# Thermodynamics of cationic and anionic surfactant interaction

#### Vytautas Petrauskas

Department of Biothermodynamics and Drug Design (PI D. Matulis) Institute of Biotechnology, Vilnius University

October 7, 2013





- Fundamental understanding of hydrophobic and ionic forces in lipid membranes and proteins
- Simple model system is the interacting positively and negatively charged linear surfactants
- Dissection of the hydrophobic and ionic contributions to the thermodynamics of surfactant interactions



and



Reaction between negatively and positively charged detergents can be divided into two arbitrary parts:

 $\begin{array}{c} \mbox{ logorticly charged ions form ion pairs } \\ R_1 N H_3^+ + R_2 S O_3^- \longleftrightarrow R_1 N H_3^+ \cdots R_2 S O_3^- \\ \mbox{ and } \end{array}$ 

2 electrically neutral and hydrophobic ion pair complexes form an aggregate of size  $\nu$  $\nu(R_1NH_3^+ \cdots R_2SO_3^-) \longleftrightarrow (R_1NH_3^+ \cdots R_2SO_3^-)_{\nu} \downarrow$ , which precipitates out of aqueous solution.

 $R_1$  and  $R_2$  are linear aliphatic chains of various length.

# Isothermal titration calorimetry

Thermogram and binding isotherm of decane sulfonate titration by dodecylammonium

#### Equipment:

Microcal (Northampton, MA) Micro Calorimetry System (MCS)

Temperature range: (25−65) °C

Surfactant concentrations: Cell – 0.33 mM Syringe – 5 mM



## Observed binding constant dependence on concentration Example: dodecylammonium binding to decane sulfonate at T = 25 °C



| C (mM)                                                                                                                                                                                        | $K_b^{obs}$ (M <sup>-1</sup> )                              | $K_b^{mod}$ (M <sup>-1</sup> )                              |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--|--|--|--|
| 0.66<br>0.33                                                                                                                                                                                  | $\begin{array}{c} 3.5\times10^5\\ 1.9\times10^5\end{array}$ | $\begin{array}{c} 5.5\times10^5\\ 2.7\times10^5\end{array}$ |  |  |  |  |
| 0.165                                                                                                                                                                                         | $1.1 	imes 10^5$                                            | $1.4 	imes 10^5$                                            |  |  |  |  |
| $\mathcal{K}_{b}^{mod} = \frac{[\mathrm{R}_{1}\mathrm{NH}_{3}^{+}\cdots\mathrm{R}_{2}\mathrm{SO}_{3}^{-}\downarrow]}{[\mathrm{R}_{1}\mathrm{NH}_{3}^{+}][\mathrm{R}_{2}\mathrm{SO}_{3}^{-}]}$ |                                                             |                                                             |  |  |  |  |

## Observed binding constant dependence on concentration Example: dodecylammonium binding to decane sulfonate at T = 25 °C



# Dependence on aliphatic chain length

Example: dodecylammonium binding to alkane sulfonate

Number of carbon atoms in both  $R_1$  and  $R_2$  linear aliphatic chains:

 $m = R_1 + R_2$ 



Table: Thermodynamic parameters of stoichiometric coprecipitate formation. Gray columns mark experimentaly obtained values.

| m  | $K_b^{obs}$      | $K_b^{mod}$      | $\Delta_{agg}G$ (kJ/mol) |       |       | $\Delta_{agg}H$ (kJ/mol) |        |        |  |
|----|------------------|------------------|--------------------------|-------|-------|--------------------------|--------|--------|--|
|    | $(M^{-1})$       | $({\sf M}^{-1})$ | obs                      | mod   | alk   | obs                      | mod    | alk    |  |
| 21 | $3.3	imes10^4$   | $6.4	imes10^4$   | -25.8                    | -27.5 | -56.0 | -37.4                    | -97.4  | -90.8  |  |
| 22 | $1.8	imes10^5$   | $2.7	imes10^5$   | -30.0                    | -31.0 | -59.6 | -67.5                    | -102.6 | -96.0  |  |
| 23 | $2.6	imes10^5$   | $1.2	imes10^{6}$ | -30.9                    | -34.6 | -63.2 | -81.9                    | -107.8 | -101.2 |  |
| 24 | $1.3	imes10^{6}$ | $4.9	imes10^6$   | -34.9                    | -38.2 | -66.8 | -91.1                    | -113.0 | -106.4 |  |

# Enthalpy dependence on temperature

Example: decane sulfonate reaction with dodecylammonium



# Enthalpy dependence on temperature

Example: decane sulfonate reaction with dodecylammonium



Vytautas Petrauskas (Vilnius University)

## Enthalpy dependence on salt concentration

Dodecylammonium binding to alkane sulfonate at various salt concentrations



#### Dissection of thermodynamic aggregation parameters <u>Hydrophobic and ionic contributions of dodecylamine binding to dodecane sulfonate</u>



