot \mathbf{E}_{\omega}$

Solution
Electric current: $J = (\sigma_0 + i\sigma_1) E_{\omega} e^{-i\omega t} = \sigma_{\omega} E_{\omega} e^{-i(\omega t - \alpha)}$ Complex conductivity Phase delay $\alpha = \arctan^{-1} e^{-i\omega t}$

$$\sigma_{\omega} = \sqrt{\sigma_0^2 + \sigma_1^2}$$

Relaxation dynamics

No external electric field

- Initial distribution close to, but different from Maxwellian and non-uniform
- ✤ Fourier transformation of initial distribution in spatial coordinates → perturbation for single mode: $f(\mathbf{r}, \mathbf{c}, t) = f_{\text{MB}}(\mathbf{c}) [1 + \Phi_{\mathbf{k}}(\mathbf{c}, t) e^{i\mathbf{k} \cdot \mathbf{r}}]$

Plugging into LE:

$$f_{\rm MB}\frac{\partial\Phi_{\bf k}}{\partial t} = -L_{\bf k}\Phi_{\bf k},$$

here operator $L_{\mathbf{k}}\Phi = n_e n_i I[\Phi] + \mathbf{i}\mathbf{k} \cdot \mathbf{c} f_{\mathrm{MB}}\Phi$ $\mathbf{\Phi}_{\mathbf{k}}(\mathbf{c},t) = \Phi_{\mathbf{k}}(\mathbf{c})e^{-\lambda t} \implies L_{\mathbf{k}}\Phi_{\mathbf{k}} = \lambda f_{\mathrm{MB}}\Phi_{\mathbf{k}}$

Operator *L*_k

- At longer times, relaxation towards the thermal equilibrium is determined by the smallest eigenvalue
- Let's analyze the case of small wavevectors: $L_{\mathbf{k}} \Phi = n_e n_i I[\Phi] + \mathbf{i} \epsilon \mathbf{k} \cdot \mathbf{c} f_{\mathbf{MB}} \Phi, \quad \epsilon \ll 1$ $= L_0 \Phi = \mathbf{i} \epsilon L_1 \Phi$

• Properties of operator L_0 :

- > Linear, Hermitian ($\lambda = \lambda^*$), positive semi-definite ($\lambda \ge 0$)
- \succ The smallest eigenvalue $\lambda=0$ corresponds to the eigenfunction $\Phi_0=1$

• For the smallest eigenvalue of $L_{\mathbf{k}} = L_0 + i\epsilon L_1$:

$$\lambda = 0 + \epsilon \lambda_1 + \epsilon^2 \lambda_2 + \cdots$$

$$\blacktriangleright \Phi_{\mathbf{k}} = 1 + \epsilon \Phi_1 + \epsilon^2 \Phi_2 + \cdots$$

Diffusive behavior

$$\bigstar \lambda = \left(\frac{k_B T \sigma}{n_e q^2}\right) k^2$$

Solution Set the set of the set

Chapman–Enskog method

- A method to obtain hydrodynamic equations by time scale separation
- ✤ In the hydrodynamic regime, f depends on c, r and t not separately, but via $n(\mathbf{r}, t)$: $f(\mathbf{r}, \mathbf{c}, t) = h(\mathbf{c}; n(\mathbf{r}, t))$

***** Expand h as power series: $h = h_0 + \epsilon h_1 + \epsilon^2 h_2 + \cdots$ We also assume that
 E and ∇n are first-order
 in ϵ

Introducing time scales:

 $t_0 = t$, $t_1 = \epsilon t$, $t_2 = \epsilon^2 t$, .

For very small t, $t_1 = t_2 = 0$, and h depends only on t_0

> At larger times, stationary state for the t_0 timescale is reached, and h starts to depend on t_1 , etc.

Chapman-Enskog method

$$\stackrel{\bullet}{\leftarrow} n = n(\mathbf{r}, t_0, t_1, t_2, \dots)$$

$$\stackrel{\bullet}{\longrightarrow} \quad \frac{\partial n}{\partial t} \xrightarrow{\rightarrow} \frac{\partial n}{\partial t_0} + \epsilon \frac{\partial n}{\partial t_1} + \epsilon^2 \frac{\partial n}{\partial t_2} + \cdots$$

$$\frac{\partial f}{\partial t} + \mathbf{c} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{q\mathbf{E}}{m} \cdot \frac{\partial f}{\partial \mathbf{c}} = \int [f'F_1' - fF_1] |\mathbf{c} - \mathbf{c}_1| \cdot b db d\psi d^3 c_1$$

★ Zeroth-order in
$$\epsilon$$
:
$$\frac{\partial h_0}{\partial n} \frac{\partial n}{\partial t_0} = \int [h'_0 F'_1 - h_0 F_1] |\mathbf{c} - \mathbf{c}_1| \cdot b db d\psi d^3 c_1$$

$$\Rightarrow \text{ Integral over } d^3 c \text{ is equal to } 0 \implies \frac{\partial n}{\partial t_0} = 0$$

$$\Rightarrow h_0 = n \hat{f}_{\text{MB}} \qquad n = n(\mathbf{r}, t_1, t_2, ...)$$

