

Determination of the protein-ligand binding volume by high-pressure spectrofluorimetry

Vytautas Petrauskas

Department of Biothermodynamics and Drug Design Institute of Biotechnology, Vilnius University

February 15-17, 2016

- Definition: the change in protein volume observed upon protein-ligand binding;
- Motivation: fundamental knowledge about protein-ligand interaction and pressure-induced protein denaturation.

• Protein-ligand binding volume:
$$\Delta V_b = \left(\frac{\partial \Delta G_b}{\partial P}\right)_T$$
;

Introductory remarks Heat shock protein 90 and carbonic anhydrases

N-terminal domain of human Hsp90 (229 a.a.), PDB ID: 2YI6

Human carbonic anhydrase (CA) II (260 a.a.), PDB ID: 3HS4

Experimental set-up of high-pressure spectrofluorimetry

- Pressure range: (0.1 380) MPa;
- Temperature range: (10 95) °C;
- Fluorescence probe: intrinsic tryptophan (exited at 295 nm);
- Emission spectra range: (320 400) nm.

Description of pressure-induced unfolding profiles $_{\mbox{Equations}}$

Unfolding profiles:

$$f(p) = f_N + \frac{f_U - f_N}{1 + \exp(\Delta G(p)/RT)}.$$

The Gibbs energy of unfolding:

$$\Delta G = \Delta G_0 + \Delta V_0 \Delta p + rac{\Delta eta}{2} (\Delta p)^2.$$

The center of spectral mass:

$$\lambda_{CSM} = \frac{\sum_{i} f_i \lambda_i}{\sum_{i} f_i}$$

Pressure-induced unfolding profiles of CA II and CA I

Intrinsic tryptophan fluorescence spectra at various pressures

Vytautas Petrauskas (Vilnius University)

The shift in P_m and dosing curves Fluorescent Pressure Shift Assay (**FPSA**)

Description of dosing curves

Mathematical background

$$P_t = N_f + N_b + U$$

$$L_t = L_f + N_b,$$

$$K_U = \frac{U}{N_f},$$

$$K_b = \frac{N_b}{N_f L_f}.$$

 P_t and L_t – the bulk concentrations of protein and ligand;

 N_f and N_b – concentrations of native ligand-free and bound protein;

U – concentration of unfolded protein;

 K_U and K_b - equilibrium constants of protein unfolding and protein-ligand binding reaction; At melting pressure p_m , $U = P_t/2$.

The final form of dosing curve equation:

,

$$L_t = (K_U - 1) \left(\frac{1}{K_b} + \frac{P_t}{2K_U} \right)$$
$$K_b = \exp\left(-\frac{\Delta G_b}{RT}\right) = \left(-\frac{\Delta G_{0_b} + \Delta V_{0_b}(p_m - p_0) + \frac{\Delta \beta_b}{2}(p_m - p_0)^2}{RT}\right)$$

Hsp90N protein stability diagram in P-T coordinates With added ligand

Petrauskas et al. Eur Biophys J 42 (2013) 355-362.

Hsp90N protein stability diagram

The Gibbs energy dependence on pressure and temperature

Binding volume correlation with affinity

Affinity was determined by ITC and Fluorescent Thermal Shift Assay

Preliminary results of Hsp90N interaction with two ligands by NMR;

 $\Delta V_b = \left(\frac{\partial \Delta G_b}{\partial p}\right)_T;$

NMR data ¹H-¹5N–HSQC spectra of Hsp90N (red) and Hsp90N+ICPD9 (blue)

NMR data analysis Analysis of dosing curves

 $\Delta V_b = \left(\frac{\partial \Delta G_b}{\partial p}\right)_T$

$$\Delta G_b = -RT \ln(K_b) = RT \ln(K_d)$$

Experimental changes in chemical shifts:

$$\Delta \delta = \sqrt{(\delta_0^H - \delta^H)^2 + \left(\frac{\gamma^N}{\gamma^H}\right)^2 (\delta_0^N - \delta^N)^2}$$

 δ_0 – chemical shift without ligand.

$$\Delta \delta = \Delta \delta_{max} \frac{(L_t + P_t + K_d) - \sqrt{(L_t + P_t + K_d)^2 - 4P_t L_t}}{2P_t}$$

Chemical shift equation reference:

Morton et al. *Structure* **4** (1996) 705-14.

Gibbs energy as a function of pressure

 $\Delta \beta_h = 0 \text{ cm}^6/(\text{J mol})$

Gibbs energy as a function of pressure

Binding volume correlation with affinity Including NMR data (blue points)

- Our results suggest that weak ligands of Hsp90N protein induce smaller changes in volume than tight-binding ligands.
- Both techniques FPSA and NMR provide similar values of binding volume.

Acknowledgments

High pressure team at the department of Biothermodynamics and Drug Design:

 Prof. Daumantas Matulis, Gediminas Skvarnavičius, Dr. Zigmas Toleikis, Joana Smirnovienė, Dr. Piotras Cimmperman, Martynas Grigaliūnas, Povilas Norvaišas

NMR data:

Prof. Christian Roumestand (CBS Montpellier)

Funding:

 Research Council of Lithuania (grant No. MIP-004/2014)

High-pressure team

Thank you for your attention!

Supplementary material

FTSA and FPSA methods

Examples of Hsp90N protein stabilization by ligand against T and P denaturation

FTSA and FPSA methods

Expressions for the Gibbs energy

$$f = f_N + \frac{f_U - f_N}{1 + \exp(\Delta_U G/RT)}$$

 $\Delta_U G$ as a function of temperature at a constant pressure:

$$\Delta_U G_T = \Delta_U G_0 - \Delta_U C_\rho \left[T \left(\ln \frac{T}{T_0} - 1 \right) + T_0 \right] - \left(\Delta_U H_0 - \Delta_U G_0 \right) \left(\frac{T}{T_0} - 1 \right)$$

 $\Delta_U G$ as a function of pressure at a constant temperature:

$$\Delta_U G_P = \Delta_U G_0 + \Delta_U V_0 (p - p_0) + rac{\Delta_U eta}{2} (p - p_0)^2$$

The full differential of the Gibbs energy change $\Delta G = G_U - G_N$

$$\mathrm{d}(\Delta G) = -\Delta S \mathrm{d} T + \Delta V \mathrm{d} p$$

as a function of temperature T and pressure P.

$$\Delta G = \frac{\Delta \beta}{2} (p - p_0)^2 + \Delta V_0 (p - p_0) + \Delta \alpha (p - p_0) (T - T_0) - \Delta C_p \left[T \left(\ln \frac{T}{T_0} - 1 \right) + T_0 \right] - (\Delta H_0 - \Delta G_0) \left(\frac{T}{T_0} - 1 \right) + \Delta G_0$$

Hsp90N protein stability diagram in P-T coordinates With added ligand

Hsp90N stabilization by ligands

The use of guanidine hydrochloride - a protein destabilizing agent

Protein stabilization by ligands Hsp90N + radicicol

Hsp90N + radicicol PDB ID: 4EGK Hsp90N melting temperatures T_m

 $[\mathsf{Hsp90N}] = 14 \; \mu \mathsf{M}$

[Radicicol] µM	T_m (°C)
0	51.6
2	61.1
20	64.9

Zubriene et al. *Int J Mol Sci* **10** (2009) 2662–2680.