Table: Thermodynamics of aggregation into solid phase (model)

|                        | Hydrophobic | Electrostatic |             |
|------------------------|-------------|---------------|-------------|
| $\Delta_b G$ (kJ/mol)  | -67         | +29           | (0.33 mM)   |
| $\Delta_b H$ (kJ/mol)  | -106        | -7            | (any conc.) |
| $T\Delta_b S$ (kJ/mol) | -39         | -36           | (0.33 mM)   |

# Packing model

Packing diagram of dodecylamine complex with dodecyl sulfate

- Crystallographic data of most similar O-lauroylethanolamine – dodecylsulfate structure was used\*.
- O-lauroylethanolamine was substituted with dodecylamine.
- Resulting structure was optimized using the semiempirical quantum chemistry program MOPAC.



\*Tarafdar et al. J. Phys. Chem. B **114** (2010) 13710

- Association and aggregation reactions between long-chain aliphatic surfactants at temperatures below the fusion temperature are enthalpy-driven and entropy-opposed.
- The dominating enthalpy contribution is primarily due to aliphatic chain packing.

# Acknowledgment

**Project collaborators:** Daumantas Matulis, Povilas Norvaišas

**Financial support:** Research Council of Lithuania



### Appendix

Table: Binding constants  $K_b^{fit}$  obtained from experimental data fits are compared to binding constants  $K_b^{mod}$  obtained from the model

| <i>C</i> (mM) | $\Delta H^{obs}$ (kJ/mol)          | N <sup>obs</sup>                  | $K_b^{obs}$ (M <sup>-1</sup> ) | $K_b^{mod}$ (M <sup>-1</sup> ) |
|---------------|------------------------------------|-----------------------------------|--------------------------------|--------------------------------|
| 0.66          | $-70.9\pm3.7$                      | $1.01\pm0.03$                     | $(3.5\pm0.4)	imes10^5$         | $5.5	imes10^5$                 |
| 0.33          | $\textbf{-70.5}\pm5.2$             | $\textbf{0.98} \pm \textbf{0.05}$ | $(1.9\pm0.4)	imes10^5$         | $2.4	imes10^5$                 |
| 0.165         | $\textbf{-72.7} \pm \textbf{15.9}$ | $\textbf{0.99} \pm \textbf{0.03}$ | $(1.1\pm0.3)	imes10^5$         | $1.4	imes10^5$                 |

## Thermodynamic parameters of coprecipitate formation Alkane sulfonate binding to alkylammonium at 25°C

| m  | $K_b^{obs}$      | K <sup>mod</sup> | $\Delta_{agg}G$ (kJ/mol) |       |       | $\Delta_{agg}H$ (kJ/mol) |        |        | $T\Delta_{agg}S$ |
|----|------------------|------------------|--------------------------|-------|-------|--------------------------|--------|--------|------------------|
|    | $(M^{-1})$       | $({\sf M}^{-1})$ | obs                      | mod   | alk   | obs                      | mod    | alk    | (kJ/mol)         |
| 21 | $3.3	imes10^4$   | $6.4	imes10^4$   | -25.8                    | -27.5 | -56.0 | -37.4                    | -97.4  | -90.8  | -11.6            |
| 22 | $1.8	imes10^5$   | $2.7	imes10^5$   | -30.0                    | -31.0 | -59.6 | -67.5                    | -102.6 | -96.0  | -37.4            |
| 23 | $2.6	imes10^5$   | $1.2	imes10^{6}$ | -30.9                    | -34.6 | -63.2 | -81.9                    | -107.8 | -101.2 | -51.0            |
| 24 | $1.3	imes10^{6}$ | $4.9	imes10^{6}$ | -34.9                    | -38.2 | -66.8 | -91.1                    | -113.0 | -106.4 | -56.3            |

$$\Delta_{agg} G^{mod} = \Delta_{agg} G_{ion} + \Delta_{agg} G_{alk} \tag{1}$$

$$\Delta_{agg} G_{ion} = -RT \ln(A_{ion}C) \tag{2}$$

$$\Delta_{agg}G_{alk} = -RT\ln(A_{alk}C) = -RT(m\ln(\Delta w) + \ln(w_0) + \ln(C))$$
(3)

C – molar concentration of detergent.

$$A_{ion} = B^{-1} \frac{[R_1 N H_3^+ \cdots R_2 S O_3^-]}{[R_1 N H_3^+][R_2 S O_3^-]}$$
(4)  

$$A_{alk} = C^{-1} \frac{[R_1 N H_3^+ \cdots R_2 S O_3^- \downarrow]}{[R_1 N H_3^+ \cdots R_2 S O_3^-]}$$
(5)  

$$K_b^{mod} = \frac{[R_1 N H_3^+ \cdots R_2 S O_3^- \downarrow]}{[R_1 N H_3^+][R_2 S O_3^-]} = A_{ion} B A_{alk} C$$
(6)

B – constant factor equal to  $4.03\times10^{-5}.$