Chapman–Enskog method

$$\frac{\partial f}{\partial t} + \mathbf{c} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{q\mathbf{E}}{m} \cdot \frac{\partial f}{\partial \mathbf{c}} = \int [f'F_1' - fF_1] |\mathbf{c} - \mathbf{c}_1| \cdot b db d\psi d^3 c_1$$

• First-order in ϵ : $\frac{\partial h_1}{\partial n} \frac{\partial n}{\partial t_0} + \frac{\partial h_0}{\partial n} \frac{\partial n}{\partial t_1} + \mathbf{c} \cdot \nabla h_0 + \frac{q \mathbf{E}}{m} \cdot \frac{\partial h_0}{\partial \mathbf{c}}$ $= \int [h_1'F_1' - h_1F_1] |\mathbf{c} - \mathbf{c}_1| \cdot b db d\psi d^3 c_1$ > Integral over d^3c is equal to $0 \implies \frac{\partial n}{\partial t_1} = 0$ $\succ h_1 = h_0 \Phi$ $n = n(\mathbf{r}, t_2, ...)$ $I [\Phi] = \frac{\hat{f}_{MB}(c)}{k_{B}T} \mathbf{c} \cdot \left[\frac{q\mathbf{E}}{m} - \frac{k_{B}T\nabla n}{nn_{i}}\right]$ Density evolves at the slowest time scale! Eq. of the same form as we had before for linear response

Chapman–Enskog method

$$\frac{\partial f}{\partial t} + \mathbf{c} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{q\mathbf{E}}{m} \cdot \frac{\partial f}{\partial \mathbf{c}} = \int [f'F_1' - fF_1]|\mathbf{c} - \mathbf{c}_1| \cdot bdbd\psi d^3c_1$$

Second-order in ϵ : $\frac{\partial h_2}{\partial n} \frac{\partial n}{\partial t_0} + \frac{\partial h_1}{\partial n} \frac{\partial n}{\partial t_1} + \frac{\partial h_0}{\partial n} \frac{\partial n}{\partial t_2} + \mathbf{c} \cdot \nabla h_1 + \frac{q\mathbf{E}}{m} \cdot \frac{\partial h_1}{\partial \mathbf{c}}$ $= \int [h'_2 F'_1 - h_2 F_1] |\mathbf{c} - \mathbf{c}_1| \cdot b db d\psi d^3 c_1$ Integral over d³c is equal to 0 ⇒ $\frac{\partial n}{\partial t_2} + \nabla \int \mathbf{c} h_1 d^3 c = 0$ • q

$$\geq \frac{\partial \rho}{\partial t_2} + \nabla \mathbf{J} = 0$$

$$\geq \mathbf{J} = \sigma \mathbf{E} - D \nabla \rho \implies \frac{\partial \rho}{\partial t_2} + \nabla (\sigma \mathbf{E}) = D \nabla^2 \rho$$

Chapter 4

The Boltzmann equation for dilute gases

The Boltzmann equation

- Formulated in 1872
- Describes evolution of classical gases
- Explains:
 - Origin of the irreversible behavior of macroscopic systems
 - Relates the macroscopic coefficients (viscosity, thermal conductivity, diffusion coefficient) to the interatomic interactions
- Valid for dilute gas

The Boltzmann equation

- Dilute gas:
 - $\succ N$ molecules in a volume \mathcal{V} , density $n = \frac{N}{\mathcal{V}}$
 - > Molecules interact via potential with range r_0
 - \succ Cross-section $\sigma \sim r_0^2$
 - ➤ Fraction of volume occupied by all molecules (assuming them to be spheres of radius r₀) is $\phi = \frac{4}{3}\pi n r_0^3 \ll 1$
 - > Transport coefficients are proportional to the mean free path $\ell \sim \frac{1}{n\sigma} \sim \frac{1}{nr_0^2}$

Number of molecules within the mean

so that statistical description by using

free path volume $N_{\ell} = n\ell^3 \gg 1$,

distribution functions is valid

In the atmosphere under normal conditions:

• $n = 2,7 \cdot 10^{25} \text{ m}^{-3}$

$$r_0 \sim 1 \text{ Å}$$

• $\ell \sim 8 \cdot 10^{-8} \text{ m}$

•
$$\phi \sim 10^{-4}$$

• $N_{\ell} \sim 1.4 \cdot 10^4$

***** Boltzmann–Grad limit: $r_0 \rightarrow 0$, $n \rightarrow \infty$ while \mathcal{V} is finite

Assumptions

- Colliding particles are statistically independent
 - No re-collisions or pre-collisional correlations

BBKGY₁ equation:

$$\frac{\partial f}{\partial t} + \mathbf{c}_1 \cdot \frac{\partial f}{\partial \mathbf{r}_1} + \frac{\mathbf{F}_1}{m} \cdot \frac{\partial f}{\partial \mathbf{c}_1} = \int \frac{\partial \phi_{12}}{\partial \mathbf{r}_{12}} \left(\frac{\partial}{\partial \mathbf{c}_1} - \frac{\partial}{\partial \mathbf{c}_2} \right) f^{(2)}(1,2,t) \, \mathrm{d}^3 r_2 \mathrm{d}^3 c_2$$

