Protein-ligand binding volume determined by FPSA, densitometry, and NMR

Zigmantas Toleikis[§], Vladimir A. Sirotkin[†], Gediminas Skvarnavičius[§], Joana Smirnovienė[§], Christian Roumestand[‡], Daumantas Matulis[§], and Vytautas Petrauskas[§]*

- *Presenting author. *E-mail:* vytautas.petrauskas@bti.vu.lt
- [§]Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
- [†]A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russia

[‡]Centre de Biochimie Structurale, Universités de Montpellier, Montpellier, France

INTRODUCTION

We report the values of recombinant human heat shock protein 90 (Hsp90) binding volumes (i.e., the changes in protein volume associated with ligand binding), which were obtained by three independent experimental techniques – fluorescent pressure shift assay (**FPSA**), vibrating tube **densitometry**, and high-pressure **NMR**. Within the error range all techniques provide similar volumetric parameters of investigated protein-

FLUORESCENT PRESSURE SHIFT ASSAY (FPSA)

System of equations describing a protein dosing curve – the relationship between concentration of added ligand, L_t , total protein concentration, P_t , and melting pressure, p_m :

$$L_t = \left(\exp\left(-\Delta G_U/RT\right) - 1\right) \left(\frac{P_t}{2\exp\left(-\Delta G_U/RT\right)} + \frac{1}{\exp\left(-\Delta G_b/RT\right)}\right),$$

$$\Delta G_x = \Delta G_{0_x} + \Delta V_x (p_m - p_0) + \frac{\Delta \beta_x}{2} \left(p_m - p_0\right)^2; \quad x = U, b,$$
(1)

ligand systems.

LIGANDS OH O OH O ClHO H_2N HO OH Cl ICPD9 **ICPD1** ICPD91 OH O OH OH Ο Ο Ο \sim° HO OH Cl AZ3 AZ2 AZ1 N = N N = ^N OH OH OH Ο $\sqrt{\frac{1}{0}}$ HO HO HO Cl Cl \mathbf{O} ICPD47 ICPD62 Radicicol

where ΔG_0 , ΔV and $\Delta \beta$ are standard state Gibbs energy, volume and compressibility factor, respectively, and indexes *U* and *b* stand for the changes related to protein unfolding and protein-ligand binding.

DENSITOMETRY

The partial molar volume of a protein, V^0 , and the change in protein volume associated with the

HIGH-PRESSURE NMR

The K_d 's of Hsp90 α N interaction with a ligand is calculated from the chemical shift change, $\Delta\delta$, dependency on L_t and P_t :

ligand binding, ΔV_b , are calculated using equations:

$$V^{0} = \frac{M}{d_{0}} - \frac{d - d_{0}}{Cd_{0}},$$
(3)
$$V^{0}(R) = V^{0}(0) + \alpha \Delta V_{b},$$
(4)

where *M* and *C* are molecular mass and molar concentration of a protein, d_0 and *d* are densities of solvent and protein solution, respectively, and α is the fraction of ligand-bound protein:

$$\alpha = 0.5 \left(1 + R + K_d / P_t \right) - \sqrt{0.25 \left(1 + R + K_d / \right)^2 - R}.$$
(5)

Here K_d is the dissociation constant of the protein-ligand complex and $R = L_t/P_t$.

FIGURE: (a) $\Delta\delta$ of Hsp90 α N amino acids which were induced by AZ3 and ICPD9 ligands. (b) $\Delta\delta$ of Val92 as a function of ICPD9 concentration at 30 MPa, 120 MPa, and 150 MPa pressures. (c) AZ3-induced shifts in Hsp90 α N (PDB ID: 1UYL).

ACKNOWLEDGEMENT

This research was funded by the grants S-KEL-17-56 and MIP-004/2014 from the Research Council of Lithuania.

BINDING V	OLUMES
-----------	---------------

	ΔV_b (FPSA)	ΔV_b (Densitometry)	ΔV_b (NMR)	K_d
ICPD91	$-1 \pm 5 \text{ cm}^3/\text{mol}$	n.d.	n.d.	$3 \times 10^{-5} \mathrm{M}$
ICPD9	$-2 \pm 5 \text{ cm}^3/\text{mol}$	n.d.	$20 \pm 4 \text{ cm}^3/\text{mol}$	$2 \times 10^{-5} \mathrm{M}$
AZ3	$-7 \pm 6 \text{ cm}^3/\text{mol}$	$-10 \pm 3 \text{ cm}^3/\text{mol}$	$-9 \pm 4 \text{ cm}^3/\text{mol}$	$9 \times 10^{-5} \mathrm{M}$
AZ2	$-9 \pm 6 \text{ cm}^3/\text{mol}$	n.d.	n.d.	$1 \times 10^{-3} \mathrm{M}$
ICPD1	$-9 \pm 6 \text{ cm}^3/\text{mol}$	n.d.	n.d.	$3 \times 10^{-5} \mathrm{M}$
AZ1	$-21 \pm 11 \text{ cm}^3/\text{mol}$	n.d.	n.d.	$2 \times 10^{-3} \mathrm{M}$
ICPD47	$-40 \pm 14 \text{ cm}^3/\text{mol}$	$-49 \pm 5 \text{ cm}^3/\text{mol}$	n.d.	$5 \times 10^{-9} \mathrm{M}$
ICPD62	n.d.	$-50 \pm 4 \text{ cm}^3/\text{mol}$	n.d.	$2 \times 10^{-9} \mathrm{M}$
radicicol	$-170 \pm 60 \text{ cm}^3/\text{mol}$	$-124 \pm 7 \text{ cm}^3/\text{mol}$	n.d.	$2 \times 10^{-10} \mathrm{M}$

11th European Biophysical Societies' Association (EBSA) Congress | July 16 – 20, 2017 | Edinburgh, Scotland