R. Soto, Kinetic Theory and Transport Phenomena; Exercises November 7, 2019 1

Problems

5.8. Relaxation in rotational diffusion. Consider a spherical colloidal particle that has a labelled
direction, which is immersed in a fluid. The director n experiences rotational diffusion described by the
equation

or

D =D, V2f . (1)

Expanding the distribution function in Fourier modes in 2D or in spherical harmonics in 3D, show that the

relaxation time of the slowest mode is proportional to 7. = D !. Compute the proportionality constant.

Reformulation: Solve eq. (1) in 2D or 3D.

2D:

e We can write the derivative operator V from Cartesian into polar coordinates. Then we have simply
to drop the radial dependence and we have our Vj:
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e Making the ansatz for f in terms of 7, which is just ¢:
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we get eq. (1) as
=2 _7k¢6fk 82 = —ik¢ 2 —ik¢
Y e =D Wkae =D, Zkfe (6)
k=—o00 k=—o00

e Integrating fj—: d¢ e™? gets rid of the sum and the exponent:
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giving immediately the solution
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which gives for the smallest non-constant mode m = 1 the proportionality factor 1.
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3D shortcut:

e Since we know that the Laplacian in 3D in spherical coordinates has the spherical harmonics Y,;™ (6, ¢)
as eigenfunctions
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and we simply drop the r dependence, we can write our function as
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Since the spherical harmonics fulfill the orthogonality relation

T 2
/ / Y0, )Y (0, 0)d>Q = Sppr6™™ (11)
0=0 J $=0

we can integrate over the angles and get from eq. (1)
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the simple relation
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which has the immediate solution
Fr(t) = [l (0)e= PretDt (14)

which gives for the smallest non-constant mode ¢ = 1 the proportionality factor 2.