Molecular chaos hypothesis $f^{(2)}(\mathbf{c}_1, \mathbf{c}_2)_{\text{precoll}} = f(\mathbf{c}_1)f(\mathbf{c}_2)$

All derived equation are valid on the mesoscale

- \succ Time and length scales \geq mean free time & path
- Duration of the collision is much shorter
- No effect of the external forces during the collision

Boltzmann kinetic equation

Derivation similar to that of the Lorentz equation, but now particle collide between themselves and not with (almost) stationary ions

$$\frac{\partial f}{\partial t} + \mathbf{c} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{\mathbf{F}}{m} \cdot \frac{\partial f}{\partial \mathbf{c}} = \int [f'f_1' - ff_1] |\mathbf{g}| \cdot b db d\psi d^3 c_1$$

here
$$f = f(\mathbf{r}, \mathbf{c}, t), f_1 = f(\mathbf{r}, \mathbf{c_1}, t),$$

 $f' = f(\mathbf{r}, \mathbf{c}', t), f_1' = f(\mathbf{r}, \mathbf{c_1}', t)$
 $\mathbf{g} = \mathbf{c} - \mathbf{c_1}$

Collisional operator J[f, f]

Hard sphere model

• Molecules are hard spheres of radius r_0

- > They meet at a distance $D = 2r_0$
- From the energy and momentum conservation laws:

$$\mathbf{c}' = \mathbf{c} - \left[(\mathbf{c} - \mathbf{c}_1) \cdot \hat{\mathbf{n}} \right] \hat{\mathbf{n}}$$
$$\mathbf{c}' = \mathbf{c} - \left[(\mathbf{c} - \mathbf{c}_1) \cdot \hat{\mathbf{n}} \right] \hat{\mathbf{n}}$$

$$\mathbf{c}_1' = \mathbf{c}_1 - \left[(\mathbf{c} - \mathbf{c}_1) \cdot \hat{\mathbf{n}} \right] \hat{\mathbf{n}}$$

Post-collisional relative velocity:

$$\mathbf{g}' = \mathbf{g} - 2(\mathbf{g} \cdot \widehat{\mathbf{n}}) \,\widehat{\mathbf{n}}$$

 $> |\mathbf{g}| \cdot b db d\psi = D^2 |\mathbf{g}| \sin \vartheta \cos \vartheta \, d\vartheta d\psi = D^2 (\mathbf{g} \cdot \hat{\mathbf{n}}) \, d^2 \hat{\mathbf{n}}$

$$\frac{\partial f}{\partial t} + \mathbf{c} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{\mathbf{F}}{m} \cdot \frac{\partial f}{\partial \mathbf{c}} = D^2 \int [f' f_1' - f f_1] (\mathbf{g} \cdot \hat{\mathbf{n}}) \Theta(\mathbf{g} \cdot \hat{\mathbf{n}}) \, \mathrm{d}^2 \hat{\mathbf{n}} \mathrm{d}^3 c_1$$

Conservation laws

Т

$$\int d^{3}c \ \varphi(\mathbf{c}) \cdot \left| \begin{array}{l} \frac{\partial f}{\partial t} + \mathbf{c} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{q\mathbf{E}}{m} \cdot \frac{\partial f}{\partial \mathbf{c}} = \int [f'F_{1}' - fF_{1}]|\mathbf{c} - \mathbf{c}_{1}| \cdot bdbd\psi d^{3}c_{1} \\ \clubsuit \text{ Let's recall:} \\ & \searrow \text{ Density of } \varphi: \ \rho_{\varphi}(\mathbf{r}, t) = \int \varphi(\mathbf{c})f(\mathbf{r}, \mathbf{c}, t) d^{3}c \\ & \searrow \text{ Flux of } \varphi: \ \mathbf{J}_{\varphi}(\mathbf{r}, t) = \int \varphi(\mathbf{c})f(\mathbf{r}, \mathbf{c}, t)\mathbf{c} d^{3}c \\ & \searrow \text{ Source due to external force: } S_{\varphi}(\mathbf{r}, t) = \int \frac{\mathbf{F}}{m} \cdot \frac{\partial \varphi}{\partial \mathbf{c}} f(\mathbf{r}, \mathbf{c}, t) d^{3}c \\ & \swarrow \frac{\partial \rho_{w}}{\partial \mathbf{c}} \int f(\mathbf{r}, \mathbf{c}, t) d^{3}c \\ & = \int \frac{\partial \rho_{w}}{\partial \mathbf{c}} \int f(\mathbf{r}, \mathbf{c}, t) d^{3}c \\ & = \int \frac{\partial \rho_{w}}{\partial \mathbf{c}} \int f(\mathbf{r}, \mathbf{c}, t) d^{3}c \\ & = \int \frac{\partial \rho_{w}}{\partial \mathbf{c}} \int f(\mathbf{r}, \mathbf{c}, t) d^{3}c \\ & = \int \frac{\partial \rho_{w}}{\partial \mathbf{c}} \int \frac{\partial \rho_{w}}{\partial$$

$$\frac{\partial \rho_{\varphi}}{\partial t} + \nabla \cdot \mathbf{J}_{\varphi} - S_{\varphi} = \int \varphi(\mathbf{c}) [f'f_1' - ff_1] |\mathbf{g}| \cdot b db d\psi d^3 c d^3 c_1$$

