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INTRODUCTION
The determination of lead compound binding affinity to a receptor is an
inseparable part of rational drug design process. Binding affinity, or the
Gibbs free energy of binding, includes contributions from binding en-
thalpy, entropy, volume, and other thermodynamic parameters. Enthalpy
and entropy are temperature derivatives from the Gibbs free energy, while
binding volume is the pressure derivative from the Gibbs free energy. Vol-
ume change related to protein–ligand binding is an important but largely
neglected thermodynamic parameter that may facilitate rational drug de-
sign. We determined the volume changes of heat shock protein 90 N-
terminal domain (Hps90N) and human serum albumin (HSA) binding by
several lead compounds. Two experimental techniques – the pressure shift
assay (PSA) and thermal shift assay (TSA) – were used to monitor ligand
binding and protein unfolding by high pressure and temperature.
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∆G0, ∆V0 and ∆H0 – differences in the Gibbs free energy, volume and en-
thalpy of protein unfolding at the reference state (P0 and T0), respectively.
∆β, ∆α and ∆Cp – changes in compressibility factor, thermal expansion
coefficient and heat capacity between the unfolded and the folded states,
respectively. Protein unfolding fluorescence curve is described by

f = fN +
fU − fN

1 + exp(∆G/RT )
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Here fN and fU are experimental fluorescence yields for the native and
unfolded protein states.
∆G as a function of pressure at a constant temperature:
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∆G as a function of temperature at a constant pressure:
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THERMAL SHIFT AND PRESSURE SHIFT ASSAYS

FIGURE: (a) Hsp90N denaturation by elevated temperature and (b) HSA
denaturation by pressure in the absence and presence of ligand. Ligand
dose curves: (c) Hsp90N Tm and (d) HSA Pm dependencies on ligand con-
centration.

P − T PHASE DIAGRAM

FIGURE: Hsp90N protein stability diagram in P −T coordinates without a
ligand (squares) and with 22 µM (triangles) and 200 µM (circles) of added
ligand. Lines are fits to Eq. (1).

BINDING VOLUMES

FIGURE: Hsp90N ligand binding volumes plotted as a function of intrinsic
binding constant. The solid line is a visual guide, the dashed line compares
the volume of Hsp90N unfolding.

CONCLUSIONS
• The ligands exhibited a stabilizing effect on the protein by increasing

its melting pressure and temperature.

• The negative volume of ligand binding was relatively large and sig-
nificantly exceeded the volume of protein unfolding.

• Protein–ligand binding affinities may correlate with binding vol-
umes: tightly binding ligands, such as naturally occurring radici-
col, exhibited a relatively large negative volume of binding, while
weakly binding ligands exhibited a relatively small volume of bind-
ing.
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