Conservation laws

$$\frac{\partial \rho_{\varphi}}{\partial t} + \nabla \cdot \mathbf{J}_{\varphi} - S_{\varphi} = \int \varphi(\mathbf{c}) [f'f_1' - ff_1] |\mathbf{g}| \cdot b db d\psi d^3 c d^3 c_1$$

$$= \frac{1}{2} \int (\varphi(\mathbf{c}) + \varphi(\mathbf{c}_{1})) [f'f'_{1} - ff_{1}] |\mathbf{g}| \cdot b db d\psi d^{3}c d^{3}c_{1}$$
Relabel variables: $\mathbf{c} \leftrightarrow \mathbf{c}'$ and $\mathbf{c}_{1} \leftrightarrow \mathbf{c}'_{1}$
Now ' denote post-collisional velocities
$$= \frac{1}{2} \int (\varphi(\mathbf{c}') + \varphi(\mathbf{c}'_{1})) [ff_{1} - f'f'_{1}] |\mathbf{g}'| \cdot b' db' d\psi' d^{3}c' d^{3}c'_{1}$$

$$= |\mathbf{g}| \cdot b db d\psi d^{3}c d^{3}c_{1}$$

$$= \frac{1}{4} \int (\varphi + \varphi_{1} - \varphi' - \varphi'_{1}) [f'f'_{1} - ff_{1}] |\mathbf{g}'| \cdot b' db' d\psi' d^{3}c' d^{3}c'_{1}$$
Re-do the same trick
$$= \frac{1}{2} \int (\varphi' + \varphi'_{1} - \varphi - \varphi_{1}) ff_{1} |\mathbf{g}'| \cdot b' db' d\psi' d^{3}c' d^{3}c'_{1}$$

$$= 0 \text{ for collisional invariants}$$

Conservation laws

Equations are not closed! (P_{ik} and **q** are not specified)

$$\frac{\partial \rho_{\varphi}}{\partial t} + \nabla \cdot \mathbf{J}_{\varphi} - S_{\varphi} = \frac{1}{2} \int (\varphi' + \varphi'_{1} - \varphi - \varphi_{1}) ff_{1} |\mathbf{g}'| \cdot b' db' d\psi' d^{3}c' d^{3}c'_{1} \\ \mathbf{I}_{\varphi}(\mathbf{r}, t) = \int \varphi(\mathbf{c}) f(\mathbf{r}, \mathbf{c}, t) \mathbf{c} d^{3}c \\ \mathbf{I}_{\varphi}(\mathbf{r}, t) = \int \varphi(\mathbf{c}) f(\mathbf{r}, \mathbf{c}, t) \mathbf{c} d^{3}c \\ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0 \\ \mathbf{v} \text{ Momentum } (\varphi = mc): \\ \mathbf{v} \tilde{P}_{ik}(\mathbf{r}, t) = m \int f(\mathbf{r}, \mathbf{c}, t) c_{i}c_{k} d^{3}c = P_{ik} + \rho v_{i}v_{k} \\ \text{ Stress tensor } P_{ik}(\mathbf{r}, t) = m \int f(\mathbf{r}, \mathbf{c}, t)(c_{i} - v_{i})(c_{k} - v_{k}) d^{3}c \\ \frac{\partial}{\partial t} (\rho v_{i}) + \frac{\partial}{\partial x_{k}} (P_{ik} + \rho v_{i}v_{k}) - \rho \frac{F_{i}}{m} = 0 \\ \mathbf{v} \text{ Energy } (\varphi = mc^{2}/2): \quad \text{Heat flux } q_{i} = \frac{m}{2} \int f(\mathbf{r}, \mathbf{c}, t)(\mathbf{c} - \mathbf{v})^{2}(c_{i} - v_{i}) d^{3}c \\ \frac{3}{2} k_{B} \rho \left(\frac{\partial T}{\partial t} + (\mathbf{v} \cdot \nabla) T \right) = -\nabla \cdot \mathbf{q} - P_{ik} \frac{\partial v_{i}}{\partial x_{k}} = 0 \end{aligned}$$

H-theorem

Let's divide 1-particle phase space into parcels of size Δ

• Number of particles in the k^{th} parcel is $N_k = f_k \Delta$

♦ Total number of configurations is $\Omega = \frac{N!}{N_1!N_2!\cdots N_k!\cdots}$, here $N = \sum_{k} N_{k}$

Entropy of such macroscopic state is

$$S = k_{\rm B} \ln \Omega \overset{N \gg 1}{\simeq} -k_{\rm B} \sum_{k} N_{k} \ln \frac{N_{k}}{N}$$
$$\simeq -k_{\rm B} \int f(\mathbf{r}, \mathbf{c}) \ln \frac{f(\mathbf{r}, \mathbf{c})\Delta}{N} \, \mathrm{d}^{3}r \mathrm{d}^{3}c$$

H-theorem

For homogeneous gas we can define the functional

$$H[f](t) = \int f(\mathbf{c}, t) \ln \frac{f(\mathbf{c}, t)}{f_0} \, \mathrm{d}^3 c$$

From the Boltzmann equation we obtain:

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \int \left[\ln \frac{f(\mathbf{c})}{f_0} + 1 \right] \frac{\partial f}{\partial t} \, \mathrm{d}^3 c$$
$$= -\int \frac{\left[\ln(ff_1) - \ln(f'f_1') \right] \left[ff_1 - f'f_1' \right]}{\mathrm{d}t} \, \mathrm{d}^3 c \, \mathrm{d}^3$$

• It can be proven that lower boundary exists $\frac{1}{dt} \leq 0$

Steady state:
$$\frac{dH}{dt} = 0 \implies ff_1 = f'f_1'$$

 \succ Steady-state distribution f should be collisional-invariant

H-theorem

• We can expand $\ln f_{st}(\mathbf{c})$ in terms of collisional invariants:

$$\ln f_{\rm st} = \alpha m + \boldsymbol{\beta} \cdot m \mathbf{c} + \gamma \frac{mc^2}{2}$$

We obtain Maxwell-Boltzmann distribution:

$$f_{\rm st}(\mathbf{c}) = n \left(\frac{m}{2\pi k_{\rm B}T}\right)^{3/2} \exp\left(-\frac{m(\mathbf{c}-\mathbf{v})^2}{2k_{\rm B}T}\right)$$

How does irreversible evolution towards MB distribution appear, when we start from the time-reversible equations of motion?

Irreversibility problem

- Poincaré recurrence theorem:
 - After a long but finite time any classical system obeying microscopic reversible dynamics will return close to any initial condition
 - The recurrence time $\sim 2^N$, where N is the number of degrees of freedom
- Example: oscillator chain on a ring
 - \succ Initially, one ball is given velocity v_0

Dynamics close to equilibrium

$$\frac{\partial f}{\partial t} + \mathbf{c} \cdot \frac{\partial f}{\partial \mathbf{r}} + \frac{\mathbf{F}}{m} \cdot \frac{\partial f}{\partial \mathbf{c}} = \int [f' f_1' - f f_1] |\mathbf{g}| \cdot b db d\psi d^3 c_1$$

Eventually, the gas state will approach thermal equilibrium. Let's study the later stage of its evolution, when it is already close to equilibrium

$$\mathbf{\bullet} f(\mathbf{c}) = f_{\text{MB}}(\mathbf{c})[1 + \Phi(\mathbf{c})]$$

$$\mathbf{\bullet} J[f, f] \approx -n^2 \int \hat{f}_{\text{MB}} \hat{f}_{\text{MB1}}[\Phi + \Phi_1 - \Phi' - \Phi'_1] |\mathbf{g}| \cdot b db d\psi d^3 c_1$$

⇒ $I[\Phi]$ – linear, Hermitian, positive semidefinite operator:

- > Bracket product $[\Psi, \Phi] = \int \Psi^*(\mathbf{c}) I[\Phi](\mathbf{c}) d^3c$
- $\succ [\Psi, \Phi] = [\Phi, \Psi]^*, \ [\Phi, \Phi] \ge 0$
- \succ [Ψ , Φ] = 0 if either Ψ or Φ is a collisional invariant

Eigenvalue analysis

Consider gas close to equilibrium with no external forces

✤ Perturbation for a single Fourier mode: $f(\mathbf{r}, \mathbf{c}, t) = f_{\text{MB}}(\mathbf{c}) [1 + \Phi_{\mathbf{k}}(\mathbf{c}, t) e^{i\mathbf{k} \cdot \mathbf{r}}]$ ♠ From BE:

$$f_{\rm MB} \frac{\partial \Phi_{\mathbf{k}}}{\partial t} + \mathrm{i} \mathbf{k} \cdot \mathbf{c} f_{\rm MB} \Phi_{\mathbf{k}} = -n^2 I[\Phi_{\mathbf{k}}]$$

• Linear operator $L_{\mathbf{k}} = n^2 I + \mathbf{i} \mathbf{k} \cdot \mathbf{c} f_{\mathrm{MB}}$

> Eigenvalue equation: $L_{\mathbf{k}} \Phi_{\mathbf{k},j} = -\lambda_{\mathbf{k},j} f_{\mathrm{MB}} \Phi_{\mathbf{k},j}$

$$\succ f(\mathbf{r}, \mathbf{c}, t) = f_{\text{MB}}(\mathbf{c}) \left[1 + \sum_{j} A_{\mathbf{k}, j} \Phi_{\mathbf{k}}(\mathbf{c}) e^{i\mathbf{k} \cdot \mathbf{r} - \lambda_{\mathbf{k}, j} t} \right]$$

Eigenvalue analysis

- ♦ When $\mathbf{k} = 0$, operator $L_0 = n^2 I$ is Hermitian and positive semidefinite ($\lambda \ge 0$)
- The smallest eigenvalue $\lambda_0 = 0$ corresponds to 5 different eigenfunctions (collisional invariants):

$$\blacktriangleright \Phi = \left\{ 1, c_x, c_y, c_z, \mathbf{c}^2 \right\}$$

- \blacktriangleright Each Fourier component $\Phi_{\mathbf{k}}$ will have 5 different modes
- Spectrum of the operator $L_{\mathbf{k}}$ for small $\mathbf{k} = k\hat{\mathbf{x}}$:
 - > 2 transverse modes: $\lambda_{\perp}^{(y,z)} = \nu k^2$, $\Phi = c_{y,z} + O(k)$
 - > 2 sound modes: $\lambda_{\pm} = \pm ic_s k + \Gamma k^2$, $\Phi = c_x + O(k)$
- > 1 heat mode: $\lambda_{\rm H} = D_T k^2$, $\Phi = \frac{mc^2}{2} \frac{3}{2}k_{\rm B}T + \mathcal{O}(k)$ Heat diffusion (heat conductivity) In all cases: Re $\lambda > 0$ relaxation to a homogeneous equilibrium

• In all cases: Re $\lambda > 0$ relaxation to a homogeneous equilibrium • Sound modes: $e^{ik(x \mp c_s t)}$ \Rightarrow damping longitudinal sound waves

Time scales

BGK model

- Boltzmann equation gives accurate description of gases, but is too complicated for the detailed calculations
- Any simplified description should still include irreversible evolution towards the equilibrium and preserve collisional invariants
- Bhatnagar–Gross–Krook (BGK) model:

 $J_{\text{BGK}}[f] = \nu \{ f_{\text{MB}}(\mathbf{c}; n[f], \mathbf{v}[f], T[f]) - f(\mathbf{r}, \mathbf{c}, t) \}$ $\geq n[f](\mathbf{r}, t) = \int f(\mathbf{r}, \mathbf{c}, t) d^3 c$ $\geq \mathbf{v}[f](\mathbf{r}, t) = \frac{1}{n(\mathbf{r}, t)} \int \mathbf{c} f(\mathbf{r}, \mathbf{c}, t) d^3 c$ $\geq \frac{3}{2} k_{\text{B}} T[f](\mathbf{r}, t) = \frac{1}{n(\mathbf{r}, t)} \int \frac{m(\mathbf{c} - \mathbf{v}[f])^2}{2} f(\mathbf{r}, \mathbf{c}, t) d^3 c$

Linear BGK model

★ Linear BGK operator is notably simpler
★ f(**r**, **c**, t) = f_{MB}(**c**)[1 + Φ(**c**, t)]
> n[f](t) = n₀[1 + ∫ f̂_{MB}(**c**)Φ(**c**, t) d³c]
> **v**[f](t) = n₀ ∫ f̂_{MB}(**c**)Φ(**c**, t) **c** d³c
> T[f](t) = T₀ [1 + ²/₃ ∫ f̂_{MB}(**c**)Φ(**c**, t) (
$$\frac{mc^2}{2k_BT} - \frac{3}{2}$$
) d³c]
★ Collision operator:
n₀I_{BGK}[φ] = νf̂_{MB}(**c**)Φ(**c**) - νf̂_{MB}(**c**) [∫ f̂_{MB}(**c**')Φ(**c**') d³c' + $\frac{mc}{k_BT_0} \cdot \int f̂_{MB}(c')Φ(c') c' d3c'$

$$+\frac{2}{3}\left(\frac{mc^{2}}{2k_{\rm B}T_{0}}-\frac{3}{2}\right)\int\widehat{f}_{\rm MB}(\mathbf{c}')\Phi(\mathbf{c}')\left(\frac{mc'^{2}}{2k_{\rm B}T_{0}}-\frac{3}{2}\right)\,\mathrm{d}^{3}c'$$

Hydrodynamic regime

Fourier law for the heat flux: $\mathbf{q} = -\kappa \nabla T$ Thermal conductivity
Newton's law for the stress tensor: $\mathbb{P} = p\mathbb{I} - \eta \left[(\nabla \mathbf{v}) + (\nabla \mathbf{v})^{T} - \frac{2}{3} (\nabla \cdot \mathbf{v}) \mathbb{I} \right]$ Pressure = $nk_{\mathrm{B}}T$ Shear viscosity

Conservation laws:

$$\geq \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\geq \rho \frac{\partial v_i}{\partial t} + \rho (\mathbf{v} \cdot \nabla) v_i = -\frac{\partial P_{ik}}{\partial x_k} + \rho \frac{F_i}{m} = 0$$

$$\geq \frac{3}{2} k_{\rm B} \rho \left(\frac{\partial T}{\partial t} + (\mathbf{v} \cdot \nabla) T \right) = -\nabla \cdot \mathbf{q} - m P_{ik} \frac{\partial v_i}{\partial x_k} = 0$$

Hydrodynamic equations

Perturbations (with no external forces):

$$n = n_0 + \epsilon n_1(\mathbf{r}, t)$$

$$v = \epsilon \mathbf{v}_1(\mathbf{r}, t)$$

$$T = T_0 + \epsilon T_1(\mathbf{r}, t)$$

Substituting into the conservation laws:

$$\begin{split} & \blacktriangleright \frac{\partial n_1}{\partial t} = -n_0 \nabla \cdot \mathbf{v}_1 = 0 \\ & \triangleright m n_0 \frac{\partial \mathbf{v}_1}{\partial t} = -k_B \nabla (n_0 T_1 + T_0 n_1) + \eta_0 \nabla^2 \mathbf{v}_1 \\ & \triangleright \frac{3}{2} k_B m n_0 \frac{\partial T_1}{\partial t} = \kappa_0 \nabla^2 T_1 + m p_0 \nabla \cdot \mathbf{v} = 0 \\ & \text{here } p_0 = k_B n_0 T_0, \eta_0 = \eta (n_0, T_0), \ \kappa_0 = \kappa (n_0, T_0) \\ & \clubsuit \text{ Fourier mode analysis yields:} \end{split}$$

$$\succ v = \frac{\eta_0}{mn_0} \quad \succ \Gamma = \frac{2\kappa_0}{15k_{\rm B}T} + \frac{2\eta_0}{mn_0} \quad \succ D_T = \frac{3\kappa_0}{5k_{\rm B}T} \quad \succ c_{\rm S} = \sqrt{\frac{5k_{\rm B}T}{3m}}$$

Viscosity

Viscosity: variational principle

$$\eta = \int \hat{f}_{MB}(\mathbf{c})\widehat{\Phi}(\mathbf{c})mc_x c_y \,\mathrm{d}^3 c \qquad I\left[\widehat{\Phi}\right] = \frac{\hat{f}_{MB}}{k_B T}mc_x c_y$$

Recall bracket product:

$$\eta = k_{\rm B}T \int \widehat{\Phi}(\mathbf{c}) I[\widehat{\Phi}] \, \mathrm{d}^3 c \equiv k_{\rm B}T \left[\widehat{\Phi}, \widehat{\Phi}\right]$$

★ Let's assume we can find another function Ŷ – such that [Ŷ, Ŷ] = [Ŷ, Ŷ] = m/kBT Ŷ(c) fMB(c) cxcy d³c
★ 0 ≤ kT[Ŷ – Ŷ, Ŷ – Ŷ] = -kT[Ŷ, Ŷ] + kT[Ŷ, Ŷ]
★ Polynomial ansatz
¥ = cxcy(a0 + a1c² + a2(c²)² + ···) = a0cxcy d³c
★ Polynomial ansatz
Y = cxcy(a0 + a1c² + a2(c²)² + ···) = a0cxcy d³c
A = a0cxcy d³c
Viscosity: variational principle

$$a_{0} = \frac{m}{k_{B}T} \frac{\int \hat{f}_{MB}(\mathbf{c}) c_{x}^{2} c_{y}^{2} d^{3} c}{[c_{x} c_{y}, c_{x} c_{y}]}$$

$$\mathbf{Lower bound for the viscosity:}$$

$$\eta \geq \eta_{0} = k_{B}T[\widehat{\Psi}, \widehat{\Psi}] = k_{B}Ta_{0}^{2}[c_{x} c_{y}, c_{x} c_{y}]$$

$$= \frac{4m^{2}}{k_{B}T} \frac{\left(\int \widehat{f}_{MB}(\mathbf{c}) c_{x}^{2} c_{y}^{2} d^{3} c\right)^{2}}{\int \left(\Delta c_{x} c_{y}\right)^{2} \widehat{f}_{MB}(\mathbf{c}) \widehat{f}_{MB}(\mathbf{c}_{1}) |\mathbf{g}| \cdot b db d\psi d^{3} c d^{3} c_{1} }$$

$$= c_{x}^{\prime} c_{y}^{\prime} + c_{x1}^{\prime} c_{y1}^{\prime} - c_{x} c_{y} - c_{x1} c_{y1}$$

Hard sphere model:

$$\eta_0^{(\mathrm{HS})} = \frac{5}{16D^2} \sqrt{\frac{mk_{\mathrm{B}}T}{\pi}}$$

Chapman–Enskog method

Zeroth-order

 $\geq \frac{\partial h_0}{\partial n} \frac{\partial n}{\partial t_0} + \frac{\partial h_0}{\partial \mathbf{v}} \cdot \frac{\partial \mathbf{v}}{\partial t_0} + \frac{\partial h_0}{\partial T} \frac{\partial T}{\partial t_0} = J[h_0, h_0]$ $\geq n, \mathbf{v} \text{ and } T \text{ do not depend on } t_0 \implies J[h_0, h_0] = 0$ $\geq \text{ Solution - local Maxwellian: } h_0 = f_{\text{MB}}$

First-order

$$\geq \frac{\partial h_0}{\partial t_1} + \mathbf{c} \cdot \nabla h_0 = -I[\Phi], \text{ here } h_1 = h_0 \Phi$$

Chapman-Enskog method: 1st order

✤ Heat flux and stress tensor: $\mathbf{q} = 0$, $\mathbb{P} = nk_{\mathrm{B}}T\mathbb{I}$ ✤ Conservation laws:

Euler equations for compressible gas

$$\begin{aligned} \frac{\partial \rho}{\partial t_1} + \nabla \cdot (\rho \mathbf{v}) &= 0, \\ \rho \left(\frac{\partial \mathbf{v}}{\partial t_1} + (\mathbf{v} \cdot \nabla) \mathbf{v} \right) &= -\nabla p + \rho \mathbf{F}/m, \\ \frac{3}{2} k_{\mathrm{B}} \rho \left(\frac{\partial T}{\partial t_1} + (\mathbf{v} \cdot \nabla) T \right) &= -p \nabla \cdot \mathbf{v}, \end{aligned}$$

Substitution into BE: $m^{2}I[\Phi] = -\left[\left(\frac{mC^{2}}{2} - \frac{5}{2}\right)\mathbf{C} \cdot \nabla \ln T + \frac{m}{2}\left(\mathbf{C}\mathbf{C} - \frac{C^{2}}{2}\mathbf{I}\right) \cdot \nabla \mathbf{v}\right] f_{\text{MB}}(c)$

$$\Phi = -\frac{1}{n}A(C)\mathbf{C}\cdot\nabla\ln T + \frac{1}{k_{\mathrm{B}}T}\left(\mathbf{C}\mathbf{C} - \frac{1}{3}\mathbf{I}\right):\nabla\mathbf{v}\int_{\mathrm{MB}}(C)$$

$$\Phi = -\frac{1}{n}A(C)\mathbf{C}\cdot\nabla\ln T - \frac{1}{n}B(C)\left(\mathbf{C}\mathbf{C} - \frac{C^{2}}{3}\mathbf{I}\right):\nabla\mathbf{v}$$

Chapman–Enskog method: 2nd **order**

★ Heat flux and stress tensor: **q**₁ = −κ∇T,
$$\mathbb{P}_1 = -\eta \left[(\nabla \mathbf{v}) + (\nabla \mathbf{v})^T - \frac{2}{3} (\nabla \cdot \mathbf{v}) \mathbb{I} \right]$$

Conservation laws:

$$\frac{\partial \rho}{\partial t_2} = 0, \qquad \rho \frac{\partial \mathbf{v}}{\partial t_2} = -\nabla \cdot \mathbb{P}_1, \qquad \frac{3}{2} k_{\mathrm{B}} \rho \frac{\partial T}{\partial t_2} = -\nabla \cdot \mathbf{q}_1$$

Transport coefficients:

$$\eta = \frac{k_{\rm B}T}{10} \left[B \left(\mathbf{C}\mathbf{C} - \frac{C^2}{3} \mathbb{I} \right), B \left(\mathbf{C}\mathbf{C} - \frac{C^2}{3} \mathbb{I} \right) \right]$$
$$\kappa = \frac{k_{\rm B}}{T} \left[A\mathbf{C}, A\mathbf{C} \right]$$

here A and B are functions that obey

$$I[A(C)\mathbf{C}] = -\left(\frac{mC^2}{2k_{\rm B}T} - \frac{5}{2}\right)\mathbf{C}\widehat{f}_{\rm MB}(C) \qquad I\left[B(C)\left(\mathbf{C}\mathbf{C} - \frac{C^2}{3}\mathbb{I}\right)\right] = -\frac{m}{k_{\rm B}T}\left(\mathbf{C}\mathbf{C} - \frac{C^2}{3}\mathbb{I}\right)\widehat{f}_{\rm MB}(C)$$

Hard sphere model

• Prandit number $\Pr = \frac{c_p \eta}{\kappa}$

$$c_p = \frac{k_{\rm B}}{2m} \cdot \begin{cases} 5, & \text{monoatomic gas} \\ 7, & \text{diatomic gas} \\ 8, & \text{polyatomic gas} \end{cases} \quad \text{Pr} = \frac{2}{15} \cdot \begin{cases} 5 \\ 7 \\ 8 \end{cases} \approx \begin{cases} 0.667 \\ 0.933 \\ 1.067 \end{cases}$$

Table 1.1 Prandtl number (Pr) for various gases at 20 $^{\circ}\mathrm{C}.$

 \Pr

Monoatomic gases	He	0.69
	Ne	0.66
	Ar	0.67
Diatomic gases	N_2	0.72
	O_2	0.72
	NO	0.75
	CO	0.75

Beyond BE

- Boundary conditions (collisions with the walls)
- Dense gases
 - Enskog model for hard sphere gases

$$J[f] = D^2 \int \left[f^{(2)}(\mathbf{r}, \mathbf{c}', \mathbf{r} - \mathbf{n}, \mathbf{c}_1') - \int_{c_1}^{c_2} \int_{c_1}^{c_1} \int_{c_1'}^{c_1'} \int_{c_1'}^{c_2'} -f^{(2)}(\mathbf{r}, \mathbf{c}, \mathbf{r} + \mathbf{n}, \mathbf{c}_1) \right] (\mathbf{g} \cdot \widehat{\mathbf{n}}) \Theta(\mathbf{g} \cdot \widehat{\mathbf{n}}) d^2 \widehat{\mathbf{n}} d^3 c_1$$

> Pair distribution function

$$f^{(2)}(\mathbf{r}_1, \mathbf{c}_1, \mathbf{r}_2, \mathbf{c}_2) \Big|_{|\mathbf{r}_1 - \mathbf{r}_2| = D} = f(\mathbf{r}_1, \mathbf{c}_1) f(\mathbf{r}_2, \mathbf{c}_2) \cdot \chi(|\mathbf{r}_2 - \mathbf{r}_1|)$$

 \mathbf{C}_1

Virial expansion

$$\left(\frac{\partial f}{\partial t}\right)_{\text{coll}} = J[f,f] + K[f,f,f] + L[f,f,f,f] + \cdots$$

Inelastic collisions, etc.